doi:10.3799/dqkx.2015.106

频率域航空电磁系统线圈姿态变化影响及校正方法

王卫平1,曾昭发2,吴成平1

1.中国国土资源航空物探遥感中心,北京 100083
 2.吉林大学地球探测科学与技术学院,吉林长春 130026

摘要:频率域航空电磁系统线圈姿态变化影响及校正是一项探索性很强的开拓性工作,目前国内尚无成熟经验可循.吊舱式直 升机频率域航空电磁法线圈安装在吊舱内,探头姿态变化相对较大,因此姿态校正提高了其数据处理精度,对提高航空电磁 法数据处理水平具有重要意义.为了消除吊舱式直升机频率域航空电磁系统因收发线圈姿态发生变化,而导致的电磁探头接 收地下地质体电磁响应数据产生的误差,采用三维频率域有限差分方法模拟计算频率域航空电磁系统的电磁响应,分析了不 同频率、不同收发线圈姿态变化类型对水平共面(HCP,全称 horizontal co-plane)和垂直同轴(VCX,全称 vertical coaxial)线圈 装置的电磁响应影响.计算结果表明:垂直同轴线圈装置因姿态角度变化引起的测量误差比值远大于水平共面装置,而且频率 越高,受探头姿态角度变化的影响越大.垂直同轴装置主要受俯冲姿态变化的影响,水平共面装置受摇摆和俯冲这 2 种姿态变 化的影响.在此基础上,根据姿态误差几何校正方法进行了电磁数据校正,有效地去除了因线圈姿态变化造成的误差响应. 关键词:频率域航空电磁法;线圈姿态;频率域有限差分;姿态校正;地球物理.

中图分类号: P631 **文章编号:** 1000-2383(2015)07-1266-10 **收稿日期:** 2014-08-05

Coil Attitude Influence and Attitude Correction Method for Frequency Domain Airborne Electromagnetic System

Wang Weiping¹, Zeng Zhaofa², Wu Chengping¹

1. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China
2. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

Abstract: Coils attitude influence and attitude corrections method for frequency domain airborne electromagnetic system are pioneering jobs in frontiers without much experience. The coils of towed helicopter frequency airborne electromagnetic method are mounted in a bird, coils attitude changes a lot relatively, so attitude corrections improve the precision of data processing. It is important to impove data processing level for airborne electromagnetic method. Attitude variations of helicopter bird frequency electromagnetic system transmitting and receiving coils, result in electromagnetic data error which is produced by underground geologic body and received by the electromagnetic sensor. Analog computation is used in this study to work out the frequency domain airborne electromagnetic response by 3D frequency domain finite difference method. The response of horizontal co-plane and vertical coaxial systems from different frequencies and different types of sensor rotation is analyzed. The results show that the measurement error from vertical coaxial system is greater than that of horizontal co-plane system. The measurement error caused by the change of rotation angles is more remarkable than higher frequencies. The vertical coaxial system is mainly affected by pitch rotation, whereas the horizontal co-plane system is mainly affected by roll and pitch rotation, and the latter has great influence in the same rotation angle. On the basis of previous work of calibrating attitude error, this paper effectively wipes out response error from attitude changing of coils.

Key words: frequency airborne electromagnetic method; coil attitude; frequency domain finite difference method; attitude correction; geophysics.

引用格式:王卫平,曾昭发,吴成平,2015.频率域航空电磁系统线圈姿态变化影响及校正方法.地球科学——中国地质大学学报,40(7):1266-1275.

基金项目:国家自然科学基金项目(No.41174097);国家矿保工程"高精度航空物探方法研究"项目(No.1212011087010).

作者简介:王卫平(1963-),男,硕士,教授级高级工程师,主要从事航空物探成果解释和方法研究工作以及航空电磁法方法研究和成果解释工作.E-mail:911733417@qq.com

航空电磁法是基于岩石电性和磁性差异,利用 电磁感应原理,以固定翼飞机或直升机等飞行器作 为运载工具,实施地球物理探测的勘探方法,该方法 具有高效、经济、适应性强等特点,能够广泛应用于 地面物探施工困难的湖泊、高原、森林、沼泽、沙漠等 地区,尤其适合开展大面积的矿产、水工环普查、详 查和精细测量工作(Fraser, 1978; Fountain, 1998). 目前国内拥有 IMPULSE 吊舱式直升机频率域航空 电磁系统,该系统具有水平共面 (HCP,全称 horizontal co-plane) 和垂直同轴 (VCX,全称 vertical coaxial)2种线圈装置,每对线圈发射和接收3个频 率,总共6个频率(同轴870 Hz、4350 Hz、21750 Hz;共面930 Hz,4 650 Hz,23 250 Hz),采样率为 30 次/s,最大勘探深度为 150 m.目前该系统已经在多 个测区开展了飞行测量,并在矿产勘查、地下煤火勘 查等方面取得了明显的效果(黄皓平和王维中, 1990; Huang and Fraser, 2001; 王卫平和王守坦, 2003; 雷栋等, 2006; 周道卿, 2006; 李文杰, 2008; 王 卫平等,2008; Siemon et al., 2009,2011; 王卫平和 吴成平,2010;周道卿等,2010).

吊舱式直升机频率域航空电磁系统在拖吊的电 磁探头中发射一次场,并接收大地中的二次场.由于 电磁探头受地形起伏、飞行速度、气流变化等方面的 影响,探头发生偏离航线、垂直倾斜或左右摆动等旋 转变化,改变了电磁探头的飞行高度以及收发线圈 与地面的几何位置,从而影响收发线圈与地下地质 体的耦合关系,致使接收的地下地质体电磁响应二 次场信号产生误差,对测量数据质量有一定的影响. 如果不进行探头姿态校正,将产生假电磁异常现象, 降低目标地质体异常的空间分辨率.近年来,国外非 常重视探头姿态误差校正的研究,并取得了显著的 进展(Son, 1985; Holladay et al., 1997; Fitterman, 1998; Roy et al., 1998; Fitterman and Yin, 2004; Yin and Fraster, 2004; Davis et al., 2006; Hefford et al., 2006; 张求知等, 2007; 嵇艳鞠等, 2010; 王世 隆等,2011).Son(1985)研究了单个探头旋转对频率 域航空电磁法测量的影响.Holladay et al.(1997) 发现在航空电磁法进行海冰探测中,探头姿态的变 化会引起探头飞行高度的变化,并影响对海冰深度 的反演计算精度.通过对探头飞行高度的校正,获得 了高精度的海冰厚度(Holladay et al., 1997). Fitterman(1998)基于前人的研究成果,首先研究了探 头姿态变化对电磁探测数据的影响,这种影响包括 2个方面:(1)高程的测量误差,即探头摇摆过程中,

测量的高程会产生误差;(2)收发线圈相对于地下介 质的几何关系的变化,这种变化影响收发线圈与地 面的电磁耦合关系,从而影响探测结果. Yin and Fraster(2004) 推导了频率域航空电磁系统线圈姿 态变化电磁感应原理以及各种装置的校正方法.Fitterman and Yin(2004)将该方法应用于频率域航空 电磁实测数据校正.Davis et al.(2006)又从直升机 和探头的相互关系出发,研究了探头测量过程中的 姿势变化,进行更加精确的校正.而国内这方面的研 究较少, 嵇艳鞠等(2010) 对直升机航空时间域的中 心回线装置进行研究,以垂直和水平磁偶极源为基 础,推导出了层状大地时间域垂直和水平圆回线航 空电磁响应的正演计算公式,并仿真计算了线圈姿 态变化对中心回线电磁响应的影响及校正方法.到 目前为止,国内还没有看到对直升机频率域航空电 磁系统线圈姿态变化影响研究和校正方法研究的有 关报道.

1 线圈姿态变化类型

吊舱式直升机频率域航空电磁系统的电磁探头 悬挂在直升机下方 25~35 m 左右的高度,探头距离 地面高度为 30~50 m,电磁探头飞行姿态可在如下 3 种状态下发生改变(图 1):(1)在飞行测量过程中, 由于侧风等因素的影响,电磁探头位置发生平移,偏 离航线(偏航);(2)在飞行测量过程中,由于直升机 的飞行速度发生变化,产生探头在垂直平面内的倾 斜,发生沿 y 轴的垂直旋转(俯仰);(3)在飞行测量 过程中,当直升机的飞行方向发生改变时,由于电磁 探头不能迅速适应直升机方向的改变,从而导致电 磁探头的方向与测线间形成一个夹角,发生沿 x 轴 的水平旋转(摇摆).

探头的姿态参数可以通过飞行测量过程中的位置参数计算获得,即探头的初始位置是: $V_i = x \stackrel{-}{i} +$

图 1 线圈姿态变化 Fig.1 Coils attitude changes φ_y,φ_p,φ_r,分别表示偏航、俯仰、摇摆 3 种姿态变化角度

 $y \overrightarrow{j} + z \overrightarrow{k}$;当探头发生摆动时,当前位置变为: $V_b = x'' \overrightarrow{i} + y'' \overrightarrow{j} + z'' \overrightarrow{k}$,则可以获得: $V_b = R_i R_p R_v V_i V_b$,其中 R_r, R_p, R_y 分别是沿x, y, z方向的旋转系数.因此获得探头的空间坐标和 没有发生摇摆时的坐标,就可以计算出在各种方向 的旋转系数.根据这些系数,在水平多层的模型条件 下就可以计算由于探头的摆动而产生的一次场和二 次场的电磁响应,进而对测量结果进行补偿.根据 Fitterman and Yin(2004)的研究可知,探头的水平 偏移对探测结果影响不大,因而在校正中主要考虑 沿y轴发生旋转和沿x轴发生旋转所产生的电磁 影响(Aaron *et al.*,2009).

2 频率域有限差分方法

电磁数值计算方法主要包括有限差分法、有限 元法和积分方程法,其中积分方程法因只需对有限 大小的异常体进行离散,对层状介质中三维有限大 小异常体的模拟速度快而被广泛关注,但对复杂模 型模拟的不适应性使得该方法没有被广泛应用.有 限元法和有限差分法被认为比积分方程法更适合模 拟任意复杂模型,但这2种算法都需对全空间离散, 对计算机资源要求很高.随着计算机技术的发展, Yee(1966)提出的交错网格有限差分法得到了地球 物理学界的重视,该方法在电磁数值模拟工作中得 到了大量应用.其中 Smith and Booker(1991)、 Mackie et al. (1993)、沈金松 (2003)、谭捍东等 (2003)、Tan et al.(2006)将其用于 MT 三维数值模 拟中, Haber et al. (2000)、沈金松(2003)、Tan et al.(2006)、陈辉等(2011)将其应用于 CSAMT 可 控源三维数值模拟中,该方法已成为主导的电磁数 值模拟方法.在航空电磁法模拟计算方面,Liu and Becker(1992) 用边界元法评估了地形对航空电磁 法的影响,阮百尧等(2007)研究了三维地形大地电 磁场的边界元模拟方法.他们评估了在常规 HEM 系统下的二维地形响应,并用积分方程求解计算. Mackie et al. (1994) 和 Newman and Alumbaugh (1995)采用三维有限元方法模拟二维地形条件下直 升机航空电磁测量的响应,黄临平和戴世坤(2002) 等研究了复杂条件下 3D 电磁场有限元计算方法. Sasaki and Nakazato(2003)在总结前人研究的基础 上,采用有限差分法对二维地形电磁响应进行了模 拟计算.李小康(2011)完成了频率航空电磁有限元

二维并行计算,取得了一定的成果.

频率域航空电磁法工作频率范围为 870~23 250 Hz,可以忽略位移电流,同时地下介质的磁导率 μ 近似等于空气中的磁导率 μ_0 .设电磁场随时间变化的因子为 e^{iwt} ,麦克斯韦方程组的积分表达式为:

$$\oint H \cdot dl = \iint J \cdot ds = \iint (\sigma E + J^{p}) \cdot dS ,$$

$$\oint E \cdot dl = \iint i\mu_{0}\omega (H + M^{p}) \cdot dS , \qquad (1)$$

式中:E 为电场强度,H 为磁场强度矢量,J 为电流 密度,M^p和J^p是外加的磁性源和电流源,σ是二维 电导率,μ₀是自由空间的磁导率.通常的方式将总 场分解为背景场(一次场)和感应场(二次场),背景 场(一次场)利用快速汉克尔变换求取,感应场(二次 场)采用数值计算求解.将总场表示为一次场和二次 场的和:

$$E = E^{a} + E^{b},$$

$$H = H^{a} + H^{b},$$
(2)

式中: E 和 H 分别为总场的电场强度和磁场强度, E^b和 E^a分别为背景场和二次场的电场强度, H^b 和 H^a分别为背景场和二次场的磁场强度.背景场 满足的麦克斯韦方程积分形式为:

$$\oint H^{b} \cdot dl = \iint J \cdot ds = \iint (\sigma^{b} E^{b} + J^{p}) \cdot dS ,$$

$$\oint E^{b} \cdot dl = \iint i\mu_{0}\omega (H^{b} + M^{p}) \cdot dS , \qquad (3)$$

将总场所满足的麦克斯韦方程(2)减去背景场所满 足的麦克斯韦方程(4),即得到二次场满足麦克斯韦 方程的积分形式为:

$$\oint H^{a} \cdot \mathrm{d}l = \iint J \cdot \mathrm{d}S$$
,

式中:*J* 为电流密度,它与背景电场 *E*^b、二次电场 *E*^a 和电导率的关系为:

$$J = \sigma E^{a} + \Delta \sigma E^{b} , \qquad (5)$$

式中: $\Delta \sigma$ 为剩余电导率, $\Delta \sigma = \sigma = \sigma^{b}$. (6)

经过上述变换后,频率域航空电磁数值模拟问题 即转化为背景场和二次场的求解,背景场可以通过快 速汉克尔变换求解,二次场采用三维交错采样有限差 分法进行数值计算.将得到的背景场值加上二次场值 即为磁偶源激发下三维频率域航空电磁场分布.在有 限差分网格剖分方面,采用非均匀变化交错网格(谭 捍东等,2003),这样可以在满足计算精度的前提下尽 量扩大模型尺寸,达到更好的应用效果(图 2).

3 频率域航空电磁法线圈姿态变化 影响

计算模型如图 3 所示.在电阻率为 100 Ω • m 的 均匀大地空间里,有一半径为 5 m,高为 20 m,电阻 率为 33 Ω • m 的圆柱低阻目标体,其埋深分别距地 表 30 m 和 70 m.有一收发线圈距离为 6.5 m 的水平 共面和垂直同轴装置,发射频率分别为 930 Hz 和 870 Hz,探头距地表高度为 30 m,采样间隔为 5 m, 飞行距离为 100 m,发射磁矩为 200 Am².图 4 是垂 直同轴装置由 Hz 和 Hx 虚分量归一化所得的电磁 响应信号(10⁻⁶).3 条曲线分别是均匀空间无目标

图 4 不同埋深目标体电磁响应信号

以及目标埋深为 30 m 和 70 m 的响应信号.从图 3 中可以看出,通过所研制程序对不同埋深的低阻目 标体的计算结果可知,目标体越深,响应信号越弱, 因此较好地反映了不同埋深目标体的电磁响应特征 规律.另外,参照 Newman and Alumbaugh(1995)的 三维频率域有限差分模拟结果对比验证该程序的计 算精度和准确性(王世隆等,2011).采用相同的模型 大小和计算参数,发射频率为 30 kHz,发射源设在 中间,每间隔 10 m 分布一个接收源,收发装置在同 一高度,均距离地表 20 m,大地介质电阻率为 100 Ω・m.本次计算结果(图 5)与以往 Newman and Alumbaugh(1995)参考结果基本吻合.通过以 上计算和分析对比,验证了本次所研制程序满足频 率域航空电磁响应计算的要求.

参考国内外相关的姿态影响研究(Fitterman, 1998;Roy et al.,1998),其中,垂直同轴装置主要受 俯冲姿态变化影响,水平共面装置主要受摇摆和俯 冲这 2 种姿态变化的影响.以下分别对 2 种装置线 圈姿态变化电磁响应采用频率域有限差分进行模拟 计算.

3.1 VCX 装置姿态变化电磁响应

图 6 是线圈姿态变化模拟计算模型,该模型为 电导率为 0.01 s/m 的均匀半空间,电磁探头距离地 表高度为 30 m.采用共中心点的观测方式,发射线 圈位于中间,两边等间距分布 20 个接收线圈,相邻 接收线圈间距为 10 m,发射频率为 870 Hz,发射磁 矩为 200 Am²,线圈俯仰姿态变化角度分别为 0°、 5°、8°、12°、16°和 20°.图 7 为不同俯冲角度变化下 Hx 二次场实虚分量比值.从图 7 中可以看出随着

Fig.5 The comparison of calculation results for 3D frequency domain finite difference method

Fig.6 The calculation model of coil attitude changes

Fig.7 The normalized secondary field of Hx in pitch with different angles (VCX)

俯冲角度的变大, Hx 二次场响应比值偏离正常姿态响应值越来越大, 两端不对称性变大, 当摇摆角度

达到 20°时,响应信号变化幅值达到 19.6%.

3.2 HCP 装置姿态变化电磁响应

采用上述模型,对 HCP 装置在不同角度变化 情况下 Hz 二次场实虚分量响应变化进行模拟计算 (图 8).相比 VCX 装置,HCP 装置受姿态变化影响 较小.图 8a 为摇摆姿态变化二次场归一化响应,图 8b 为俯冲姿态变化响应,对比可以看出,在相同的 角度旋转条件下,HCP 装置受俯冲姿态变化影响更 为明显.

3.3 不同频率姿态变化影响

笔者根据 IMPULSE 系统的装置类型和发射频 率,分别计算不同频率、不同姿态、不同装置条件下 的电磁响应.表 1 是各个参数的响应对比.从图 9 中 可以看出,频率越高,电磁响应归一化信号将逐渐减 弱,另外,相对于垂直同轴装置,水平共面装置受姿 态变化较小.同时,对于摇摆和俯冲 2 种姿态变化, 水平共面装置受俯冲变化影响更大.这一点与上述 计算结论相同.

图 9 是 2 种线圈装置在不同角度变化下的归一 化电磁响应比值对比.在相同的角度变化情况下,频 率越高,受姿态角度变化越大.垂直同轴装置因姿态 角度变化引起的测量误差比值远大于水平共面装 置.例如,在 20 ℃条件下,垂直同轴装置 870 Hz 下 电磁响应比值为 0.91,而水平共面装置 930 Hz 下其 比值为0.99.

4 频率域航空电磁线圈姿态校正方法

4.1 线圈姿态校正理论方法

根据 Roy et al.(1998)、Fitterman(1998)和 Yin and Fraser(2004)在《Geophysics》杂志发表的关于

表1 不同装置、不同角度、不同频率归一化二次场电磁响应

Table 1 The normalized secondary field response in VCX and HCP coil with different angles and frequencies

	水平共面(HCP),摇摆姿态			水平共面(HCP),俯冲姿态			垂直同轴(VCX),摇摆姿态		
角度变化	Hz 虚分量/Hz 实分量			Hz 虚分量/Hz 实分量			Hx 虚分量/Hx 实分量		
	930 Hz	4 650 Hz	23 250 Hz	930 Hz	4 650 Hz	23 250 Hz	870 Hz	4 350 Hz	21 750 Hz
0°	11.7610	3.084 8	1.406 9	12.633	2.847 3	1.2554	4.808 5	1.8657	1.259 6
5°	11.7460	3.0817	1.404 5	12.619	2.844 0	1.253 6	4.738 2	1.830 5	1.236 0
8°	11.7370	3.083 3	1.401 5	12.611	2.8398	1.250 9	4.694 4	1.808 5	1.220 9
12°	11.724 0	3.082 5	1.398 9	12.600	2.831 3	1.245 1	4.622 0	1.777 3	1.1991
16°	11.7110	3.0817	1.397 0	12.592	2.8194	1.236 8	4.566 2	1.7431	1.174 7
20°	11.6970	3.080 9	1.394 6	12.585	2.803 9	1.225 8	4.492 1	1.704 7	1.146 5

图 9 不同角度不同频率条件下 2 种装置姿态变化电磁响应归一化比值对比

探头姿态校正的理论计算方法,垂直同轴装置主要 受俯冲姿态变化影响,其校正公式:

$$V_{
m VCX}(\psi_{
m P})/V_{
m VCX}(0) pprox \cos^2(\psi_{
m P}) + 2\sin^2(\psi_{
m P})$$
 , (8)

式中: ϕ_P 是俯冲姿态角度, $V_{vcx}(0)$ 是正常飞行状态 下的电磁感应信号, $V_{vcx}(\phi_P)$ 为不同角度变化下的 电磁感应.而对于水平共面装置,根据文献中的理论 推导,其主要受摇摆和俯冲 2 种姿态变化影响,其校 正公式为:

图 12 垂直同轴装置俯冲姿态变化 Hx 分量响应信号及校正结果 Fig.12 The secondary field of Hx in VCX with pitch and calibration result

$$V_{\rm HCP}(\psi_{\rm R},\psi_{\rm P})/V_{\rm HCP}(0,0) \approx \frac{1}{2} (1 + \cos^2 \psi_{\rm P} \cos^2 \psi_{\rm R}) , \qquad (9)$$

式中: ψ_{R} 是摇摆姿态变化角度, ψ_{P} 是俯冲姿态角度, $V_{HCP}(0,0)$ 是正常飞行状态下的电磁感应信号, $V_{HCP}(\phi_{R},\phi_{P})$ 为不同角度变化下的电磁感应.采用上 述校正公式对探头姿态变化进行模拟计算,并对电 磁响应进行校正.

4.2 模拟实测飞行模式姿态变化响应

在上述模拟计算的基础上,笔者设计了探头连 续角度变化飞行的姿态变化模型(图 10).模型和相 关模型参数设置与图 3 模型相同.

首先,笔者分别对相同角度变化条件下,水平共 面装置俯冲和摇摆姿态变化进行模拟计算,结果如图 11.对比2种姿态变化的 Hz 实虚分量响应信号可以 看出,水平共面装置受俯冲姿态影响较大,在局部可 引起较大的假异常.这也进一步验证了在实际测量模 式下,水平共面装置受俯冲姿态变化影响更大.

图 12 为在相同模型条件下,垂直同轴装置的 Hx 实虚分量响应信号以及正常飞行响应信号和校 正结果.线圈俯冲姿态的变化对垂直同轴装置信号

响应产生较大的影响.通过线圈姿态校正方法可以 较好地将信号还原,去除其中的虚假信号.

4.3 探头姿态变化对实测数据的模拟校正效果

为了验证探头姿态校正方法的有效性,选取北 京密云红光铁矿地区 10 号线实测的频率域航空电 磁数据进行模拟线圈姿态校正.首先笔者设计了连 续角度变化的俯冲飞机姿态变化角度,如图 13 所

图 14 北京密云红光铁矿地区 10 号线 HCP 装置实虚分量探头姿态校正结果对比

Fig.14 Comparion map of sensor attitude correction for HCP system of Line 10 in Miyun Hongguang iron ore, Beijing

示,并根据均匀半空间模型,对每个测点的实测电磁 数据进行电阻率反演,其反演结果作为姿态校正中 的均匀半空间电阻率.采用三维频率域有限差分方 法模拟计算均匀半空间条件下的探头姿态变化响 应,将计算的结果与实测电磁数据相加作为带探头 姿态变化的异常值,然后采用本次研究的方法进行 电磁数据线圈姿态校正.图 14 为水平共面装置 930 Hz实虚分量姿态校正结果,图 14a 为实分量校 正结果.从图 14a 中可以看出采用本论文研制的线 圈姿态校正方法,能够较好地消除线圈姿态变化对 电磁响应数据的影响,使得异常结果与正常值更为 接近;图 14b 为虚分量对应的校正结果,从图 14b 中 可以看出,对于两边幅值较低的区域,校正结果与没 有线圈姿态变化影响的电磁响应曲线基本一致,在 中间幅值较大区域虽存在一定的误差,但也达到了 预期的校正效果,说明该方法在校正频率域航空电 磁数据方面是可行的.

5 结论

本文针对吊舱式直升机频率域电磁系统因飞行 速度的变化以及气流的变化,造成电磁线圈相对地面 几何角度变化引起的电磁响应误差,采用频率域有限 差分进行模拟计算,分析了不同频率、不同姿态变化 类型对水平共面(HCP)和垂直同轴(VCX)装置的电 磁响应影响.通过模型计算结果表明,垂直同轴装置 受姿态变化影响更大,相对摇摆姿态变化,水平共面 装置受俯冲姿态变化影响更大,随着频率的升高,姿 态变化影响效果更为明显.在此基础上,根据姿态误 差几何校正方法对线圈姿态进行了校正.该方法可以 有效去除因线圈姿态变化造成的误差响应,并且取得 了明显的应用效果,为吊舱式直升机频率域航空电磁 测量实测数据的精确处理和解释奠定了基础.

References

- Aaron, D., James, M., Greg, H., 2009. Predictions of Bird Swing from GPS Coordinates.*Geophysics*,74(6):119-126.doi:10.1190/1.3237143
- Chen, H., Deng, J.Z., Tan, H.D., et al., 2011. Study on Divergence Correction Method in Three-Dimensional Magnetotelluric Modeling with Staggered-Grid Finite Difference Method. *Chinese Journal of Geophysics*, 54(6): 1649-1659(in Chinese with English abstract).doi:10. 3969/j.issn.001-5733.2011.06.025
- Davis, A.C., Macnae, J., Robb, T., 2006. Pendulum Motion in Airborne HEM Systems. Exploration Geophysics, 37 (4):355-362.doi:10.1071/EG06355
- Fitterman, D.V., 1998. Sources of Calibration Errors in Helicopter EM Data. *Exploration Geophysics*, 29(1-2): 65-70.doi:10.1071/EG998065
- Fitterman, D.V., Yin C.C., 2004. Effect of Bird Maneuver on Frequency-Domain Helicopter EM Response. *Geophysics*, 69(5):1203-1215.doi:10.1190/1.1801937
- Fountain, D., 1998. Airborne Electromagnetic System—50 Years of Development.*Exploration Geophysics*,29(1-2):1-11.doi:10.1071/EG998001
- Fraser, D. C., 1978. Resistivity Mapping with an Airborne Multi-Coil Electromagnetic System. *Geophysics*, 43(1): 144-172.doi:10.1190/1.1440817
- Haber, E., Ascher, U. M., Aruliah, D. A., et al., 2000. Fast Simulation of 3D Electromagnetic Problems Using Potentials. Journal of Computational Physics, 163:150-171.doi:10.1190/1.3063722
- Hefford, S. W., Smith, R. S., Samson, C., 2006. Quantifying the Effects that Changes in Transmitter-Receiver Ge-

ometry Have on the Capability of an Airborne Electromagnetic Survey System to Detect Good Conductors. *Exploration and Mining Geology*, 15,43-52.

- Holladay, J. S., Lo, B., Prinsenberg, S. J., 1997. Bird Orientation Effects in Quantitative Airborne Eelectromagnetic Interpretation of Pack Ice Thickness Sounding. IEEE Conference Proceedings, Marine Technology Society, 1-2:1114-1119.
- Huang, H.P., Fraser, D.C., 2001. Maping of the Resistivity, Susceptibility, and Permeability of the Earth Using a Helicopter-Borne Electromagnetic System. *Geophysics*, 66(1):148-157.
- Huang, H. P., Wang, W. Z., 1990. Inversion of Time-Domain Airborne Electromagnetic Data. Acta Geophysica Sinica, 33(1):87-97(in Chinese with English abstract).
- Huang, L. P., Dai, S. K., 2002. Finite Element Calculation Method of 3D Electromagnetic Field under Complex Condition. Earth Science—Journal of China University of Geosciences, 27(6): 775 – 779. doi: 10.3321/j.issn: 1000-2383.2002.06.022
- Ji, Y.J., Lin, J., Guan, S.S., et al., 2010. Theoretical Study of Concentric Loop Coils Attitude Correction in Helicopter-Borne TEM. Chinese Journal of Geophysics, 53(1):171-176(in Chinese with English abstract). doi:10.3969/j.issn.0001-5733.2010.01.019
- Lei, D., Hu, X. Y., Zhang, S. F., 2006. Development Status Quo of Airborne Eletromagnetic. Contributions to Geology and Mineral Resources Research, 21(1):40-44,53 (in Chinese with English abstract).
- Li, W. J., 2008. Data Processing of Frequency Domain Airborne Electromagnetic Survey(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
- Li,X.K.,2011. An MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
- Liu, G., Becker, A., 1992. Evaluation of Terrain Effects in AEM Surveys Using the Boundary Element Method. *Geophysics*, 57(2):272-278.doi:10.1190/1.1443240
- Mackie, R.L., Madden, T.R., Wannamaker, P, 1993...3-D Magnetotelluric Modeling Using Difference Equations— Theory and Comparisons to Integral Equation Solutions. *Geophysics*, 58(2):215-226.
- Mackie, R. L., Smith, J. T., Madden, T. R., 1994. Three-Dimensional Electromagnetic Modeling Using Finite Difference Equations: The Magnetotelluric Example. *Radio Science*, 29 (4): 923 - 935. doi: 10.1029/

94RS00326

- Newman, G. A., Alumbaugh, D. L., 1995. Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences. *Geophys. Prosp.*, 43 (8): 1021 - 1042. doi: 10.1111/j.1365 - 2478.1995. tb00294.x
- Roy, D.P., Devereux, B., Grainger, B., et al., 1998. Parametric Geometric Correction of Airborne the Matic Mapper Imagery. International Journal Remote Sensing, 18 (9):1865-1887.doi:org/10.1080/014311697217927
- Ruan, B.Y., Xu, S.Z., Xu, Z.F., 2007. Modeling the 3D Terrain Effect on MT by the Boundary Element Method. *Earth Science—Journal of China University of Geosciences*, 32(1):130-134.doi:10.3321/j.issn:1000-2383.2007. 01.020
- Sasaki, Y., Nakazato, H., 2003. Topographic Effects in Frequency-Domain Helicopter-Borne Electromagnetics. *Exploration Geophysics*, 34 (1-2): 24-28. doi: 10. 1071/EG03024
- Shen, J.S., 2003. Modeling of 3-D Electromagnetic Responses in Frequency Domain by Using Staggered-Grid Finite Difference Method. *Chinese Journal of Geophysics*, 46 (2):281-289(in Chinese with English abstract).
- Siemon, B., Christiansen, A.V., Auken, E., 2009. A Review of Helicopter-Borne Electromagnetic Methods for Groundwater Exploration. Near Surface Geophysics, 7(5-6): 629-646.
- Siemon, B., Steuer, A., Ullmann, A., et al., 2011. Application of Frequency-Domain Helicopter-Borne Electromagnetics for Groundwater Exploration in Urban Areas. *Physics and Chemistry of the Earth*, 36(16):1373-1385.
- Smith J.T., Booker, J.R., 1991. Rapid Inversion of Two and Three Dimensional Magnetotelluric Data. Journal of Geophysical Research-Atmospheres, 96 (B3): 3905 – 3922.
- Son, K. H., 1985. Interpretation of Electromagnetic Dipole-Dipole Frequency Sounding Data over a Vertically Stratified Earth (Dissertation). North Carolina State University, Raleigh, 149.
- Tan, H.D., Tuo, D., Lin, C. H., 2006. The Parallel 3D Magnetotelluric Forward Modeling Algorithm. Applied Geophysics, 3(4): 197 – 202. doi: 10.1007/s11770 – 006 – 4001-5
- Tan, H.D., Yu, Q.F., Booker, J., et al., 2003. Magnetotelluric Three-Dimensional Modeling Using the Staggered-Grid Finite Difference Method. *Chinese Journal of Geophysics*, 46(5):705-711(in Chinese with English abstract).
- Wang, S.L., Wang, Y.Z., Sui, Y.Y., et al., 2011. A Bird Cali-

bration Device of Helicopter-Borne TEM with Concentric Bucking Loop. *Chinese Journal of Geophysics*, 54 (9):2397-2406(in Chinese with English abstract).

- Wang, W. P., Wang, S. T., 2003. Electromagnetic Response Character of Helicopter Frequency Domain EM System above Uniform Half Space and Its Prospecting Depth. Acta Geoscientia Sinica, 24(3): 285 - 288 (in Chinese with English abstract).
- Wang, W.P., Wu, C.P., 2010. Current Situation and Prospect of Research about FEM Software. Chinese Journal of Engineering Geophysics, 7(3):333-338(in Chinese with English abstract).doi:1672-7940(2010)03-0333-06
- Wang, W.P., Zhou, X. H., Wang, S. T., et al., 2008. The Performance and Applied Effect of Towed Bird Helicopter Frequency Domain Electromagnetic System. *Progress in Geophysics*, 23(3):942 - 947(in Chinese with English abstract).
- Yee, K.S., 1966. Numerical Solution of Initial Boundary Problems Involving Maxwell's Equations in Isotropic Media. *IEEE Transaction on Antennas Propagation*, AP-14: 302-309.
- Yin, C. C., Fraser, D C., 2004. Attitude Corrections of Helicopter EM Data Using a Superposed Dipole Model. Geophysics, 69(5):431-438. doi:10.1190/1.1707063
- Zhang, Q.Z., Liu, J.Y., Wang, L.W., 2007. On Calibration of Magnetic Field Distortion for Electromagnetic Trackers. Journal of Nanjing University of Aeronautics & Astronautics, 39(6):711-715(in Chinese with English abstract).
- Zhou, D.Q., 2006. Study on Practicable Methods for the Interpretation of FAEM Data(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
- Zhou, D.Q., Tan, L., Tan, H.D., et al., 2010. Inversion of Frequency Domain Helicopter-Borne Electromagnetic Data with Marquardt's Method. *Chinese Journal of Geophysics*, 53(2):421-427(in Chinese with English abstract). doi:10.3969/j.issn.0001-5733.2010.02.020

附中文参考文献

陈辉,邓居智,谭捍东,等,2011.大地电磁三维交错网格有限

差分数值模拟中的散度校正方法研究.地球物理学报, 54(6):1649-1659.

- 黄皓平,王维中,1990.时间域航空电磁数据的反演.地球物理 学报,33(1):87-97.
- 黄临平,戴世坤,2002.条件下 3D 电磁场有限元计算方法.地 球科学——中国地质大学学报,27(6):775-779.
- 嵇艳鞠,林君,关珊珊,等,2010.直升机航空 TEM 中心回线
 线圈姿态校正的理论研究.地球物理学报,53(1):
 171-176.
- 雷栋,胡祥云,张素芳,2006.航空电磁法的发展现状.地质找 矿论丛,21(1):40-44,53.
- 李文杰,2008.频率域航空电磁数据处理技术研究(博士学位 论文).北京:中国地质大学.
- 李小康,2011.基于 MPI 的频率域航空电磁法有限元二维正 演并行计算研究(博士学位论文).北京:中国地质大学.
- 阮百尧,徐世浙,徐志锋,2007.三维地形大地电磁场的边界 元模拟方法.地球科学——中国地质大学学报,32(1): 130-134.
- 沈金松,2003.用交错网格有限差分法计算三维频率域电磁 响应.地球物理学报,46(2):281-289.
- 谭捍东,余钦范,Booker,J.,等,2003.大地电磁法三维交错采 样有限差分数值模拟.地球物理学报,(5):705-711.
- 王世隆,王言章,随阳轶,等,2011.同心补偿式直升机时间域 航空电磁法吊舱校准装置研究.地球物理学报,54(9): 2397-2406.
- 王卫平,王守坦,2003.直升机频率域航空电磁系统在均匀半 空间上方的电磁响应特征与探测深度.地球学报,24 (3):285-288.
- 王卫平,吴成平,2010.频率域航空电磁法软件研究现状与发 展趋势.工程地球物理学报,7(3):333-338.
- 王卫平,周锡华,王守坦,等,2008.吊舱式直升机频率域电磁
 系统性能及应用效果.地球物理学进展,23(3):
 942-947.
- 张求知,刘建业,王立伟,2007.电磁式跟踪器磁场畸变的姿态校正技术,南京:南京航空航天大学学报,39(6): 711-715.
- 周道卿,2006.频率域航空电磁资料实用化处理解释系统研 究(博士学位论文).北京:中国地质大学.
- 周道卿,谭林,谭捍东,等,2010.频率域吊舱式直升机航空电 磁资料的马奎特反演.地球物理学报,53(2):421-427.