doi:10.3799/dqkx.2016.024

FeS 胶体对三价铁吸附态 As(V)的解吸作用

成 东,廖 鹏,袁松虎*

中国地质大学生物地质与环境地质国家重点实验室,湖北武汉 430074

摘要:地下水中的含铁胶体颗粒会携带污染物如砷等运移,但人们对该过程中的机理缺乏认识.通过群组静态吸附解吸模拟 实验,探究 FeS 胶体对吸附在覆 Fe₂O₃ 石英砂上 As(V)的解吸作用,以及腐殖酸(HA)、H₂PO₄⁻和 HCO₃⁻ 对解吸的影响.实验结果表明,室内合成的 FeS 胶体具有纳米级粒径和较大的比表面积,且能均匀稳定存在于水溶液中.低浓度的 FeS 胶体主要 通过竞争覆 Fe₂O₃ 石英砂表面的吸附点位将 As(V)解吸,而高浓度的 FeS 胶体主要通过与覆 Fe₂O₃ 石英砂竞争对 As(V)的 吸附而导致解吸.HA、H₂PO₄⁻和 HCO₃⁻对 As(V)的竞争解吸作用降低了 FeS 胶体导致的解吸效率.

关键词:FeS胶体;沉积物;As(V);地下水.

中图分类号: X523 文章编号: 1000-2383(2016)02-0325-06 收稿日期: 2015-08-30

Effect of FeS Colloids on Desorption of As(V) Adsorbed on Ferric Iron

Cheng Dong, Liao Peng, Yuan Songhu*

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

Abstract: The iron colloids in groundwater are associated with contaminants such as arsenate in transport processes, but the mechanism underlying the process is not clear. In this study, batch static adsorption and desorption experiments were conducted to investigate the effect of FeS colloids on desorption of As(V) adsorbed on Fe₂O₃-coated sand, as well as the influences of HA, H₂PO₄⁻ and HCO₃⁻ on the desorption. Results show that FeS colloids at low concentrations desorbed As (V) mainly by competing adsorption sites on the surface of Fe₂O₃-sand, while desorption at high concentrations is mainly due to the competitive adsorption for As (V) with Fe₂O₃-sand. As HA (humic acid), H₂PO₄⁻ and HCO₃⁻ could desorb As (V) from Fe₂O₃-sand, As (V) desorption by FeS colloids was reduced. The results may better our understanding of the mechanisms of the arsenate release from sediments into groundwater.

Key words: FeS colloids; sediment; As(V); groundwater.

0 引言

原生高砷地下水已经成为一个世界性环境地质问题,目前全球有超过一亿人处于高砷地下水暴露的风险中,其中东南亚地区尤为严重(Smedley and Kinniburgh,2002;黄爽兵等,2013).长期饮用高砷地下水 会引起心血管疾病,阻碍儿童的智力发育(Wasserman *et al.*,2004).

砷的毒性和移动性与其化学形态有关,在含铁

丰富的沉积物环境中,砷主要被含铁矿物或金属硫 化物吸附(Sherman and Randall,2003;黄园英等, 2012).在生物地球化学作用下,土壤和沉积物中的 砷会进入到地下水中,形成高砷地下水(Fendorf *et al.*,2010).目前对地质成因导致的原生高砷地下 水的形成机理主要有 3 种解释:含砷黄铁矿的氧化 溶解(Appelo and Postma,2005);含砷三价铁矿物 在地质微生物作用下的还原性溶解(Nickson *et al.*,1998;李梦娣等,2014);以及地下水中有机

基金项目:教育部新世纪优秀人才支持计划(No.NCET-13-1014).

作者简介:成东(1990-),男,在读硕士,主要从事沉积物中胶体与污染物相互作用研究.E-mail: justin_chengcug@163.com * 通讯作者:袁松虎,E-mail; yuansonghu622@cug.edu.cn

引用格式:成东,廖鹏,袁松虎,等,2015.FeS胶体对三价铁吸附态As(V)的解吸作用.地球科学,41(2):325-330.

质、磷酸根、碳酸氢根等的竞争吸附释放(Anawar et al.,2004; Bauer and Blodau, 2006).

胶体具有纳米级的粒径(1~1000 nm)和较大的比表面积,是含水层广泛存在的一种介于水相和沉积相之间的稳定相态,能有效地吸附地下水中的有害物质,如砷(Neubauer *et al.*,2013).在地下水扰动过程中形成的胶体,有可能将沉积物中吸附的砷解吸出来.地下水中除了广泛存在的有机质胶体以外,还有很多无机含铁胶体(Tadanier *et al.*,2005). 人们已经认识到,在还原性含水层中微生物作用下生成的 Fe^{2+} 和 S^{2-} 会形成 FeS 胶体(Jeong *et al.*,2008), FeS 胶体能吸附水相中的 As(V)(Farquhar *et al.*,2002; Wolthers *et al.*,2005).但是目前对 FeS 胶体与沉积物吸附态砷的相互作用未见报道,而这种作用会影响含水层中砷的迁移.

为此,本文以石英砂负载氧化铁为模拟沉积物, 研究 FeS 胶体对沉积物吸附态 As(V)的解吸作用, 考察含水层中常见的共存组分如腐殖酸(HA)、 $H_2PO_4^{-}$ 和 HCO₃⁻对解吸的影响.本研究的结果将 为理解和评价 FeS 胶体对含水层沉积物吸附态 As (V)的释放提供新启示.

1 材料和方法

1.1 试剂

As(V)储备液由 Na₂HAsO₄ • 7H₂O(质量分 数为 99.99%,Sigma-Aldrich)溶解稀释制成.实验试 剂均为分析纯级别或更高.腐殖酸钠(C含量为 34.2%,N含量为 0.75%,S含量为 0.30%,Sigma-Aldrich)提供 HA,1、4-Piperazinediethanesulfonic acid(PIPES)作为实验 pH 缓冲液.实验前所有玻璃 和塑料制品以稀盐酸浸泡 24 h,然后用自来水和超 纯水(Heal Force NW Ultra-pure Water System, 18.2 M Ω • cm)洗净并烘干.

1.2 实验方法

所有厌氧实验均在手套箱中(氧气浓度<10×10⁻⁶)操作,实验用水均为除氧超纯水.

1.2.1 FeS 胶体合成 FeS 胶体的合成参考前人研究(Butler and Hayes, 1998).在手套箱中将 36 mL 浓度为 1.1 mol/L 的 Na₂S和 60 mL 浓度为 0.57 mol/L 的 FeCl₂ 溶液在 100 mL 试剂瓶中混合并密封,置于 磁力搅拌器上搅拌 3 d.然后将悬液取出移至透析袋 (2 000 Da, Biosharp, USA)中透析,待电导率低于 200 μ s/cm后将其转移至手套箱中保存备用.

动态光散射仪(Zetasizer Nano ZS90, Malvern Instruments Ltd., U.K.)测定 FeS 胶体粒径和 Zeta 电位分别为 100~200 nm 和-32.51 mV (pH=7), 说明胶体能相对稳定存在于水溶液中.通过 Brunau-Emmett-Teller (BET) 氮 气 吸 附 等 温 线 (ASAP2020, Micromeritic, USA)测定 FeS 颗粒的 比表面积为 42.25 m²/g.

1.2.2 吸附 As(V)的覆 Fe₂O₃ 石英砂的制备 覆 Fe₂O₃ 石英砂根据文献(Huang *et al.*,2014)中的方 法进行制备.取 200 g 石英砂,依次用 12 mol/L HCl、1 mol/L NaOH和 30%的 H₂O₂ 浸泡 24 h,清 洗至电导率低于 5 μ s/cm,加入 100 mL 浓度为 0.1 mol/L的 FeCl₃,然后在搅拌过程中加入 100 mL 浓度为 0.3 mol/L 的 NaOH,再用 6 mol/L 的 NaOH 将溶液 pH 值调至 10.然后将体系溶液温度 加热至 80 ℃,当溶液剩余体积只有 10%~15%时, 将温度升至 150 ℃,直至沙粒变干.最后用去离子水 清洗至电导率低于5 μ s/cm,于 105 ℃烘干.

将制备的200 g 覆 Fe₂O₃ 石英砂与 1.2 L浓度为300 μ g/LAs(V)溶液混合, pH=7左 右震荡10 h.水相分析结果表明97%的As(V)被覆 Fe₂O₃ 石英砂吸附.然后取出石英砂在50℃下烘干 备用.制备的覆 Fe₂O₃ 石英砂吸附态As(V)单位质 量计算为1.8 mg/kg.

1.2.3 FeS 胶体吸附 As(V)动力学过程考察不同 浓度 FeS 胶体(0、5、10、20 和 40 mg/L)对 200 μg/L As(V)的吸附动力学过程.400 mL 的本体溶液,使 用 5 mmol/L 的 NaCl 为背景电解质,使用 PIPES 控制 pH 为 7,厌氧搅拌,不同时间取样测定溶液中 溶解态 As(V)的浓度.

1.2.4 FeS 胶体对 As(V) 解吸 考察不同浓度 FeS 胶体对覆 Fe₂O₃ 石英砂吸附态 As(V)的解吸动力 学过程.称取 1 g 吸附 As(V)的覆 Fe₂O₃ 石英砂至 10 mL 具塞小管中,转移至厌氧手套箱.依次加入不 同体积的 PIPES 缓冲液、FeS 胶体(0、5、10、20 和 40 mg/L)和去离子水,总体积为 6 mL,溶液 pH 为 7.密封后震荡(120 r/min).不同时间取样测定 As(V)的解吸量和 FeS 胶体浓度.

控制 FeS 胶体浓度为 20 mg/L,分别加入不同 浓度的 HA、H₂PO₄⁻ 和 HCO₃⁻ 考察其影响,震荡 时间控制为 12 h.

1.3 分析方法

取一定体积悬浊液加入 0.5 mol/L 的 CaCl₂ 使 FeS 胶体聚沉后离心,取上清液过 0.22 μm 滤膜后 用原子荧光光谱仪(AFS 9600,北京海光仪器有限 公司)测定溶解态 As(V),取一定体积悬浊液加入 12 mol/L HCl溶解后测定总 As(V).以邻菲咯啉显 色法测定 Fe(II)含量(Komadel and Stucki, 1988) 后转化为 FeS 胶体的量,磷酸根浓度采用钼锑抗分 光光度法测定(国家环境保护总局,2002).

2 结果与讨论

2.1 FeS 胶体 As(V)的吸附作用

图 1 表明, FeS 胶体能快速吸附水溶液中的 As(V),在 10 min 便达到吸附平衡.当 FeS 浓度从 5 mg/L增加到 40 mg/L 时,溶解态 As(V)浓度从 110 μ g/L 降低至 19.6 μ g /L.这主要是由于随着 FeS 胶体浓度的增加,溶液中有更多的有效 As(V)吸附 点位可利用.根据文献报道(Wolthers *et al.*,2005; Farquhar *et al.*,2002), As(V) 吸附到 FeS 胶体上 形成外球表面络合物.

2.2 FeS 胶体对覆铁石英砂吸附态 As(V)的解吸 作用

一般情况下,As(V)能稳定附着在氧化铁矿物 表面,但是当外界条件改变时,As(V)也会从矿物表 面释放出来.图1已证明 FeS 胶体能有效吸附 As(V).由图 2a 可知, FeS 胶体能将 As(V)从覆 Fe₂O₃ 石英砂表面逐渐解吸.当 FeS 胶体浓度从 5 mg/L增加到 40 mg/L 时, As(V)的 12 h 解吸率 从18%增加到48%.其原因主要有两点:首先,表面 带负电的 FeS 胶体通过竞争吸附在表面带正电的 覆 Fe₂O₃ 石英砂表面有限吸附点位,从图 2b 结果 可以看出,当FeS胶体浓度较低(5和10mg/L)时, 溶液中的 FeS 量逐渐减低,表明 FeS 逐渐吸附在覆 Fe₂O₃石英砂表面从而促进As(V)的脱附;其次, 由于 FeS 胶体自身就能通过外球表面络合作用吸 附As(V),当溶液 FeS 胶体浓度足够高时会与覆 Fe₂O₃ 石英砂争夺对 As(V)的吸附,而从图 2b 结 果可以看出,当FeS胶体浓度较高时这个作用变的 显著.

2.3 HA 对 FeS 胶体解吸覆铁石英砂上吸附态 As(V)的影响

如图 3 所示, HA 促使 As(V)不断从覆 Fe₂O₃ 石英砂表面解吸.当 HA 浓度从 0.5 mg/L 增至 4.0 mg/L时,解吸百分比从 4%快速增加至 31%.当 其浓度超过 4.0 mg/L 时, As(V)的解吸量增加较为 缓慢.将同样浓度的 HA 加入到 FeS 和吸附 As(V)

图 1 FeS 胶体对水溶液中 As(V)的吸附时间曲线

Fig. 1 Time profiles of As (V) adsorption by FeS colloids in aqueous solution

图 2 FeS 胶体对 As(V)的解吸时间曲线(a),以及溶液 中 FeS 浓度随时间的变化(b)

Fig. 2 Time profiles of As (V) desorption by FeS colloids (a), the change of FeS concentration by time in the solution (b)

的覆 Fe_2O_3 石英砂中,虽然 As(V)的解吸量增加了 20%左右,但扣除相应浓度 HA 的解吸率后 FeS 的 解吸率反而有所降低,说明 HA 抑制了 FeS 胶体对 As(V)的解吸.元素分析表明所用 HA 含 34.20%的 碳、0.75%的氮和 0.30%的硫,电位滴定显示含羧基 2.55 mmol/g、酚羟基 0.72 mmol/g.HA 作为天然有

图 3 不同浓度 HA 对 FeS 胶体解吸 As(V)的影响

Fig.3 Effects of HA on As (V) desorption by FeS colloids

图 4 不同浓度 H₂PO₄⁻ 对 FeS 胶体解吸 As(V)的影响 (a),以及对溶液中 H₂PO₄⁻浓度的变化(b)

机质的主要成分,由于其分子表面各种官能团以及 表面带电性,能有效抑制 As(V)在矿物表面的吸附 或者促进 As(V)从铁氧化物表面脱附,主要机制是 阴离子基团(如羧基)竞争吸附氧化物表面有限点 位,以及含硫的巯基和含氮的氨基与 As(V)形成水 溶液络合物.Wang and Mulligan(2006)以及 Bauer and Blodau(2006)也分别论证了有机质能促进

图 5 HCO₃⁻对 FeS 胶体解吸 As(V)的影响

Fig.5 Effects of HCO3⁻ on As (V) desorption by FeS colloids

As(V)从土壤和沉积物中的脱附效果.

2.4 $H_2 PO_4^-$ 对 FeS 胶体解吸覆铁石英砂上吸附态 As(V)的影响

如图 4 所示, 当溶液中 $H_{2}PO_{4}^{-}$ 浓度(以 P 计 算)由 0.05 mg/L 增加至 0.40 mg/L 时 As(V)的解 吸率从 18% 增加到 52%, 而当 $H_2PO_4^-$ 浓度超过 0.40 mg/L后 As(V)解吸量几乎不变.由图 4b 可知, 在解吸过程中溶液中的 H₂PO₄ - 浓度相对于初始浓 度都有所降低,而且降低量与 As(V)的释放量大致 相等.从图 4a 还可知,把同样浓度的 H₂PO₄⁻加入 到 FeS 胶体和附有 As(V)的覆 Fe₂O₃ 石英砂混合 体系后,虽然 As(V)的解吸量明显增加了 10% 左 右,但是由 FeS 胶体引起的 As(V)解吸效率有所降 低,表明H₂PO₄⁻跟HA一样均抑制了FeS胶体对 $A_{s}(V)$ 的解吸. H₂PO₄⁻作为H₂AsO₄⁻的类似物, 与其具有相似的结构,所以会与 As(V)发生竞争吸 附,强烈争夺覆 Fe2O3 石英砂表面有限的吸附点位. Acharyya et al.(1999)发现,H₂PO₄⁻ 竞争吸附作用 会使沉积物中的 As(V)解吸造成地下水中砷浓度 增加; Dong et al. (2012)发现在 pH 值在 9 以下, $H_2PO_4^{-}$ 能通过竞争吸附将附着在纳米零价铁表面 的As(V)提取出来.

2.5 HCO₃⁻对 FeS 胶体解吸覆铁石英砂上吸附态 As(V)的影响

从图 5 可知, HCO₃⁻浓度由 50 mg/L 增加到 200 mg/L 时,覆 Fe₂O₃ 石英砂表面 As(V)的解吸 率从 28%增加到 37%; 当浓度大于 200 mg/L 后, 解吸率虽然有所增加,但增加幅度减小.主要原因可 能是溶液离子强度过高导致 FeS 胶体发生絮凝沉 淀覆盖在覆 Fe₂O₃ 石英砂表面,阻碍了 As(V)的解 吸.从图 5 中还可知,当把同样浓度的 HCO₃⁻ 加入 到 FeS 和附有 As(V)的覆 Fe₂O₃ 石英砂混合体系 中,As(V)的解吸率稳定在48%左右,分别比单独 HCO₃⁻和单独FeS胶体对As(V)的解吸率提高了 8%和18%,但是远低于单独HCO₃⁻和单独FeS对 As(V)解吸率的总和.HCO₃⁻将覆Fe₂O₃石英砂表 面的As(V)解吸的主要原因是其带有一定的负电 荷,能够吸附在表面带正电荷的覆Fe₂O₃石英砂 上,与As(V)争夺有限的吸附点位.Anawar *et al*. (2004)研究发现,HCO₃⁻能通过表面络合作用吸附 在氢氧化铁表面,占据有限的吸附点位,将As(V) 从氢氧化铁表面提取出来.Saalfield and Bostick (2010)也证明了HCO₃⁻通过占据水铁矿表面的吸 附点位来促进As(V)的释放.

3 结论

本研究通过群组静态吸附解吸模拟实验,探究 FeS 胶体对吸附在覆 Fe₂O₃ 石英砂上 As(V)的解吸 作用,以及 HA、H₂PO₄⁻和 HCO₃⁻对解吸效果的影 响.由于 FeS 胶体较大的比表面积且表面带电性,低 浓度的 FeS 胶体就能非常高效的吸附 As(V).FeS 胶 体能有效将覆 Fe₂O₃ 石英砂表面吸附的 As(V)解吸, 其中低浓度时主要通过竞争覆 Fe₂O₃ 石英砂上吸附 点位将 As(V)解吸,而高浓度时主要通过与覆 Fe₂O₃ 石英砂竞争吸附 As(V)而导致 As(V)的解吸.HA、 H₂PO₄⁻、HCO₃⁻本身就能有效解吸覆 Fe₂O₃ 石英砂 上的 As(V),从而降低了 FeS 胶体对 As(V)的解吸效 率.根据本研究得到的结果可以推测,在原生高砷地 下水的还原性条件下,还原态 Fe²⁺与 S²⁻形成的 FeS 胶体会在一定程度上引起沉积物吸附态 As(V)的解 吸和移动.

References

- Acharyya, S.K., Chakraborty, P., Lahiri, S., et al., 1999. Arsenic Poisoning in the Ganges Delta. *Nature*, 401(6753): 545-545.doi:10.1038/44052
- Anawar, H.M., Akai, J., Sakugawa, H., 2004. Mobilization of Arsenic from Subsurface Sediments by Effect of Bicarbonate Ions in Groundwater. *Chemosphere*, 54(6):753-762.doi:10.1016/j.chemosphere.2003.08.030
- Appelo, C. A. J., Postma, D., 2005. Geochemistry, Groundwater and Pollution.CRC Press, New York.
- Bauer, M., Blodau, C., 2006. Mobilization of Arsenic by Dissolved Organic Matter from Iron Oxides, Soils and Sediments. Science of the Total Environment, 354 (2-3): 179-190.doi:10.1016/j.scitotenv.2005.01.027

- Butler, E.C., Hayes, K.F., 1998. Effects of Solution Composition and pH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfide. Environmental Science & Technology, 32 (9): 1276 - 1284. doi: 10. 1021/ es9706864
- Dong, H. R., Guan, X. H., Lo, I. M. C., 2012. Fate of As (V)-Treated Nano Zero-Valent Iron: Determination of Arsenic Desorption Potential under Varying Environmental Conditions by Phosphate Extraction. Water Research, 46 (13):4071-4080. doi:10.1016/j.watres.2012.05.015
- Farquhar, M. L., Charnock, J. M., Livens, F. R., et al., 2002. Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite: An X-Ray Absorption Spectroscopy Study. Environmental Science & Technology, 36 (8): 1757-1762.doi:10.1021/es010216g
- Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328 (5982): 1123 - 1127. doi:10.1126/science.1172974
- Huang, Y.X., Yang, J.K., Keller, A.A., 2014. Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-) Oxide Coated Sand. ACS Sustainable Chemistry & Engineering, 2(5): 1128 1138 doi: 10.1021/sc400484s
- Huang, S.B., Wang, Y.X., Liu, C.R., et al., 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. *Earth Science*, 38 (5): 1091-1098 (in Chinese with English abstract).
- Huang, Y. Y., Liu, D. D., Li, G. R., 2012. Adsorption Kinetics of As(Ⅲ) from Groundwater by Nanoscale Zero-Valent Iron.*Earth Science*, 37(2):294-300 (in Chinese with English abstract).
- Jeong, H.Y., Lee, J.H., Hayes, K.F., 2008. Characterization of Synthetic Nanocrystalline Mackinawite: Crystal Structure, Particle Size, and Specific Surface Area. Geochimica et Cosmochimica Acta, 72 (2): 493 - 505. doi: 10. 1016/j.gca.2007.11.008
- Komadel, P., Stucki, J. W., 1988. Quantitative Assay of Minerals for Fe²⁺ and Fe³⁺ Using 1,10-Phenanthroline:III. A Rapid Photochemical Method. *Clays and Clay Minerals*, 36 (4): 379 381. doi: 10.1346/ccmn.1988.0360415
- Li, M. D., Zhou, L., Wang, Y. X., et al., 2014. Molybdenum Isotope Geochemistry of Arsenic Mobilization in Groundwater System. *Earth Science*, 39 (1): 99-107 (in Chinese with English abstract).
- Neubauer, E., von der Kammer, F., Knorr, K.H., et al., 2013.

Colloid-Associated Export of Arsenic in Stream Water during Stormflow Events.*Chemical Geology*, 352:81-91.doi:10.1016/j.chemgeo.2013.05.017

- Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. *Nature*, 395 (6700):338-338.doi:10.1038/26387
- Saalfield, S.L., Bostick, B.C., 2010. Synergistic Effect of Calcium and Bicarbonate in Enhancing Arsenate Release from Ferrihydrite. *Geochimica et Cosmochimica Acta*, 74(18):5171-5186. doi:10.1016/j.gca.2010.05.022
- Sherman, D.M., Randall, S.R., 2003, Surface Complexation of Arsenic(V) to Iron(III) (Hydr) Oxides: Structural Mechanism from Ab Initio Molecular Geometries and EXAFS Spectroscopy. *Geochimica et Cosmochimica* Acta, 67(22): 4223 – 4230. doi: 10.1016/S0016 – 7037 (03)00237 – 0
- Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. *Applied Geochemistry*, 17 (5): 517 - 568. doi:10.1016/s0883-2927(02)00018-5
- State Environmental Protection Agency, 2002. Water and Wastewater Monitoring Analysis Method. China Environmental Science Press, Beijing, 216-219 (in Chinese).
- Tadanier, C. J., Schreiber, M. E., Roller, J. W., 2005. Arsenic Mobilization through Microbially Mediated Deflocculation of Ferrihydrite. Environmental Science & Technol-

ogy,39(9):3061-3068.doi:10.1021/es048206d

- Wang, S.L., Mulligan, C.N., 2006. Effect of Natural Organic Matter on Arsenic Release from Soils and Sediments into Groundwater. *Environmental Geochemistry and Health*, 28(3): 197-214. doi: 10.1007/s10653-005-9032-y
- Wasserman, G. A., Liu, X. H., Parvez, F., et al., 2004. Water Arsenic Exposure and Children's Intellectual Function in Araihazar, Bangladesh. *Environmental Health Perspectives*, 112(13):1329-1333. doi:10.1289/ehp.6964
- Wolthers, M., Charlet, L., van der Weijden, C.H., et al., 2005. Arsenic Mobility in the Ambient Sulfidic Environment: Sorption of Arsenic (V) and Arsenic (III) Onto Disordered Mackinawite. *Geochimica et Cosmochimica Acta*, 69 (14): 3483-3492. doi:10.1016/j.gca.2005.03.003

附中文参考文献

- 黄爽兵,王焰新,刘昌蓉,等,2013.含水层中砷活化迁移的水 化学与 DOM 三维荧光证据.地球科学,38(5): 1091-1098.
- 黄园英,刘丹丹,李桂荣,2012.纳米铁对地下水中 As(III)的 吸附动力学.地球科学,37(2):294-300.
- 李梦娣,周炼,王焰新,等,2014.地下水系统中砷活化的钼同 位素地球化学指示.地球科学,39(1):99-107.
- 国家环境保护总局,2002.水和废水监测分析方法.北京:中国 环境出版社,216-219.