doi:10.3799/dqkx.2015.082

兴凯地块南部花岗岩年代学、地球 化学及 Hf 同位素特征

敬海鑫1,孙德有1*,苟 军1,武鹏飞1,王天豪1,郭宏宇1,柳小明2,胡兆初3

1. 吉林大学地球科学学院,吉林长春 130061

2. 西北大学大陆动力学国家重点实验室,陕西西安 710069

3. 中国地质大学地质过程与矿产资源国家重点实验室,湖北武汉 430074

摘要:兴凯地块南部构造演化复杂,缺乏精确的年代学证据和系统的地球化学研究. 锆石U-Pb年龄测定结果表明:兴凯地块南部花岗岩侵位结晶年龄为晚三叠世末期(202~205 Ma),处于古亚洲洋和古太平洋构造体制的转换阶段. 地球化学成分上, 二长花岗岩和花岗闪长岩均以富硅(SiO₂ = 69.61%~77.27%)、弱过铝(Al₂O₃ = 12.70%~15.28%)、较富碱(AKI=0.64~ 0.88)为特征. 结合角闪石矿物的出现、较低的锆石饱和温度(T_{Zr} =679~787 °C)等特征表明本区花岗岩为分异的 I 型花岗 岩. 锆石的¹⁷⁶ Hf/¹⁷⁷ Hf 比值较高(0.282773~0.282913), $\epsilon_{\rm Hf}(t)$ 均为正值(4.39~9.32),二阶段 Hf 模式年龄较为年轻(0.65~ 0.96 Ga),反映其源区物质为新元古代期间从亏损地幔新增生的年轻地壳物质. 结合岩石形成年龄、岩石组合等特征可以推断 岩石应该形成于西太平洋开始俯冲的活动大陆边缘环境下.

关键词:花岗岩;U-Pb测年;地质年代学;地球化学;兴凯地块.

中图分类号: P588.1; P59 **文章编号:** 1000-2383(2015)06-0982-13 **收稿日期:** 2014-12-24

Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block

Jing Haixin¹, Sun Deyou^{1*}, Gou Jun¹, Wu Pengfei¹, Wang Tianhao¹, Guo Hongyu¹, Liu Xiaoming², Hu Zhaochu³

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China

3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

Abstract: The tectonic evolution of southern Khanka block is very complex, and there is not enough of the precise chronological evidence and systematic geochemical studies. Zircon U-Pb dating results show that the granites from southern Xingkai block were intruded at the end of Late Triassic (202-205 Ma) in a transition stage of paleo-Asian Ocean and paleo-Pacific tectonic system. It is found that the monzonitic granites and granodiorites are all characterized with enriched silicon (SiO₂=69. 61%-77. 27%), weakly supersaturated aluminum (Al₂O₃=12. 70%-15. 28%) and relatively enriched potassium (AKI=0. 64-0. 88), which indicates that the granites are fractionated I-type granites, taking into account of the presence of amphibole and low zircon saturation temperature ($T_{\rm Zr}$ =679-787 °C). ¹⁷⁶ Hf/¹⁷⁷ Hf ratios are high (0. 282 773-0. 282 913); $\varepsilon_{\rm Hf}(t)$ is positive (4. 39-9. 32), and two-stage Hf model ages are young (0. 65-0. 96 Ga), which shows that its source material is from the depleted mantle of new-born young crust of Neoproterozoic. It is concluded that the granite was formed in the context of the initial western Pacific subduction into active continental margin based on the age of the rock formation, and other rock features. **Key words**; granite; U-Pb dating; geochronology; geochemistry; Xingkai block.

基金项目:国家自然科学基金项目(No. 41172058).

作者简介: 敬海鑫(1988-), 男, 硕士研究生, 主要从事火成岩研究. E-mail: jing_hai_xin@126. com

^{*} 通讯作者:孙德有, E-mail: sundy@jlu.edu.cn

引用格式:敬海鑫,孙德有,苟军,等,2015.兴凯地块南部花岗岩年代学、地球化学及 Hf 同位素特征.地球科学——中国地质大学学报,40(6): 982-994.

兴凯地块大部分位于俄罗斯境内,其北部和东 北部以敦化一密山断裂为界,分别与佳木斯地块和那 丹哈达一比金地体相连;东部以阿尔谢尼耶夫断裂与 萨马尔卡地体为邻;西南与渤海地块之间为早中生代 形成的碰撞缝合带(邵济安和唐克东 1995). 其南部 是古亚洲洋构造域和滨太平洋构造域的叠加部位,构 造演化十分复杂.近年来学者研究认为,兴凯地块由 前寒武纪变质基底组成,被古生代一中生代的碳酸盐 岩、碎屑岩以及火山岩覆盖(邵济安,1991;邵济安等, 1995;周建波等,2012).对于兴凯地块的由来,不同学 者有不同的认识:周建波等(2012)通过对虎头杂岩年 代学研究,认为兴凯地块与毗邻的佳木斯地块具有明 显构造亲缘性;邵济安等(1995)和任纪舜等(1999)通 过对比兴凯地块古大陆边缘所分布的石炭、二叠纪化 石,认为兴凯地块是外来地体,其与华南板块有密切 联系(Zhang, 1995, 2003).由于兴凯地块南部处于与 佳木斯地块、松嫩一张广才岭地块结合地区,又经历

了与松嫩一张广才岭地块拼合、西太平洋俯冲和敦密 断裂左行走滑等—系列构造演化,因此兴凯地块南部 为研究东北地区区域构造演化提供了一个绝佳的窗 口.兴凯地块南部二叠系一第四系地层覆盖较多,主 要发育晚印支期花岗岩,有部分燕山晚期及海西期花 岗岩出露(据黑龙江省地质局第一区测队1:20万地 质图,1984),但缺乏精确的年代学证据和系统的地球 化学研究.这些花岗岩的形成时代、地球化学特征、形 成时的构造背景及与古太平洋的演化关系等,都是东 北地区构造演化的重要问题.本文对区内中生代花岗 岩进行了详细的研究,并针对其形成时代和地球化学 特征进行了讨论,探讨了其形成的构造背景.

1 地质背景与岩石学特征

兴凯地块在大地构造位置上处于张广才岭陆缘 带东缘(图1),经历了西太平洋板块俯冲等复杂的

据黑龙江省地质局第一区测队1:20万地质图,1984;邵济安和唐克东,1995;刘永江等,2010

构造演化. 区内地层分布广泛,主要为第三系、白垩 系、三叠系、二叠系和黑龙江群. 侵入岩主要发育晚 印支期花岗岩组燕山晚期花岗岩和黑云母花岗岩, 华力西期黑云母花岗岩、白岗质花岗岩和花岗闪长 岩组(据黑龙江省地质局第一区测队1:20万地质 图,1984). 研究区出露的花岗岩体主要为八楞山岩 体、金场沟岩体、天岭桥岩体和风月桥林场岩体(黑 龙江省矿产局,1993),八楞山岩体主要岩性为印支 期花岗岩,少量为花岗闪长岩;天岭桥岩体主要为印 支期花岗岩,风月桥林场岩体为印支期花岗闪长岩 组. 本文所研究的样品为采自上述岩体的二长花岗 岩和花岗闪长岩.

1.1 二长花岗岩

岩石呈灰红色,中粗粒半自形结构,块状构造. 主要矿物为条纹长石(20%~35%)、斜长石 (15%~20%)、石英(25%~35%)、黑云母(5%~ 15%)和角闪石(<5%).碱性长石多为条纹长石及 微斜长石.条纹长石条纹双晶多呈网状、叶脉状,一 级灰白干涉色,粒度为2~6mm,发生轻微泥化.微 斜长石格子双晶明显.斜长石半自形板状,一级灰白 干涉色,可以看到聚片双晶及环带结构,粒度为2~ 5mm,轻微绢云母化.黑云母片状,黄褐色一黄绿色 多色性,一组极完全解理,干涉色多二级黄,少量绿 泥石化.副矿物有锆石、榍石等.

1.2 花岗闪长岩

岩石呈灰白色,中粒半自形结构.主要矿物有石 英(25%~30%)、斜长石(45%~50%)、钾长石(15% 左右)、黑云母(5%左右)和角闪石(<5%).石英为 1~3 mm他形晶,碱性长石多为条纹长石,叶脉状条 纹双晶明显,粒径为 2~5 mm.斜长石为板状晶形,蚀 变明显,部分可见聚片双晶及环带结构,多绢云母化, 黑云母黄褐色一黄绿色多色性明显,角闪石半自形 晶,柱状,多色性稍弱,副矿物有榍石和锆石等.

2 分析测试方法

年龄测定所用锆石来自八楞山岩体、天岭桥岩体和金场沟岩体的二长花岗岩和风月桥林场花岗闪 长岩. 锆石分选工作由河北省诚信地质服务有限公司完成,将新鲜岩石样品粉碎,经磁选和重力分选后 在双目镜下挑选透明、无裂隙和无包裹体的锆石. 锆 石制靶和显微图像采集在西北大学大陆动力国家重 点实验室完成, U-Pb 年龄测定在中国地质大学地 质过程与矿产资源国家重点实验室和在西北大学大 陆动力国家重点实验室完成. 对测年样品的锆石进 行透射光、反射光和阴极发光图像的观察和采集,以 确定锆石的内部结构和成因.采用波长193 nm的 ComPex102 ArF 准分子激光器和 Agilent7500a 型 ICP-MS进行锆石元素和同位素分析,用高纯度 He 气作为剥蚀物质的载气,利用美国国家标准技术研 究院研制的人工合成硅酸盐玻璃标准参考物质 NIST610 进行仪器最佳化,用哈佛大学国际标准错 石 91500 作外标. 锆石测定过程中激光束斑直径为 30 µm. 分析数据通过 GLITTER 软件计算,数据的普通 Pb 校正采用 Andersen(2002)的方法进行,详细实验 测试过程及仪器参数参见袁洪林等(2003). 锆石原位 Lu-Hf 同位素分析在中国科学院地质与地球物理研 究所配有 193 nm 激光取样系统的 Neptune 多接收电 感耦合等离子体质谱仪(LA-MC-ICPMS)上进行. 激 光束斑直径为 63 µm,激光脉冲宽度为 15 ns,试验中 采用 He 气作为剥蚀物质载气. 详细测试流程以及仪 器运行条件等参见 Wu et al. (2003).

元素地球化学含量在西北大学大陆动力学国家 重点实验室和澳实分析检测(广州)有限公司完成, 主量元素采用 XRF 玻璃熔片法分析,分析精度和准 确度优于 5%,稀土和微量元素采用 ICP-MS 分析 方法,分析精度和准确度一般优于 10%.

3 分析测试结果

3.1 锆石 U-Pb 年代学

所测花岗岩样品(样品号:JX1304、1322、1327、 1328)的锆石晶形较好,呈长柱状或短柱状,发育明 显岩浆成因的振荡生长环带结构. 锆石的 Th/U 比 值均大于 0.1,分别为 0.38~0.75、0.26~0.61、 0.17~0.49和 0.31~0.86,为岩浆成因的锆石.测 试分析结果如表 1 和图 2 所示.

JX1304 样品(二长花岗岩,采自金场沟岩体)锆 石中 16 个分析点中有 14 个位于 U-Pb 谐和线上或 其附近,一个分析点不谐和,²⁰⁶ Pb/²³⁸ U 表面年龄为 200~206 Ma 之间,其加权平均年龄为 203±2 Ma, MSWD=0.23.

1322 样品(二长花岗岩,采自天岭桥岩体)锆石 中 20 个分析点中有 18 个位于 U-Pb 谐和线上或其 附近,一个捕获年龄,一个不谐和,²⁰⁶ Pb/²³⁸ U 表面 年龄为 199~210 Ma 之间,其加权平均年龄为 205±2 Ma,MSWD=0.46.

1327样品(花岗闪长岩,采自风月桥林场岩体)

表 1 兴凯地块南部花岗岩锆石 U-Pb 同位素分析结果

Table 1 Zircon U-Pb dating results of the granite from southern Xingkai block

	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ I	$\pm 1\sigma$	$^{206}{ m Pb}/_{^{238}{ m U}}$	1.1	t(Ma)			
样品测点							$\pm 1\sigma$	207 PL /235 I I	$\pm 1\sigma$	206 PL /238 I I	+1.
IV1204_01	0.57	0.00015	0.009.17	0.004.00	0.010.05	0.000.00	0.000.45	10/ 0	10	10/ 0	
JA1304-01	0.57	0.066 15	0.00217	0.29433	0.010.05	0.032.29	0.00045	262	8	205	3
JX1304-02	0.44	0.05934	0.00258	0.26320	0.01153	0.032.09	0.00031	237	9	204	Z
JX1304-03	0.51	0.05740	0.00217	0.25371	0.00914	0.03216	0.00038	230	7	204	2
JX1304-04	0.58	0.05978	0.00268	0.264 62	0.01100	0.03241	0.00041	238	9	206	3
JX1304-05	0.75	0.07304	0.00393	0.34348	0.02004	0.03367	0.00036	300	15	213	2
JX1304-06	0.42	0.05070	0.00162	0.22380	0.00700	0.03189	0.00030	205	6	202	2
IX1304-07	0.49	0.10447	0.00528	0.48851	0.02656	0.03319	0.00039	404	18	210	2
IX1304-08	0 40	0.051.93	0.001.89	0 230 40	0.007.71	0.032.22	0.000.34	211	6	204	2
JX1304 00	0.40	0.051.55	0.00100	0.230 40	0.000.02	0.032.22	0.000.34	224	0	205	2
JA1304-09	0.39	0.055.50	0.002.33	0.247 10	0.00993	0.032.30	0.000.33	224	0	203	4
JX1304-10	0.43	0.065 88	0.002 53	0.29399	0.010.89	0.03221	0.00032	262	9	204	Z
JX1304-11	0.38	0.063 55	0.00242	0.284 17	0.011 39	0.03203	0.00032	254	9	203	Z
JX1304-12	0.49	0.05343	0.00175	0.23837	0.007 55	0.03224	0.00036	217	6	205	2
JX1304-13	0.56	0.054 37	0.00222	0.23675	0.00931	0.03166	0.00039	216	8	201	2
JX1304-14	0.41	0.05953	0.00175	0.26587	0.00748	0.03227	0.00031	239	6	205	2
JX1304-15	0.47	0.05706	0.00157	0.27308	0.00787	0.034 36	0.00041	245	6	218	3
IX1304-16	0.56	0 051 05	0 002 23	0 225 15	0 009 16	0 032 15	0 000 40	206	8	204	2
1322-1-01	0.36	0.053.19	0.002.83	0.220.20	0.013.07	0.03234	0.000 51	218	11	205	3
1022 ± 01 1002 ± 02	0.50	0.000.00	0.002.00	0.521.94	0.013.07	0.041.01	0.000.01	426	10	250	2
1000 1 00	0.02	0.089.08	0.00399	0.021.04	0.027 10	0.04101	0.00044	420	10	209	3
1322-1-03	0.27	0.048 25	0.00213	0.216.07	0.00973	0.03235	0.000.61	199	8	205	4
1322-1-04	0.46	0.050.66	0.00271	0.228.06	0.01143	0.032.86	0.00044	209	9	208	3
1322-1-05	0.45	0.04901	0.00223	0.22046	0.00975	0.03256	0.000 51	202	8	207	3
1322-1-06	0.42	0.04817	0.00179	0.22149	0.00756	0.03318	0.00039	203	6	210	2
1322-1-07	0.37	0.046 43	0.00170	0.211 85	0.00757	0.03278	0.00035	195	6	208	2
1322-1-08	0.26	0.04978	0.00170	0.21811	0.007.08	0.03154	0.000.30	200	6	200	2
1322-1-09	0.43	0 055 47	0.002.10	0 252 29	0.008.70	0.033.14	0.000.62	228	7	210	4
1222-1-10	0.28	0.057.17	0.001.86	0.261.45	0.008.38	0.022.02	0.000.40	226	7	200	2
1022 + 10 1000 + 11	0.00	0.06116	0.001.00	0.20145	0.00030	0.033.02	0.000 43	241	7	203	5
1022-1-11	0.39	0.00110	0.001.60	0.207.04	0.00823	0.03171	0.00045	241	6	201	3
1322-1-12	0.29	0.048.01	0.00167	0.210.66	0.00712	0.03187	0.00035	194	6	202	Z
1322-1-13	0.33	0.05304	0.00316	0.23335	0.01473	0.03200	0.000 52	213	12	203	3
1322-1-14	0.56	0.05534	0.00352	0.246 52	0.01865	0.03154	0.00042	224	15	200	3
1322-1-15	0.41	0.045 57	0.00212	0.20246	0.01002	0.03234	0.00044	187	8	205	3
1322-1-16	0.50	0.05249	0.00153	0.24088	0.00890	0.032 90	0.00026	219	7	209	2
1322-1-17	0.34	0.04418	0.00165	0.19902	0.008.31	0.03258	0.000.37	184	7	207	2
1322-1-18	0.35	0.049.22	0.002.91	0.221.49	0.014.28	0.032.25	0.000.49	203	12	205	3
1222 - 1 - 10	0.40	0.120.10	0.00151	0.745.84	0.028.80	0.028.20	0.000 52	566	17	242	2
1022-1-19	0.40	0.13919	0.004.04	0.743.04	0.020.00	0.030 30	0.000.32	200	17	242	3
1322-1-20	0.39	0.064 10	0.00192	0.29129	0.00839	0.032.89	0.00035	260	(209	2
1327-1-01	0.30	0.048 35	0.00216	0.216.58	0.00977	0.03193	0.00027	199	8	203	Z
1327-1-02	0.36	0.05201	0.00261	0.22857	0.01110	0.03200	0.000 40	209	9	203	3
1327-1-03	0.38	0.046 86	0.00148	0.19983	0.006 01	0.03074	0.00028	185	5	195	2
1327-1-04	0.48	0.04972	0.00205	0.22229	0.00968	0.03204	0.00041	204	8	203	3
1327-1-05	0.35	0.046 40	0.00284	0.20268	0.01160	0.03198	0.00045	187	10	203	3
1327-1-06	0.37	0 051 84	0 002 97	0 229 81	0 012 93	0 032 22	0 000 49	210	11	204	3
1327-1-07	0.13	0.058.78	0.003.69	0.259.27	0.015.74	0.032.34	0.000.67	234	13	205	4
1227-1-08	0.10	0.052.25	0.003.03	0.236.26	0.01774	0.032.07	0.000.34	215	6	203	2
1027-1-00	0.30	0.053.33	0.00101	0.230.20	0.00774	0.032.07	0.000.34	215	0	203	2
1327-1-09	0.30	0.053.39	0.00213	0.237.08	0.009.69	0.032.09	0.000.30	210	0	204	2
1327-1-10	0.31	0.07343	0.00774	0.35323	0.045 14	0.03182	0.00043	307	34	202	3
1327-1-11	0.33	0.05270	0.001 59	0.23262	0.00698	0.031 92	0.00034	212	6	203	2
1327-1-12	0.33	0.05193	0.00166	0.226 59	0.00671	0.03178	0.00032	207	6	202	2
1327-1-13	0.30	0.05202	0.00214	0.22549	0.00857	0.03166	0.00033	206	7	201	2
1327-1-14	0.33	0.05106	0.00179	0.22473	0.00779	0.03196	0.00048	206	6	203	3
1327-1-15	0.30	0.05101	0.00211	0.22540	0.00935	0.03206	0.00044	206	8	203	3
1328-1-01	0.68	0.054.00	0 001 87	0 245 60	0.008.60	0.032.80	0,000,36	223	7	208	2
1328-1-02	0.61	0.07210	0.00315	0.337.64	0.016.02	0.033.23	0.000.49	205	13	211	3
1020 1 02	0.01	0.07210	0.00313	0.057.04	0.010.02	0.033.23	0.000 40	200	10	211	0
1328-1-03	0.50	0.057.60	0.002.51	0.251.30	0.01128	0.031 50	0.00040	220	9	200	4
1328-1-04	0.78	0.05330	0.00154	0.24001	0.00725	0.03245	0.00034	218	6	206	Z
1328-1-05	0.39	0.084 20	0.004 45	0.36778	0.01923	0.03160	0.00038	318	14	201	2
1328-1-06	0.50	0.06070	0.00232	0.266 08	0.01087	0.03134	0.00038	240	9	199	2
1328-1-07	0.44	0.09160	0.006 30	0.35884	0.028 21	0.02732	0.000 62	311	21	174	4
1328-1-08	0.74	0.054 30	0.00162	0.24028	0.00743	0.03180	0.00032	219	6	202	2
1328-1-09	0.69	0.05310	0.00170	0.23356	0.00733	0.03174	0.000 32	213	6	201	2
1328-1-10	0.35	0.047 80	0.00175	0.21940	0.00857	0.033.05	0.00049	201	7	210	3
1328-1-11	0.86	0.056.60	0 001 70	0 246 21	0 007 00	0.031.45	0.000.37	222	6	200	2
$1320 1^{-11}$ 1398_{-1} 19	0.50	0.056.60	0.00170	0.24021	0.007.09	0.021.02	0.000.37	225	Q	200	2
1020-1-12	0.00	0.00000	0.002 30	0.249 30	0.010 11	0.031.93	0.00041	220	0	200	3
1328-1-13	0.41	0.054 80	0.002.52	0.259.82	0.011 Z1	0.034 44	0.000.58	235	9	218	4
1328-1-14	0.72	0.050.60	0.00143	0.229.06	0.00628	0.03260	0.00022	209	5	207	1
1328-1-15	0.72	0.05110	0.00119	0.23266	0.00518	0.032 90	0.00022	212	4	209	1
1328-1-16	0.63	0.05070	0.001 22	0.23615	0.00597	0.03345	0.00025	215	5	212	2
1328-1-17	0.48	0.050 50	0.00128	0.22972	0.005 62	0.03284	0.00023	210	5	208	1
1328-1-18	0.32	0.074 50	0.002 69	0.31374	0.01041	0.03092	0.00043	277	8	196	3
1328-1-19	0.73	0.056 80	0.00223	0.44788	0.01868	0.05646	0.000 62	376	13	354	4
1328-1-20	0.83	0.05500	0.00169	0.24112	0.00736	0.03154	0.00027	219	6	200	2

图 2 兴凯地块南部花岗岩锆石 U-Pb 年龄谐和图 Fig. 2 Zircon U-Pb concordian diagrams of the granite from southern Xingkai block

锆石中 15 个分析点中有 14 个位于 U-Pb 谐和线上 或其附近,一个分析点不谐和,²⁰⁶ Pb/²³⁸ U 表面年龄 为 195~204 Ma 之间,其加权平均年龄为 202± 3 Ma,MSWD=0.31.

1328 样品(二长花岗岩,采自八楞山岩体)锆石 中 20 个分析点大多位于 U-Pb 谐和线上或其附近, 有一个超出较多,为 358 Ma,应为捕获锆石,有 2 个 点不谐和,²⁰⁶ Pb/²³⁸ U 表面年龄为 195~211 Ma 之 间,其加权平均年龄为 204±2 Ma,MSWD=0.03.

上述测试结果表明兴凯地块南部花岗岩年龄集 中在 202~205 Ma 之间,形成于晚三叠世末期.

3.2 岩石地球化学特征

选取了8件花岗岩样品进行了主量、微量元素 分析并计算了CIPW标准矿物含量(表 2).

3.2.1 主量元素 由表 2 可知,本区中生代花岗岩 有如下特征:二长花岗岩富硅, w(SiO₂) = 74.24%~77.27%,平均值为 75.80%;铝弱过饱 和,w(Al₂O₃)=12.70%~13.15%,铝饱和指数 A/ CNK 在 1.0~1.1 之间(图 3b), 为弱过铝质; 碱含 量较高, $w(K_2O)+w(Na_2O)=8.02\%\sim8.39\%$,相 对富钾,K₂O/Na₂O=1.08~1.33, 过碱指数 AKI= 0.83~0.88, 落入高钾钙碱性系列(图 3a); 分异指 数 DI=90.53~95.05,平均值为 93.花岗闪长岩的 $w(SiO_2) = 69.61\% \sim 69.98\%$; 铝弱过饱和, $w(Al_2O_3) = 15.04\% \sim 15.28\%$,铝饱和指数 A/ CNK 在 1.0~1.1 之间(图 3b),为弱过铝质;碱含 量 $w(K_2O) + w(Na_2O) = 6.71\% \sim 7.83\%$,过碱指 数 AKI=0.64~0.74, 落入钙碱性系列; 分异指数 DI=79~83. 按洪大卫等(1987)建议的碱性、偏碱 性和钙碱性花岗岩 AKI 值分界线(>1.0、0.9~1.0 和<0.9),这些岩体均可归为钙碱性花岗岩.二者相 比,二长花岗岩比花岗闪长岩更富硅和碱,铝低、分 异指数高,说明二长花岗岩经历了更高程度的分异 演化.此外,二者 TiO₂、Al₂O₃、TFeO、MgO、Na₂O、 $CaO_{2}P_{2}O_{5}$ 与SiO₂含量均呈负消长关系(图 4),同 样说明其岩浆分异程度较高.

表 2 兴凯地块花岗岩地球化学分析结果

Table 2 Geochemical data of granites in Xingkai block

			花岗闪长岩					
样品号 -	IV1202	IV1204	IV1205	IV1206	1299	1228	1202	1227
	JA1302	JA1304	JA1303	JA1300	1322	1320	1303	1327
SiO_2	75.73	74.24	75.16	77.27	76.42	76.02	69.61	69.98
TiO ₂	0.10	0.16	0.13	0.05	0.10	0.09	0.31	0.34
AloÕo	12 74	13 15	12 85	12 70	12 70	12 01	15 28	15.04
$TE_{2}O_{3}$	1 45	2 02	1 65	12.70	1 20	1 46	2 52	2 41
$1 \text{Fe}_2 \text{O}_3$	1.45	2.02	1.65	0.80	1.30	1.46	3.02	3.41
MnO	0.03	0.04	0.04	0.02	0.02	0.03	0.08	0.06
MgO	0.13	0.26	0.17	0.07	0.11	0.16	0.47	0.55
CaO	0 74	1 12	0.94	0.55	0.71	0.92	2 14	2 83
N ₂ O	2.70	2.05	2.00	0.00	2.50	2.04	4.06	4.07
INa ₂ O	5.79	5.00	3.00	5.05	5.09	3.04	4.90	4.07
K_2O	4.41	4.17	4.23	4.67	4.80	4.18	2.87	Z.64
K_2O+Na_2O	8.20	8.02	8.09	8.20	8.39	8.02	7.83	6.71
P_2O_5	0.02	0.03	0.02	0.01	0.02	0.02	0.07	0.08
IOI	0 45	0.58	0.34	0.60	0.39	0.46	0.53	0.53
	0.40	0.00	0. 15	100.00	100.10	100.00	0.00	0.00
Total V O (N O	99.65	99.72	99.45	100.35	100.16	100.09	99.94	99.55
K_2O/Na_2O	1.16	1.08	1.10	1.32	1.33	1.09	0.58	0.65
A/NK	1.16	1.21	1.17	1.17	1.14	1.19	1.36	1.57
A/CNK	1.03	1.02	1.02	1.07	1.02	1.03	1.01	1.02
Mα#	0.15	0.21	0.20	0.17	0.15	0.14	0.24	0.18
IVI <u>g</u>	10.00	0.21	10.00	17 50	16.00	10.00	0.24	17.70
Ga	18.60	21.20	18.80	17.50	16.60	18.60	20.30	17.70
Rb	153.00	89.40	114.00	147.00	161.00	204.00	72.70	140.00
Sr	61.70	194.50	107.50	66.40	59.40	31.70	182.00	71.30
Y	39 10	27 20	32 70	34 40	25 00	49 60	34 30	36 10
7.	151 00	375 00	219 00	145.00	91 00	133 00	199 00	133 00
Z1 NI	101.00	10.10	7 00	140.00	4.00	100.00	7 15	7 7
Nb	8.90	10.40	7.90	9.20	4.90	8.25	7.15	1.75
Cs	4.35	5.22	3.46	4.76	3.77	6.16	2.76	3.05
Ba	609.00	780.00	951.00	580.00	712.00	161.00	445.00	579.00
La	45 70	26 20	49 00	32 40	20 20	34 50	28 90	35 10
Co	70.00	57.60	02 50	70.60	28 20	72 50	50.10	60.00
D	10.00	57.00	53.00	70.00	30.20	73.00	0.05	09.90
Pr	10.45	6.13	9.88	7.29	4.30	8.37	6.65	7.93
Nd	39.80	24.10	37.30	27.90	16.50	30.80	25.70	28.90
Sm	8.52	5.13	6.93	5.62	3.37	6.69	5.37	5.86
Eu	0.48	1 29	0.71	0.46	0.47	0 19	1 03	0.57
Cd	6.02	4 41	5 78	5.17	2 26	7 42	5.62	5.00
Gu	0.92	4.41	5.70	0.17	3.20	1.45	0.00	5.90
1 b	1.14	0.70	0.93	0.87	0.57	1.17	0.86	0.88
Dy	6.61	4.26	5.38	5.06	3.58	7.62	5.38	5.46
Ho	1.30	0.87	1.13	1.06	0.78	1.62	1.12	1.13
Er	3.80	2.66	3, 03	3. 24	2.32	4.89	3. 25	3.36
Tm	0.54	0.42	0.50	0.40	0.30	0.75	0.40	0.52
1 111	0.54	0.42	0.00	0.45	0.33	0.75	0.45	0.00
Ύb	3.65	Z. 73	3.09	3. 3Z	Z. 61	4.84	3.25	3.54
Lu	0.54	0.47	0.48	0.52	0.39	0.73	0.50	0.55
Hf	4.90	8.70	5.80	4.30	3.00	4.47	5.35	4.25
Та	0.60	0 40	0.30	0.50	0.20	0.85	0.60	0.85
Th	15.05	7 42	0.50	0.00	12 10	20.20	0.15	16.00
1 11	15.05	1.40	9.00	9.23	12.10	20.20	9.10	10.00
U	3.75	1.72	1.80	2.95	2.10	4.57	1.38	3.33
REE	199.45	136.97	217.64	164.00	96.94	200.58	142.27	171.12
LREE	441.16	293.11	466.20	336.44	200.78	418.43	292.63	359.03
HREE	156.88	109 48	132 69	130 21	93 /9	190 38	132 83	139 30
I DEE /UDEE	2 01	2 60	2 51	2 50	2 15	2 20	2 20	200.00
LKEE/ FIKEE	2.01	2.00	5.01	2.00	2.10	2.20	2.20	2.30
δEu	0.19	0.34	0.26	0.43	0.08	0.30	0.82	0.57
(La/Yb) _N	8.25	10.45	6.43	5.10	7.08	6.81	6.32	4.85
(Gd/Yb) _N	1.52	1.50	1.25	1.00	1.23	1.33	1.29	1.39
Rh/Sr	2 48	1 06	2 21	2 71	6 45	1 97	0.46	0 40
Su/V	1 50	2.20	1 02	2.02	0.64	1.00	7 15	5. 10 E 91
	1.00	5.29	1.95	2.30	0.04	1.90	7.10	0.01
Nb/ I a	14.83	26.33	18.40	24.50	9.66	9.14	26.00	11.86
Zr/Hf	30.82	37.76	33.72	30.33	29.67	31.26	43.10	37.28
K/Rb	239.17	303.53	238.78	240.69	195.18	246.93	266.39	301.48
Th/U	4.01	5.28	3.13	5.76	4.42	4.82	4.32	6.64
NJ/TL	9 61	2 02	5 09	1 24	1 59	1 80	2 94	9 Q1
	2.04	3.33	3.02	1.00	1.02	1.00	0.24	2.01
Q	34.81	32.68	33.99	31.31	35.15	35.07	23.51	28.63
An	3.69	5.65	4.72	2.84	3.45	4.59	10.47	13.83
Ab	32.38	32.94	33.01	29.98	30.47	32.64	42.35	34.86
Or	26.31	24 91	25.26	27.70	28 46	24 82	17 12	15.79
C	0.40	0.26	0.91	0.91	0.24	0.20	0.91	0.48
	0.40	0.20	0.21	0.01	0.34	0.39	0.41	V. 40
DI	93.50	90.53	92.26	95.05	94.08	92.53	8Z. 98	79.28
A/CNK	1.03	1.02	1.02	1.07	1.03	1.03	1.01	1.02
AR	4.11	3.57	3.84	4.25	4.34	3.76	2.63	2.20
A/MF	5 84	4 06	5 06	10 59	6 55	5 69	2 69	2 62
C/MF	0.62	0 62	0.67	0 85	0.67	0.74	0.68	0.80
\mathcal{O} IVIT	0.04	0.03	0.07	0.00	0.07	U. /4	0.00	0.09
$I_{Zr}(C)$	110.00	100.01	144.03	120.00	079.05	100.81	123.04	090.0Z

注:主量元素单位为%;稀土和微量元素单位为10-6.

图 3 兴凯地块南部花岗岩 K₂O-SiO₂(a)与 A/CNK-A/NK 图解(b) Fig. 3 The K₂O-SiO₂(a) and A/CNK-A/NK relations (b) of the granites from southern Xingkai block

3.2.2 稀土、微量元素 从稀土元素配分图及微量 元素蛛网图(图5)可以看出本区花岗岩稀土元素含 量差异较大, $\Sigma \text{REE} = 96.94 \times 10^{-6} \sim 217.64 \times$ 10-6. 样品稀土配分曲线呈明显的右倾型,轻重稀土 元素比值 LREE/HREE = 2. 14 ~ 3. 51, $(La/Yb)_N = 4.85 \sim 10.45, (Gd/Yb)_N = 1.00 \sim$ 1.52, 轻稀十元素相对富集, 分馏明显, 重稀十元素 相对亏损,分馏相对不明显. 铕负异常差异较大 (&Eu=0.08~0.82),多为中等负异常(表 2). 微量元 素组成上,大离子亲石元素 Rb、Th、K 等比较富集, Sr、P、Ti 等高场强元素强烈亏损, Nb、Ta 相对亏损 (图 5),这些特点类似于东北地区的高分异T型花岗岩 (Wu et al., 2003),且岩浆可能来源于地壳.本区花 岗闪长岩的 Rb/Sr、Nb/Ta 和 Zr/Hf 平均值分别为 0.43、18.93 和 40.19, 二长花岗岩的 Rb/Sr、Nb/Ta 和 Zr/Hf 平均值分别为 2.81、17.14 和 32.26. 一般来 说,随着岩浆的分异演化,Rb/Sr 比值会增高,而 Nb/ Ta 和 Zr/Hf 比值有逐渐降低的趋势(Linnen and Keppler, 1997, 2002),说明本区二长花岗岩相对花岗 闪长岩岩浆分异演化程度较高.

3.3 锆石 Hf 同位素

在年代学数据和地球化学数据的基础上,本文 分别在金场沟岩体、风月桥林场岩体和天岭桥岩体 选取了3个具有代表性的标本进行了锆石 Hf 同位 素的测试.测试结果如表 3.

八楞山岩体(JX1304)共分析 10 个点,¹⁷⁶ Hf/ ¹⁷⁷ Hf比值介于 0.282 808~0.282 907 之间,加权平 均值为 0.282 867±0.000 016(2σ, n=10),ε_{Hf}(t)介 于 5.34~8.88 之间,平均值为 7.37,单阶段模式年 龄变化范围为 512~666 Ma,平均值为 574 Ma.两 阶段模式年龄变化范围为 674~901 Ma,平均值 为 771 Ma. 天岭桥岩体(1322)共分析 8 个点,¹⁷⁶ Hf/¹⁷⁷ Hf 比 值介于 0.282 773~0.282 913 之间,加权平均值为 0.282 845±0.000 041(2σ, n=8),ε_{Hf}(t)介于 4.39~ 9.32之间,平均值为 6.98,单阶段模式年龄变化范围 为 484~681 Ma,平均值为 580 Ma.两阶段模式年龄 变化范围为 648~963 Ma,平均值为 797 Ma.

风月桥林场岩体(1327)共分析8个点, ¹⁷⁶Hf/¹⁷⁷Hf值介于0.282809~0.282872之间,加 权平均值为0.282849±0.000019(2 σ ,n=8), ϵ Hf(t) 介于5.61~8.15之间,平均值为6.80,单阶段模式 年龄变化范围为530~630Ma,平均值为584Ma. 两阶段模式年龄变化范围为721~883Ma,平均值 为807Ma.

4 讨论

4.1 岩石成因类型及岩浆源区

4.1.1 岩石成因类型 花岗岩成因类型的划分目 前被普遍接受的划分方案是 I、S、A 和 M 型,以 I 型、S 型和 A 型为主.本文所研究的花岗岩为二长 花岗岩和花岗闪长岩,矿物中有角闪石,无碱性暗色 矿物,铝饱和指数均介于 1.0~1.1之间,Zr+Nb+ Ce+Y 多数小于 350×10⁻⁶ (A 型花岗岩>350× 10⁻⁶),锆石饱和温度 T_{Zr}=679~787 ℃(平均值为 721 ℃),低于 A 型花岗岩锆石饱和温度(一般大于 800 ℃)(King et al., 1997).因此这些花岗岩不属 于 A 型.实验研究表明,在准铝质到弱过铝质岩浆 中,磷灰石的溶解度很低,在岩浆分异过程中随 SiO₂ 的增加而降低;而在强过铝质岩浆中,磷灰石 溶解度变化趋势与此相反(Wolf and London, 1994;朱弟成等,2009).本区花岗岩为弱过铝质,

图 4 兴凯地块南部花岗岩 Harker 图 Fig. 4 Harker diagrams of the granites from southern Xingkai block

图 5 兴凯地块南部花岗岩稀土元素配分模式图和微量元素蛛网图

Fig. 5 Chondrite-normalized REE distribution pattern and Primitive mantle-normalized spidergram of granites batholith from southern Xingkai block

球粒陨石和原始地幔标准化值据 Sun and McDonough, 1989

表 3 兴凯地块南部花岗岩锆石 Hf 同位素分析结果

Table 3 Zircon Hf isotope analysis of granite in southern Xingkai block

样品号	t(Ma)	$^{176}Yb/^{177}Hf$	2σ	$^{176}Lu/^{177}Hf$	2σ	$^{176}{ m Hf}/^{177}{ m Hf}$	2σ	$\varepsilon_{\rm Hf}(0)$	$\epsilon_{Hf}(t)$	2σ	$T_{\rm DM1}$	$T_{\rm DM2}$
八楞山岩体	:											
JX1304-01	203	0.073795	0.001128	0.002 615	0.000035	0.282 907	0.000025	4.77	8.88	0.90	512	674
JX1304-02	203	0.062 531	0.000784	0.002 285	0.000028	0.282 846	0.000020	2.63	6.79	0.72	596	809
JX1304-03	203	0.064 845	0.000257	0.002 306	0.000010	0.282 875	0.000016	3.63	7.78	0.58	555	745
JX1304-04	203	0.070 502	0.000 525	0.002 518	0.000015	0.282 853	0.000021	2.87	7.00	0.73	590	795
JX1304-05	203	0.087007	0.000671	0.003 054	0.000021	0.282 808	0.000034	1.29	5.34	1.21	666	901
JX1304-06	203	0.053818	0.000623	0.001 945	0.000021	0.282884	0.000019	3.96	8.16	0.67	536	721
JX1304-07	203	0.070193	0.000 521	0.002 513	0.000021	0.282 862	0.000020	3.18	7.31	0.69	577	775
JX1304-08	203	0.058328	0.000262	0.002093	0.000008	0.282 870	0.000018	3.45	7.63	0.65	559	754
JX1304-09	203	0.084 262	0.001181	0.002 965	0.000042	0.282 842	0.000027	2.47	6.54	0.96	614	824
JX1304-10	203	0.087070	0.000964	0.003 029	0.000030	0.282 892	0.000026	4.25	8.31	0.91	540	711
天岭桥岩体	:											
1322-01	205	0.061001	0.001168	0.001 839	0.000027	0.282 841	0.000020	2.44	6.70	0.71	596	816
1322-02	205	0.042468	0.000360	0.001 266	0.000009	0.282 913	0.000019	4.99	9.32	0.66	484	648
1322-03	205	0.050346	0.001287	0.001 519	0.000037	0.282 846	0.000019	2.63	6.93	0.66	584	801
1322-04	205	0.030169	0.000122	0.001072	0.000005	0.282773	0.000017	0.03	4.39	0.60	681	963
1322-05	205	0.041 283	0.000250	0.001 272	0.000010	0.282 866	0.000018	3.32	7.65	0.62	552	755
1322-06	205	0.055616	0.000225	0.001 965	0.000011	0.282798	0.000018	0.91	5.15	0.65	661	915
1322-07	205	0.028963	0.000114	0.000 894	0.000004	0.282 910	0.000018	4.89	9.27	0.63	484	651
1322-08	205	0.029777	0.000 501	0.000876	0.000014	0.282 831	0.000016	2.09	6.47	0.55	595	830
风月桥林场岩体												
1327-01	202	0.042 825	0.000164	0.001 411	0.000008	0.282 859	0.000016	3.06	7.31	0.57	564	774
1327-02	202	0.036 255	0.000171	0.001 250	0.000008	0.282 845	0.000021	2.57	6.85	0.74	582	804
1327-03	202	0.034 793	0.000388	0.001216	0.000013	0.282 848	0.000016	2.69	6.96	0.58	577	796
1327-04	202	0.037 168	0.000247	0.001 285	0.000007	0.282 882	0.000015	3.88	8.15	0.51	530	721
1327-05	202	0.028917	0.000088	0.001 025	0.000002	0.282 834	0.000017	2.18	6.49	0.61	594	827
1327-06	202	0.057 601	0.000776	0.002062	0.000022	0.282 824	0.000046	1.84	6.01	1.63	625	858
1327-07	202	0.033068	0.000190	0.001115	0.000003	0.282 809	0.000016	1.32	5.61	0.58	630	883
1327-08	202	0.032636	0.000101	0.001173	0.000003	0.282 851	0.000014	2.78	7.06	0.50	572	790

注:T_{DMI}为单阶段模式年龄,T_{DM2}为两阶段模式平均年龄,单位均为 Ma;f_{Lu/Hf}为分馏因子.

P₂O₅含量随SiO₂含量的增加而降低(图4),与1型 花岗岩演化趋势一致.这种趋势与Y-Rb图解所表 现出的正相关趋势(图6)相吻合,因为富Y矿物不 会在准铝质 I 型岩浆演化的早期阶段结晶出来,从 而引起分异的 I 型花岗岩 Y 含量高,并与 Rb 含量 呈正相关关系(李献华等,2007).本区花岗岩 P₂O₅

图 6 兴凯地块花岗岩 Y-Rb 图解

Fig. 6 Y-Rb relation of the granites from Xingkai block

图 7 花岗岩成因类型判别图解 Fig. 7 Genectic type discrimination for the granites

及刚玉标准矿物分子含量 ($P_2O_5 = 0.01\% \sim 0.08\%$,刚玉 = 0.21% ~ 0.81%)均与澳大利亚 Lachlan褶皱带的 I型花岗岩相似而与典型的 S型 花岗岩不同.在Zr+Nb+Ce+Y-FeOt/MgO分类 图解(图7)中落入了高分异的 I型花岗岩中.因此, 本文所研究的花岗岩,尤其是二长花岗岩应为高分 异型的 I型花岗岩.

4.1.2 岩浆源区 兴凯地块南部中生代花岗岩的 锆石 Hf 同位素分析结果见表 3,其锆石的¹⁷⁶ Hf/ ¹⁷⁷ Hf比值均较高,为0.282773~0.282913(图 8a). 二长花岗岩和花岗闪长岩 ε_{Hf}(t)均为正值(4.39~ 9.32),单个样品变化范围不大,为3~5个单位.整 体来说研究区花岗岩 Hf 同位素成分变化不大,组 成较为均一.这些花岗岩在 t-ε_{Hf}(t)图解(图 8b)上 落入球粒陨石演化线之上且非常集中,其二阶段 Hf 模式年龄较为年轻,为新元古代(0.65~0.96 Ga).

一般认为,当岩石具有正的 ε_{Hf}(t)值时,其源区 物质多来自于亏损地幔或是从亏损地幔新增生的年 轻地壳,而负的 ε_{Hf}(t)值则表明岩石主要来自于古 老地壳的再熔融或是岩浆形成或运移过程中受到了 古老地壳的混染.研究区花岗岩 ε_{Hf}(t)均为为正值, 没有负值出现,且二长花岗岩和花岗闪长岩主、微量 元素特征相似:较富硅、铝弱过饱和(A/CNK 在 1.0~1.1之间)、轻稀土分馏明显而重稀土分馏相 对不明显、富集大离子亲石元素,亏损高场强元素, 说明为壳源岩浆.二者 єнf(t)值较为一致,说明来源 于性质和组分相一致的源岩,源区应该相同.二长花 岗岩和花岗闪长岩在 t-єнf(t)图解上(图 8b)均集中 在球粒陨石演化线之上,结合其较为年轻的二阶段 Hf模式年龄(0.65~0.96 Ga),推测其源区物质应 为新元古代期间从亏损地幔新增生的年轻地 壳物质.

4.2 构造背景

中国东北地区经历了古亚洲洋闭合及环太平洋 俯冲等一系列复杂的构造演化.任纪舜等(1990)认 为中国东部在寒武纪一石炭纪主体属古亚洲体系, 二叠纪一侏罗纪为特提斯体系与古太平洋体系之联 合,至白垩纪,特别是其中、晚期和第三纪以来属今 太平洋体系.多数学者通过对呼兰群变质岩和花岗 岩的研究认为古亚洲洋最后在二叠纪末期一早三叠 世闭合(孙德有等,2004;吴福元等,2007),周建波等 (2012)研究则认为最终闭合时间在 230 Ma 左右. 研究区花岗岩的形成时代为晚三叠世末期(202~ 205 Ma),时间上与上述事件相去其远,对吉黑东部 岩浆岩以及东北构造格局的研究表明古太平洋板块 向欧亚板块的俯冲作用始于早一中侏罗世(孙德有, 2001;周建波等,2012).从年代学角度来看,本区花 岗岩形成时代为晚三叠世末期(202~205 Ma),此时 古亚洲洋已闭合完毕,古太平洋板块开始向西俯冲. 与此同时,佳木斯一兴凯地块与松嫩一张广才岭地块 拼合,且周建波等认为太平洋板块的向西俯冲导致了 二者的拼合(周建波等,2012;邵济安等,2013).

本区花岗岩为二长花岗岩和花岗闪长岩,岩石 组合与活动大陆边缘靠内陆一侧的火山岩岩石组合 相似(邓晋福等,2007).岩石地球化学分析表明本区 花岗岩是一套具有典型的钙碱性一高钾钙碱性岩系 特征的 I 型花岗岩,并且大多富硅,符合活动大陆边 缘环境下的演化特征.花岗岩在 Zr-(Nb_N/Zr_N)构造 判别图解中位于俯冲岩浆带上(图 9a),表明花岗岩 的形成与岩浆俯冲作用关系密切; Rb/Zr-Nb 图中 位于初始岛弧一大陆弧与正常的大陆弧区域交界范 围内(图 9b);活动大陆边缘区别于被动大陆边缘最 重要的特征是具有与板块俯冲作用有关的火山弧和 增生楔(邵济安和唐克东,1995),而本区花岗岩在构 造环境判别图解中也落入火山弧花岗岩区(VAG),

Fig. 8 Lu-Hf isotope relation (a) and Hf isotope evolution (b) of granites in southern Xingkai block

Fig. 9 Granite tectonic discrimination 图 a 据 Thieblemont and Tagyey(1994);图 b 据 Brown *et al.* (1984)

这些都暗示研究区花岗岩具有活动大陆边缘属性. 与之相近的佳木斯地块以西张广才岭地区的苇河花 岗岩(202~179 Ma)与古太平洋板块向欧亚大陆俯 冲消减有关(李蓉,2013).因此,从大地区域构造背 景来看,本区花岗岩也与古太平洋板块向欧亚大陆 板块俯冲消减有关.

5 结论

根据以上对兴凯地块南部花岗岩锆石 U-Pb 测 年、地球化学分析及 Hf 同位素分析的结果,结合区 域构造演化历史,可以得出以下认识:

(1)兴凯地块南部花岗岩以二长花岗岩和花岗 闪长岩为主,岩石以高硅、铝弱过饱和及较富碱为特 征,地球化学特征显示二长花岗岩为高钾钙碱性系 列的高分异的 I 型花岗岩;花岗闪长岩为钙碱性系 列的 I 型花岗岩. (2)锆石 U-Pb 年龄测定表明,二 长花岗岩和花岗闪长岩成于同一时期,为 202~205 Ma的晚三叠世末期.(3)二长花岗岩和花岗闪 长岩的岩浆源区一致,均为亏损地幔增生的年轻地 壳物质.(4)二长花岗岩和花岗闪长岩形成的构造背 景相似,均与古太平洋板块向欧亚大陆板块俯冲消 减有关.这说明兴凯地块南部在 202~205 Ma 已开 始受太平洋板块向西俯冲影响.

致谢:感谢西北大学大陆动力学国家重点实验 室、中国地质大学(武汉)地质过程与矿产资源国家 重点实验室及中国科学院地质与地球物理研究所岩 石圈演化国家重点实验室在样品制备和分析测试中 给予的大力支持与帮助,感谢审稿人提出的意见 和建议.

References

Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report ²⁰⁴ Pb. *Chemical Geology*, 192:59-79. doi:10.1016/S0009-2541(02)00195-X

- Brown, G. C., Thorpe, R. S., Webb, P. C., 1984. The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources. *Journal of Geological Society of London*, 141: 413 – 426. doi: 10. 1144/gsjgs. 141. 3. 0413
- Deng, J. F., Xiao, Q. H., Su, S. G., et al., 2007. Igneous Petrotectonic Assemblages and Tectonic Settings: A Discussion. *Geological Journal of China Universites*, 13(3):392-402 (in Chinese with English abstract).
- Geology and Mineral Resources of Heilongjiang Province, 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing, 380-407 (in Chinese).
- Hong, D. W., Guo, W. Q., Li, G. J., et al., 1987. Petrology of the Miarolitic Granite Belt in the Southeast Coast of Fujian Province and Their Petrogenesis. Science and Technology Press of Beijing, Beijing (in Chinese).
- King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. *Journal of Petrology*, 38(3): 371-391. doi:10. 1093/petroj/38.3.371
- Li, R., 2013. Age, Geochemistry and Petrogenesis of the Weihe Granite Batholith in the Northern Zhangguangcai Range (Dissertation). Jilin University, Changchun, 49-51 (in Chinese with English abstract).
- Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implication of the Early Yanshan Granitoids in the Nanling Range, South China. *Chinese Science Bulletin*, 52(9):981-992 (in Chinese).
- Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contrib. Mineral. Petrol., 128: 213 – 227. doi: 10. 1007/ s004100050304
- Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. *Geochim. Cosmochim. Acta*, 66 (18): 3293 – 3301. doi: 10.1016/S0016-7037(02)00924-9
- Liu, Y. J., Zhang, X. Z., Jin, W., et al., 2010. Late Paleozoic Tectonic Evolution in Northeast China. *Geology in China*, 37(4):943-951 (in Chinese with English abstract).
- Ren, J. S., Chen, T. Y., Niu, B. G., et al., 1990. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas. Science Press, Beijing, 22-28 (in Chinese).
- Ren, J. S., Wang, Z. X., Chen, B. W., et al., 1999. The Tectonic of China from a Global View: A Guide to the Tectonic Map of China and Adjacent Regions. Geological

Publishing House, Beijing, 4-32 (in Chinese).

- Shao, J. A., 1991. The Crust Evolution in the Middle Part of the Northern Margin of the Sino-Korean Plate. Peking University Press, Beijing (in Chinese).
- Shao, J. A., Li, Y. F., Tang, K. D., 2013. Restoration of the Orogenic Progresses of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959 – 2970 (in Chinese with English abstract).
- Shao, J. A., Tang, K. D., 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Seismology Press, Beijing, 46-47 (in Chinese).
- Shao, J. A., Tang, K. D., Zhan, L. P., et al., 1995. Reconstruction of an Ancient Continental Margin and Its Implication: New Progress on the Study of Yanbian Region, Northeast China. Science in China (Ser. B), 25 (5):548-555 (in Chinese).
- Sun, D. Y., 2001. Petrogenesis and Geodynamic Significance of Mesozoic Granites in Zhangguangcai Ranges (Dissertation). Jilin University, Changchun, 97-98 (in Chinese with English abstract).
- Sun, D. Y., Wu, F. Y., Zhang, Y. B., et al., 2004. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone—Evidence from the Dayushan Granitic Pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract).
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42:313-345. doi:10.1144/GSL. SP. 1989.042.01.19
- Thiéblemont, D., Tegyey, M., 1994. Une Discrimination Géochimique Desroches Différenciées Témoin de la Diversité d'Origine et de Situation Tectonique des Magmas Calco-Alcalins. Comptes Rendusde l'Académiedes Sciences Paris, 319: 87–94.
- Wolf, M. B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanism. *Geochim. Cosmochim. Acta*, 58: 4127 – 4145. doi: 10. 1016/0016 – 7037 (94) 90269-0
- Wu, F, Y., Li, X, H., Yang, J, H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23 (6):1217-1238 (in Chinese with English abstract).
- Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (1): Geochronology and Petrogenesis. *Lithos*, 66:241-273. doi:

10.1016/S0024-4937(03)00015-X

- Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic in Northeastern China by Laster Ablation ICP-MS. *Chinese Science Bulletin*, 48 (14): 1511-1520 (in Chinese).
- Zhang, K. J., 1995. North and South China Collision along the Eastern and Southern North China Margins. *Tectonophysics*, 270:145-156. doi:10.1016/S0040-1951 (96)00208-9
- Zhang, K. J., 2003. Granulite Xenoliths from Cenozoic Basalts in SE China Provide Geochemical Fingerprints to Distinguish Lower Crust Terrances from the North and South China Tectonic Blocks: Comment. *Lithos*, 73: 127–134.
- Zhou, J. B., Zeng, W. S., Cao, J. L., et al., 2012. The Tectonic Framework and Evolution of the NE China: From ~500 Ma to ~180 Ma. Journal of Jilin University (Earth Science Edition), 42(5):1298-1316, 1329 (in Chinese with English abstract).
- Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China (Ser. D), 39(7): 833-848 (in Chinese).

附中文参考文献

- 邓晋福,肖庆辉,苏尚国,等,2007.火成岩组合与构造环境讨论.高校地质学报,13(3):392-402.
- 黑龙江省矿产局,1993. 黑龙江区域地质志. 北京:地质出版 社,380-407.
- 洪大卫,郭文岐,李戈晶,等,1987. 福建沿海晶洞花岗岩带的 岩石学和成因演化. 北京:北京科学技术出版社.
- 李蓉,2013.张广才岭北部苇河花岗岩基的时代、地球化学特 征及岩石成因(硕士学位论文).长春:吉林大学, 49-51.

- 李献华,李武显,李正祥,2007. 再论南岭燕山早期花岗岩的 成因类型与构造意义. 科学通报,52(9): 981-992.
- 刘永江,张兴洲,金巍,等,2010. 东北地区晚古生代区域构造 演化. 中国地质,37(4): 943-951.
- 任纪舜,陈廷愚,牛宝贵,等,1990.中国东部及邻区大陆岩石 圈的构造演化与成矿.北京:科学出版社,22-28.
- 任纪舜,王作勋,陈炳蔚,等,1999. 从全球看中国大地构造中 国及临区大地构造图简要说明. 北京:北京地质版社, 4-32.
- 邵济安,1991. 中朝板块北缘中段地壳演化. 北京:北京大学 出版社.
- 邵济安,李永飞,唐克东,2013.张广才岭造山过程的重构及 其大地构造意义.岩石学报,29(9):2959-2970.
- 邵济安,唐克东,1995.中国东北地体与东北亚大陆边缘演 化.北京:地震出版社,46-47.
- 邵济安,唐克东,詹立培,等,1995.一个古大陆边缘的再造及 其大地构造意义——延边地质研究新进展.中国科学 (B辑),25(5):548-555.
- 孙德有,2001.张广才岭中生代花岗岩成因及其地球动力学 意义(博士学位论文).长春:吉林大学,97-98.
- 孙德有,吴福元,张艳斌,等,2004.西拉木伦河-长春-延吉 板块缝合带的最后闭合时间──来自吉林大玉山花岗 岩体的证据.吉林大学学报(地球科学版),34(2): 174-181.
- 吴福元,李献华,杨进辉,等,2007.花岗岩成因研究的若干问 题.岩石学报,23(6):1217-1238.
- 袁洪林,吴福元,高山,等,2003.东北地区新生代侵入体的锆 石激光探针 U-Pb 年龄测定与稀土元素成分分析.科学 通报,48(14):1511-1520.
- 周建波,曾维顺,曹嘉麟,等,2012.中国东北地区的构造格局 与演化:从500 Ma 到180 Ma.吉林大学学报(地球科学 版),42(5):1298-1316,1329.
- 朱弟成,莫宣学,王立全,等,2009. 西藏冈底斯东部察隅高分 异 I 型花岗岩的成因:锆石 U-Pb 年代学、地球化学和 Sr-Nd-Hf 同位素约束. 中国科学(D辑),39(7): 833-848.