doi:10.3799/dqkx.2016.515

青海省赛支寺花岗闪长岩及其暗色包体成因: 锆石 U-Pb 年代学、岩石地球化学和 Sr-Nd-Hf 同位素制约

崔加伟1,郑有业1,2*,孙 祥1,吴 松1,高顺宝2,田立明2,孙君一1,杨 超3

1.中国地质大学地球科学与资源学院,北京 100083
 2.中国地质大学资源学院,湖北武汉 430073
 3.北京中凱宏德科技有限公司,北京 100083

摘要:祁连造山带分为南祁连、中祁连和北祁连构造带.赛支寺岩体位于中祁连与南祁连构造带的结合部位.首次发现了赛支 寺花岗闪长岩及其暗色包体,然而对于暗色包体的成因机理以及与寄主岩石之间的成因联系仍存在很多争议.并对其进行了 系统的锆石 U-Pb 年代学、Lu-Hf 同位素、岩石地球化学以及 Sr-Nd 同位素地球化学研究,探讨赛支寺岩体及其暗色包体的成 因及动力学背景.LA-ICP-MS 锆石 U-Pb 年代学表明,赛支寺花岗闪长岩形成于 446.1±1.3 Ma,包体形成于 446.0±1.0 Ma,两 者在误差范围内一致,排除了包体为捕虏体成因.暗色包体具较低的 SiO₂ 含量、较高的 Na₂O/K₂O 比值,低 Sr/Y、La/Yb 比 值,与寄主岩稀土配分曲线基本一致,但 LREE 相对较低;⁸⁶ Sr/⁸⁷ Sr=0.706 4~0.706 7, ϵ_{Nd} (*t*) = -7.38~-7.97;发育针状磷 灰石,形成于岩浆混合作用.寄主岩 SiO₂ = 66.45%~68.12%, Na₂O/K₂O = 0.80~0.97, A/CNK=0.91~1.03, 显示准铝质一弱 过铝质岩浆特点;富集大离子亲石元素 Rb、Th、U、K、亏损 Nb、Ta 等元素,高 Sr/Y、La/Yb 比值,轻稀土富集,弱负 Eu 异常; ⁸⁶ Sr/⁸⁷ Sr=0.709 3~0.709 5, ϵ_{Nd} (*t*) = -1.75~-1.03, 与祁连造山带 I 型花岗岩相似;锆石 ϵ_{Hf} (*t*) = 1.7~6.8, *T*_{DM2} = 995~ 1750 Ma.综上所述认为,寄主花岗闪长岩形成于壳幔岩浆混合.结合区域地质背景,赛支寺花岗闪长岩形成于俯冲背景下,幔 源岩浆上涌,侵入到下地壳中,造成下地壳物质熔融,由这种既有幔源物质又有古老地壳物质的花岗岩岩浆形成. **关键字**:包体;岩浆混合;早古生代;赛支寺岩体;中南祁连;锆石;同位素;地质年代学.

中图分类号: P581 **文章编号:** 1000-2383(2016)07-1156-15 **收稿日期:** 2015-11-22

Origin of Granodiorite and Mafic Microgranular Enclave in Saizhisi, Qinghai Province: Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints

Cui Jiawei¹, Zheng Youye^{1,2*}, Sun Xiang¹, Wu Song¹, Gao Shunbao², Tian Liming², Sun Junyi¹, Yang Chao³

School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
 Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
 Beijing Zhongkaihongde Technology Co., Ltd., Beijing 100083, China

Abstract: The Qilian orogenic belt is divided into the North, Central and South Qilian belts. The Saizhisi granodiorite is located between Central and South Qilian. In order to study the petrogensis and dynamic background of Saizhisi rocks, zircon U-Pb chronology, Hf isotope, whole rock geochemistry and Sr-Nd isotopes are reported for granodiorite and mafic microgranular enclaves (MMEs) in this area. The LA-ICP-MS analyses on zircons from both the Saizhisi granodiorite and MMEs yielded similar ages at 446.1±1.3 Ma and 446.0±1.0 Ma, respectively. The MMEs contain needle-like apatite, and they are characterized by lower SiO₂ contents and higher Na₂ O/K₂ O ratios. Their REEs are similar to those of Saizhisi granodiorite and Σ REE are lower than those of the host granodiorite; The ⁸⁶ Sr/⁸⁷ Sr of MMEs=0.706 4-0.706 7, the $\varepsilon_{Nd}(t)$ of MMEs=-7.38 to -7.97. The elemental, U-Pb dating and Sr-Nd isotope

基金项目:青海省甘德县青珍矿产远景调查项目(No.12120113031400).

作者简介:崔加伟(1990一),男,博士生,主要从事矿床学、区域地质调查等研究.E-mail:1cuijiawei1@163.com

^{*} 通讯作者:郑有业, E-mail: zhyouye@163.com

引用格式:崔加伟,郑有业,孙祥,等,2016.青海省赛支寺花岗闪长岩及其暗色包体成因:锆石 U-Pb 年代学、岩石地球化学和 Sr-Nd-Hf 同位素制约.地球科学,41(7):1156-1170.

suggest that they might have been formed by mixing of mafice and felsic member magmas. The Saizhisi granodiorite is metaluminous to weakly peraluminous with SiO₂ = 66.45 % - 68.12 %, Na₂O/K₂O = 0.80 - 0.97, and A/CNK = 0.91 - 1.03. The granodiorite is enriched in LILEs and depleted in HFSE, enriched in LREE contents and depleted in HREE contents with negative Euanomaly. The ⁸⁶ Sr/⁸⁷ Sr(0.709 3 - 0.709 5) and $\epsilon_{Nd}(t)$ (-7.3794 - -7.9674) of Saizhisi granodiorite is similar to those of I-type granite of the Qilian Orogen belt. The $\epsilon_{Hf}(t)$ of Saizhisi granodiorite=1.7 - 6.8, T_{DM2} = 995 - 1 750 Ma. It is concluded that the Saizhisi granodiorite might have been formed by mixing of mafice and felsic member magmas. Combined with the regional tectonic evolution, it is suggested that the Saizhisi granodiorite was formed in a subduction environment and mostly generated by the mantle which was formed by the lower crust intruded by the upwelling mantle,

Key words: MMEs; Magma mixing; Early Paleozoic; Saizhisi granodiorite; Central-South Qilian; zircon; isotopes; geochronology.

0 引言

钙碱性花岗质岩石中常发育有镁铁质暗色包体 (mafic microgranular enclaves, MMEs), 暗色包体 含有丰富的壳一幔作用信息,是了解花岗岩成因和 演化的重要窗口,因而在花岗岩类研究中备受关注. 然而对于暗色包体的成因机理以及与寄主岩石之间 的成因联系仍存在很多争议,其成因主要有以下 5 种观点:(1)捕虏体成因,认为暗色包体是岩浆在上 升过程中捕获的围岩(Chappell et al., 1987);(2)源 岩残留体成因,认为暗色包体是源区的难溶残余物 质(Chappell et al., 1987); (3)结晶分异成因, 认为 暗色包体是同源岩浆早期结晶矿物堆积而成(Chen et al., 2015); (4) 液态熔离成因, 认为暗色包体是岩 浆在液态时不混溶形成的,是中酸性岩浆岩熔离作 用的结果(刘亮等,2012);(5)岩浆混合成因,认为暗 色包体是由于幔源岩浆灌入下地壳,引起下地壳熔 融产生的(Zhu et al., 2009;杨高学等, 2010;杨堂礼 和蒋少勇,2015).

祁连造山带位于中央造山带中段,向东与秦岭 造山带相连,向西被阿尔金断裂所截切,是典型的增 生型造山带(吴才来等,2010).祁连造山带广泛发育 加里东期 I 型花岗岩,年龄集中在 440~476 Ma,普 遍认为形成于俯冲造山的动力学背景下(Song et al.,2007;陈隽璐等,2008;雍拥等,2008;吴才来 等,2010;Wu et al.,2011;秦海鹏等,2014).然而对 于祁连造山带 I 型花岗岩中普遍发育的暗色包体, 前人研究较少(Chen et al.,2015).关于祁连造山带 包体的成因,普遍认为为岩浆混合成因.Chen et al. (2015)在研究了北祁连造山带东段宝积山岩体 (433 Ma)的暗色包体,认为包体是源岩早期堆晶形 成.秦海鹏等(2014)在研究北祁连造山带西拉格花 岗岩时,发现两期花岗岩,年龄分别为 463 Ma 和 443 Ma,在晚期岩体内部发育暗色包体,认为包体 为岩浆混合成因.本文首次报道了在青海省化隆县 赛支寺附近含有暗色包体的花岗闪长岩,并对寄主 岩及其暗色包体进行全岩主微量元素地球化学、Sr-Nd 同位素,锆石 U-Pb 同位素测年以及 Lu-Hf 同位 素进行了系统的研究,以期探究包体及寄主岩成因.

1 区域地质背景

赛支寺花岗闪长岩位于拉脊山造山带,拉脊山 位于中祁连和南祁连的构造交接位置,是一条近东 西向展布的加里东期造山带,它西起日月山,东至民 和官厅,全长超过 200 km,宽 10~30 km,两侧被断 裂所限(左国朝和吴汉泉,1997).主要出露的地层有 中元古代化隆岩群、寒武世六道沟组和白垩世河口 群.其中,化隆岩群为研究区内最老基底,主要为绿 片岩相的石英片岩、片麻岩、石英岩等,在该套地层 里发育铜镍硫化物矿床.六道沟组在研究区内分布 最广,分为下、中、上3段(图1).下段(€₃l1)主要为 一套片岩、斜长角闪岩、板岩夹玄武岩;中段(€₃l²) 主要为玄武岩、粗玄岩、碱性玄武岩夹凝灰岩等,见 超镁铁质岩构造透镜体(蛇纹岩、橄榄辉石岩、蛇纹 石化橄榄岩);上段(∈₃l³)主要为中性火山岩、基性 熔岩、凝灰岩、火山碎屑岩及结晶灰岩,前人研究认 为六道沟组经历了由岛弧到碰撞造山的过程(左国 朝和吴汉泉,1997).河口群为一套中生代的陆相碎 屑沉积,岩层产状较平,后期未遭受明显的构造改 造.拉脊山广泛发育加里东期岩浆岩,侵入到六道沟 组和化隆岩群中.拉脊山为一条构造混杂岩带(左国 朝和吴汉泉,1997;张旗等,2003),构造活动强烈.

赛支寺花岗闪长岩出露在青海省化隆县赛支寺 附近,出露面积约为10km².岩体侵入到六道沟组上 段和中段.岩体内广泛发育暗色包体,包体在岩体内 随机分布,大小不一,从几厘米到几十厘米不等.包 体形态多样,多呈椭圆形.包体与寄主岩石接触关系

图 1 研究区地质简图及采样位置

Fig.1 Sketch geological map and sampling sites of the igneous rocks in Saizhisi

据 Song et al.(2006,2007)、吴才来等(2006,2010)、陈隽璐等(2008)、雍拥等(2008)、Wu et al.(2011)、熊子良等(2012)和秦海鹏等(2014)

图 2 赛支寺花岗闪长岩及包体 Fig.2 Photos of Saizhisi granodiorite and MMEs a.包体野外照片;b.花岗闪长岩照片;c.包体镜下照片;d.花岗闪长 岩镜下照片;Pl.斜长石;Ap.磷灰石;Hb.角闪石;Q.石英

清楚,呈突变关系.

花岗闪长岩具块状构造,中粗一中细粒结构,主 要由斜长石(35%~55%)、钾长石(20%~35%)、石 英(20%~25%)、角闪石(15%~20%)组成,副矿物 主要有锆石、榍石、磷灰石等.斜长石发育聚片双晶, 角闪石多呈短柱状或粒状.暗色包体岩性主要为闪 长岩,多为细粒结构,主要由斜长石(40%~55%)、 钾长石(15%~20%)、角闪石(25%~35%)等组成, 副矿物为锆石、榍石、磷灰石等,磷灰石呈柱状,表现 出淬冷结晶的特点(图 2).

2 样品分析方法

2.1 LA-ICP-MS 锆石定年

锆石分选在河北省区域地质矿产研究所完成, 锆石制靶在北京领航科技完成,制靶后先在中国地 质科学院国家离子探针中心进行锆石阴极发光 (cathodoluminescence,CL)照相,锆石同位素分析 在中国科学院青藏高原研究所大陆碰撞与高原隆升 重点实验室,使用标准测定程序条件进行.实验中采 用He作为剥蚀物质的载气,U-Th-Pb 同位素组成 分析用美国国家标准技术研究院研制的人工合成硅 酸盐玻璃标准参考物质 NISTSRM610 作为内标, 采用哈佛大学国际标准锆石 ple 作为外标.样品的 同位素比值计算采用 GLITTER 程序,年龄计算采 用 Isoplot3 软件进行处理,实验采用的激光束斑直 径为 32 μm,实验获得的数据采用 Andersen 的方法 进行同位素比值矫正,以扣除普通 Pb 的影响.

2.2 锆石 Hf 同位素测年

原位微区锆石 Hf 同位素比值测试在中国地质 大学(武汉)地质过程与矿产资源国家重点实验室利 用激光剥蚀多接收杯等离子体质谱(Laser ablationinductively coupled plasma-mass-spectrometry, LA-MC-ICP-MS)完成,激光斑束直径为44 μ m.使 用¹⁷⁶Yb/¹⁷³Yb=0.796 39 扣除¹⁷⁶Yb 对¹⁷⁶Hf 的同量 异位干扰.使用¹⁷⁶Lu/¹⁷⁵Lu=0.026 56 来扣除干扰程 度相对较小的¹⁷⁶Lu 对¹⁷⁶Hf 的同量异位干扰.分析 数据的离线处理(包括对样品和空白信号的选择、同 位素质量分馏校正)采用软件 ICPMSDataCal 完成. 详细仪器操作条件和分析方法可参照 Hu *et al*. (2012).

2.3 主微量元素分析

主量元素和微量元素测试均在国土资源部武汉 矿产资源监督检测中心完成.主量元素分析方法为 X射线荧光光谱法(X Ray Fluorescence, XRF),误 差小于5%;稀土微量元素采用电感耦合等离子体 发射光谱仪(inductively coupled plasma atomic emission spectrometry, ICP-AES)进行分析,分析 精度在5%~10%.

2.4 Sr-Nd 同位素分析

Sr-Nd 同位素分析测试是在中国地质大学(北 京)同位素重点实验室完成.将粉末样品烘干后称取 约100 mg,完全溶解于 HF+HNO₃ 混合酸中,采用 Thermo Finnigan 公司的 Triton 热电离质谱仪(inductively coupled plasma atomic emission spectrometry,TIMS)进行 Sr-Nd 同位素比值测定.Sr 和 Nd 测定过程中质量分馏效应分别采用⁸⁶ Sr/⁸⁸ Sr = 0.119 4 和¹⁴⁶ Nd/¹⁴⁴ Nd=0.721 9 进行校正.

3 结果

3.1 年代学

在本次研究中,分别选择新鲜的、没有蚀变的寄 主花岗闪长岩(PM2)和暗色包体(PM3)样品进行 LA-ICP-MS 锆石 U-Pb 定年.锆石晶型均较好,寄主 花岗岩锆石长宽比为1:1.5~1:3,长轴为100~ 200 μm,暗色包体寄主花岗岩长宽比为1:1.5~ 1:2,长轴为50~80 μm,寄主花岗闪长岩锆石相对 暗色包体锆石颗粒更大(图3).

在本次研究中,寄主花岗闪长岩共测得 14 个点 (表 1),在阴极发光下观察(图 3a),锆石晶型较好,震 荡环带发育,Th/U 比值为 0.12~0.48,均大于 0.1,为 岩浆型锆石(Belousova *et al.*,2002).锆石 PM2-1, PM2-14 分别测得年龄数据为 474±3 Ma,863± 5 Ma,根据锆石阴极发光推断,为继承锆石.除上述点 之外,其余各锆石点²⁰⁶ Pb/²³⁸ U 年龄相对集中,在 445~448 Ma 之间.在谐和曲线上,有 7 个点位于锆石 谐和曲线上,锆石²⁰⁶ Pb/²³⁸ U 加权平均年龄为 446.3± 1.7 Ma,其余 5 个点位于谐和曲线下部,推测可能是 有 Pb 丢失所致,锆石²⁰⁶ Pb/²³⁸ U 年龄与位于谐和线 附近一致,可以反映岩浆岩形成年龄,加权平均年龄 为 446.0±1.3 Ma(图 4a).本文选择位于谐和线上的 6 个点的年龄作为锆石 U-Pb 年龄.

暗色包体共测得 11 个点(表 1),在阴极发光下观 察(图 3b),锆石晶型较好,震荡环带发育,Th/U 比值 为 0.58~1.48,均大于 0.1,为岩浆型锆石(Belousova *et al.*,2002).锆石年龄数据比较集中,但 PM3-1,PM3-6,PM3-8 锆石点位于谐和曲线之下,在本次研究中选 择其余 8 个点的进行加权平均年龄计算,²⁰⁶ Pb/²³⁸ U 加权平均年龄为 446.0±1.0 Ma(图 4b).

3.2 锆石 Hf 同位素

在本次研究中,分别挑选寄主花岗闪长岩 (PM2)中的13个岩浆锆石进行Lu-Hf同位素测 定,分析结果见表2.暗色包体锆石较小,未能分析暗 色包体Lu-Hf同位素值.

赛 支 寺 花 岗 闪 长 岩¹⁷⁶ Lu/¹⁷⁷ Hf 的 值 为 0.000 701~0.001 547,均小于 0.002,表明锆石形成 后基本没有放射性 Hf 同位素的积累,因此,测定的 值可以代表锆石结晶时 Hf 同位素组成(吴福元等,

2007). 其中锆石点 PM2-14 为继承性锆石, ¹⁷⁶Lu/¹⁷⁷Hf为 0.001 048, $\varepsilon_{Hf}(t)$ 为 3.8,其余 $\varepsilon_{Hf}(t)$ 为 1.7~6.8,分布比较分散(图 5). $f_{Lu/Hf}$ 值为 -0.95~-0.98,明显小于镁铁质地壳的 $f_{Lu/Hf}$ 值 -0.34(Amelin *et al.*,1999)和硅铝质地壳的 $f_{Lu/Hf}$ 值 -0.72(Vervoort *et al.*,1996),故二阶段模式年龄更能反映源区物质从亏损地幔被抽取的时间(吴 福元等,2007),寄主花岗闪长岩二阶段模式年龄为 980~1 750 Ma.

3.3 主微量元素地球化学特征

3.3.1 主量元素地球化学特征本次研究挑选6件寄主花岗闪长岩、3件暗色包体进行主量元素分析,分析结果见表3.寄主花岗闪长岩SiO2含量为66.45%~68.12%,为酸性岩石,含量变化较小;Na2O含量为3.45%~3.81%,均值为3.61%,含量较高.K2O含量为3.60%~4.30%,全碱含量为7.18%~8.00%,K2O/Na2O值为0.80~0.97.

在 QAP 图解中,寄主花岗闪长岩落在花岗闪 长岩(图 6).在 SiO₂-K₂O 图解中,寄主花岗闪长岩 落在高钾钙碱性系列(图 7),里特曼指数 σ 为2.13~ 2.56,为钙碱性岩石.Al₂O₃含量为 13.93%~ 14.82%,CaO 含量为 2.02%~3.02%,A/CNK 值 为 0.91~1.03,A/NK 值为 1.37~1.40,显示准铝 质一弱过铝质特征,在 A/NCK-A/NK 的投影图 上,均落在准铝质一弱过铝质区域(图 8).MgO 含量 为 1.62%~2.06%,Mg[#]值为 48.72~50.58.FeO 含 量为 1.63%~2.60%,Fe₂O₃为 1.26%~1.69%, TFeO 值为 3.03%~3.59%.与寄主花岗闪长岩相 比,暗色包体具有以下特征:SiO₂ 含量更低,含量为 52.35%~55.02%,为中性岩石.Na₂O含量与寄主

图 4 锆石 U-Pb 年龄谐和图 Fig.4 U-Pb zircon concordia diagram a.寄主岩;b.暗色包体

€	
结	
匠	
令	
王 古 山	
ę.	
3	
μ	
铅	
Η̈́	
もお	
₩ K	
Ψ.	
ΨÊ	
ŦX	
裝	
-	
表	

Table 1 U-Pb zircon LA-ICP-MS chronological data of samples

	77	9-017 4 1 E						¥ 1]	小店						在地人人人			
転業	77			Th/11				儿系	DC/III.						3IVI)为中	1)		Í
HH L	Pb	Th	D) /	$^{207}\mathrm{Pb}_{\prime}$	$^{/206}\mathrm{Pb}$	$^{207} \mathrm{Pb}_{\prime}$	/235 U	$^{206} \mathrm{Pb}/$	/ 238 U	$^{208}\mathrm{Pb}/$	$^{232}{ m Th}$	$^{207}{ m Pb}/^{206}{ m Pb}$	1σ	$^{207}{ m Pb}/^{235}{ m U}$	l_{σ}	$^{206}{ m Pb}/^{238}{ m U}$	1σ
PM2-1	111.26	458.38	1 243.44	0.37	0.059 03	0.000 94	0.62021	0.007 96	0.07623	0.000 45	0.030 05	0.000 28	568	18	490	5	474	3
PM2-2	116.13	460.42	1 414.74	0.33	0.058 36	0.000 8	0.577 45	0.005 83	0.07178	0.000 4	0.02894	0.000 21	543	13	463	4	447	2
PM2-3	56.40	227.43	668.95	0.34	0.0562	0.000 88	0.55598	0.006 99	0.07178	0.000 42	0.02796	0.000 26	460	18	449	ю	447	ŝ
PM2-4	114.75	460.60	$1 \ 387.70$	0.33	0.061 11	0.000 87	0.5986	0.006 51	0.07107	0.000 4	0.03111	0.000 25	643	14	476	4	443	2
PM2-5	94.64	444.84	1 089.32	0.41	0.068 19	0.00102	0.67247	0.007 83	0.07155	0.000 42	0.03459	0.000 28	874	15	522	ß	445	3
PM2-6	100.34	359.11	$1\ 237.84$	0.29	0.05993	0.000 85	0.59142	0.006 31	0.0716	0.000 4	0.030 52	0.000 25	601	14	472	4	446	2
PM2-7	75.19	258.02	881.80	0.29	0.0626	0.000 92	0.61715	0.007 02	0.07153	0.000 41	0.03361	0.000 29	695	15	488	4	445	2
PM2-8	136.41	732.26	1 575.51	0.46	0.06071	0.000 8	0.60113	0.005 61	0.07184	0.000 39	0.02979	0.000 19	629	11	478	4	447	2
PM2-9	148.61	770.48	1 709.55	0.45	0.067 66	0.00127	0.669 85	0.010 81	0.07183	0.000 48	0.03228	0.000 35	858	22	521	7	447	3
PM2-10	73.04	350.14	879.34	0.40	0.060 66	0.000 95	0.600 18	0.007 55	0.07179	0.000 42	0.02597	0.000 24	627	17	477	2	447	ŝ
PM2-11	125.14	612.79	1 437.01	0.43	0.0647	0.000 88	0.63976	0.006 33	0.07174	0.000 4	0.03019	0.000 21	765	12	502	4	447	2
PM2-12	141.06	779.01	$1 \ 624.11$	0.48	0.064 63	0.000 82	0.63738	0.005 53	0.07156	0.000 38	0.0284	0.000 17	762	10	501	ŝ	446	2
PM2-13	100.47	402.27	$1\ 245.61$	0.32	0.05981	0.00115	0.5926	0.009 89	0.07189	0.000 47	0.02888	0.000 36	597	25	473	9	448	ŝ
PM2-14	87.45	64.80	528.94	0.12	0.06804	0.000 95	1.34446	0.017 15	0.14331	0.000 82	0.04362	0.000 44	870	30	865	7	863	2
PM3-1	13.48	86.73	149.76	0.58	0.059 86	0.00143	0.59537	0.012 91	0.07216	0.000 53	0.02414	0.000 30	599	34	474	~	449	ŝ
PM3-2	29.22	308.30	311.00	0.99	0.060 35	0.00136	0.59727	0.012 10	0.07181	0.000 51	0.02140	0.000 22	616	31	475	∞	447	ŝ
PM3-3	47.96	720.48	487.75	1.48	0.056 69	0.001 08	0.55891	0.009 23	0.07153	0.000 46	0.020 52	0.000 15	479	25	451	9	445	ŝ
PM3-4	51.54	630.77	498.69	1.26	0.057 65	0.000 90	0.570 93	0.007 16	0.07186	0.000 41	0.02235	0.000 14	516	18	459	2	447	2
PM3-5	11.19	74.43	129.99	0.57	0.057 26	0.00169	0.56707	0.01570	0.07186	0.000 59	0.02200	0.000 36	502	46	456	10	447	4
PM3-6	35.39	368.27	357.48	1.03	0.062 66	0.00126	0.62136	0.010 94	0.07195	0.000 48	0.02413	0.000 21	697	26	491	7	448	ŝ
PM3-7	44.12	530.80	466.15	1.14	0.056 89	0.00176	0.56107	0.01686	0.07153	0.000 50	0.02223	0.000 11	487	70	452	11	445	ŝ
PM3-8	38.61	415.04	407.75	1.02	0.05782	0.00114	0.57151	0.009 84	0.07172	0.000 47	0.02397	0.000 20	523	26	459	9	447	ŝ
PM3-9	11.27	76.87	128.70	0.60	0.058 34	0.00156	0.57627	0.014 24	0.07167	0.000 55	0.02517	0.000 35	543	41	462	6	446	3
PM3-10	16.36	115.15	184.67	0.62	0.058 02	0.00136	0.57437	0.012 17	0.07183	0.000 51	0.02410	0.000 30	531	34	461	∞	447	ŝ
PM3-11	23.15	214.63	251.05	0.85	0.058 16	0.00143	0.57587	0.012 95	0.07184	0.000 53	0.02384	0.000 27	536	36	462	∞	447	ŝ
注:党	計石 U-Pb	测年在中	国科学院青	埥藏高原 4	研究所大陆1	碰撞与高质	ī隆升重点 3	主验室完成										

吴才来等(2010)、Wu et al.(2011)、秦海鹏(2014)和赵辛敏等(2014)

花岗闪长岩相似,为3.47%~3.88%;K₂O含量相对 寄主岩石较低,含量为1.44%~1.58%,全碱含量相 对寄主岩石较低,含量为5.17%~5.42%.在 QAP 图上,暗色包体落在石英二长闪长岩和石英二长岩 之间的交界线附近(图6).里特曼指数 σ 相对寄主岩 石较高,含量为2.26~3.03,同样为钙碱性岩石(图 7).Al₂O₃含量相对寄主岩石高,含量为15.37%~ 16.91%.CaO含量相对寄主岩石高,含量为15.37%~ 16.91%.CaO含量相对寄主岩石底,含量为 6.17%~7.21%,A/CNK 相对寄主岩石低,含量为 0.79~0.82,为铝不饱和岩石(图8).MgO含量相对 寄主岩石要高,含量为4.41%~5.66%,Mg[#]与寄主 岩石含量相似,为49.13~52.11.FeO含量和Fe₂O₃ 含量相对寄主岩石均较高,FeO含量为4.85%~

图 6 赛支寺花岗闪长岩 QAP 图解

Fig. 6 The QAP nomenclature diagram of the Saizhisi granodiorite

5.60%,Fe₂O₃含量为3.59%~4.87%,TFeO值相 对寄主岩石高,含量为8.08%~9.98%.

3.3.2 微量元素地球化学特征本次研究挑选 6 件寄主花岗闪长岩、3 件暗色包体进行稀土及微量 元素分析,分析结果见表 3.寄主花岗闪长岩稀土元 素总量(Σ REE)为 344.10×10⁻⁶~356.90×10⁻⁶, 轻稀土(LREE)含量为 286.19×10⁻⁶~337.66× 10⁻⁶,重稀土(HREE)含量为 15.74×10⁻⁶~ 19.37×10⁻⁶, LREE/HREE = 16.82~18.19, (La/Yb)_N为 25.31~29.00,轻稀土富集,重稀土亏 损(图 9).(La/Sm)_N 值为 5.77~6.21,(Gd/Yb)_N 值

表 2 赛支寺花岗闪长岩锆石 Hf 同位素分析	结果
-------------------------	----

Table 2	Zircon	Ηt	isotopic	compositions	of	the	Saizhisi	granoc	liori	te
---------	--------	----	----------	--------------	----	-----	----------	--------	-------	----

样品	$^{176}{ m Hf}/^{177}{ m Hf}$	1σ	$^{176}Lu/^{177}Hf$	1σ	$^{176}{ m Yb}/^{177}{ m Hf}$	1σ	$\epsilon_{\rm Hf}(0)$	1σ	$\varepsilon_{\rm Hf}(t)$	1σ	$T_{\rm DM1}$	$T_{ m DM2}$	$f_{\rm Lu/Hf}$
PM2-01	0.282 702	0.000 040	0.001 547	0.000 038	0.038 456	0.001 020	-2.5	1.5	6.8	1.5	791	922	-0.95
PM2-02	0.282 561	0.000 021	0.000 838	0.000 011	0.022 730	0.000 320	-7.5	0.9	2.1	0.9	973	$1\ 185$	-0.97
PM2-03	0.282 551	0.000 027	0.000 701	0.000 006	0.017 996	0.000 349	-7.8	1.1	1.7	1.1	985	$1\ 204$	-0.98
PM2-04	0.282 596	0.000 024	0.001 009	0.000 045	0.027 996	0.001 321	-6.2	1.0	3.2	1.0	929	1 1 2 1	-0.97
PM2-05	0.282 573	0.000 020	0.000 706	0.000 019	0.017 304	0.000 427	-7.0	0.9	2.5	0.9	954	$1\ 161$	-0.98
PM2-06	0.282 586	0.000 019	0.000 984	0.000 023	0.025 761	0.000 564	-6.6	0.8	2.9	0.9	942	1 140	-0.97
PM2-07	0.282 577	0.000 024	0.000 905	0.000 016	0.024 071	0.000 512	-6.9	1.0	2.6	1.0	952	$1\ 156$	-0.97
PM2-08	0.282 621	0.000 023	0.001 145	0.000 011	0.031 073	0.000 447	-5.3	1.0	4.0	1.0	897	$1 \ 074$	-0.97
PM2-09	0.282 671	0.000 023	0.001 372	0.000 066	0.039 828	0.002 039	-3.6	1.0	5.8	1.0	831	980	-0.96
PM2-10	0.282 651	0.000 021	0.001 092	0.000 020	0.031 508	0.000 817	-4.3	0.9	6.2	0.9	853	995	-0.97
PM2-11	0.282 614	0.000 021	0.001 184	0.000 014	0.036 508	0.000 514	-5.6	0.9	3.8	0.9	908	$1\ 089$	-0.96
PM2-12	0.282 604	0.000 027	0.000 808	0.000 025	0.023 468	0.000 753	-5.9	1.1	3.5	1.1	913	$1\ 102$	-0.98
PM2-14	0.282 597	0.000 022	0.001 048	0.000 025	0.029 330	0.000 787	-6.2	0.9	3.8	0.9	928	1 109	-0.97

注:锆石 Hf 同位素中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.

表 3 赛支寺岩体及包体主量元素(%)和微量元素(10⁻⁶)分析结果

Table 3 The major (%) and trace (10⁻⁶) element analysis of Bayankala Group

Philone PML-3-CXW PML-3-CXW PML-3-CXW PML-3CXW	投口投口			寄主社	Ë				包体	
	件吅件亏	PM4-3-GXW1	PM4-3-GXW2	PM4-3-GXW3	P2-1GXW1	P2-1GXW2	P2-1GXW3	P1-0GXW1	P1-0GXW2	P1-0GXW3
	SiO_2	67.35	67.17	68.12	67.14	66.62	66.45	52.35	53.70	55.02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO_2	0.50	0.49	0.43	0.51	0.58	0.54	0.77	0.86	0.77
FeO1.541.691.671.581.261.723.594.494.87FeO1.921.841.632.052.602.054.455.50MaO0.670.660.670.670.680.070.180.645.60MaO0.670.660.670.670.680.070.180.647.210.21CaO2.022.383.012.363.022.886.647.210.72NetO3.813.613.593.743.493.433.883.847.210.72PiO0.270.270.270.220.280.210.310.160.580.280.28NetO/KO0.950.920.920.920.910.320.910.520.920.910.820.910.820.910.820.910.820.910.840.920.910.840.920.910.840.920.910.840.920.910.840.920.910.840.920.910.840.920.910.940.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.910.920.920.910.92 </td <td>Al_2O_3</td> <td>14.70</td> <td>14.82</td> <td>14.52</td> <td>14.45</td> <td>13.93</td> <td>14.19</td> <td>16.91</td> <td>16.26</td> <td>15.37</td>	Al_2O_3	14.70	14.82	14.52	14.45	13.93	14.19	16.91	16.26	15.37
FeO1.421.881.432.052.402.054.415.605.50MgO0.070.060.070.080.070.180.240.22CaO2.022.383.012.263.022.286.947.216.17NacO3.813.613.593.743.493.453.883.473.10KO3.993.924.224.063.604.431.441.581.51FyOs0.270.270.230.280.310.300.160.280.279.82KKO3.313.403.443.473.733.598.99.279.82NatOKrO0.550.220.640.470.502.692.192.45V/NCK0.3311.020.910.920.970.820.790.81MatO0.420.5250.2550.5849.3352.1244.13KEr(A)3.433.12431.733.31.4431.0438.2333.44MatC2.5.622.5172.5.72.5.472.3.35.617.199.41KEr(A)34.333.24331.7831.3331.6431.6438.2333.6435.12E Cr(OP)25.622.5172.5.72.562.3.32.643.7623.97Ca1.6501.5201.5.4417.6314.824.1486.6951.27F1.650	Fe_2O_3	1.54	1.69	1.57	1.58	1.26	1.72	3.59	4.19	4.87
	FeO	1.92	1.88	1.63	2.05	2.60	2.05	4.85	5.50	5.60
	MgO	1.80	1.85	1.62	1.98	2.11	2.06	4.41	5.66	5.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnO	0.07	0.06	0.07	0.07	0.08	0.07	0.18	0.24	0.22
Nat.O 3.81 3.61 3.59 3.74 3.49 3.45 3.85 3.47 3.70 K ₂ O 3.99 3.92 4.22 4.66 3.60 4.30 1.14 1.58 1.51 K ₂ O 0.27 0.27 0.23 0.28 0.31 0.30 0.16 0.28 0.25 K ₂ C 1.32 1.34 3.04 3.47 3.73 3.59 8.08 9.27 9.98 NarOK _K O 0.95 0.92 0.85 0.92 0.97 0.80 0.28 0.79 0.31 Mg ⁴ 49.20 49.21 48.72 50.49 50.25 50.56 49.33 52.12 49.13 Mg ⁴ 49.20 49.21 48.72 50.49 50.25 50.56 49.33 52.12 49.13 Mg ⁴ 49.20 25.44 25.7 25.46 23.33 27.65 10.14 10.89 10.42 T ^K ($T(Or)$ 55.64 25.87	CaO	2.02	2.38	3.01	2.96	3.02	2.88	6.94	7 21	6.17
K40 3.99 3.92 4.22 4.06 3.60 4.30 1.44 1.58 1.51 P,O 0.27 0.27 0.23 0.28 0.31 0.30 0.16 0.28 0.25 NR_O/K,O 0.95 0.92 0.85 0.027 0.80 2.69 2.19 2.45 A/NCK 1.03 1.02 0.91 0.92 0.91 0.82 0.79 0.80 2.69 2.19 2.45 A/NCK 1.03 1.02 0.91 0.92 0.91 0.82 0.70 0.81 0.76 0.76 0.83 5.12 49.13 Mg* 49.22 25.0 25.3 1.24 1.93 0.65 11.91 10.63 11.04 0.82 2.61 12.26 17.17 9.33 33.3 31.64 31.43 35.71 EK f(Ch) 25.52 25.17 25.7 25.88 23.33 27.65 3.04 2.69 2.69 2.76 2.38	Na ₂ O	3.81	3.61	3.59	3 74	3 49	3 45	3.88	3 47	3 70
Pa O 0.27 0.27 0.22 0.28 0.21 0.20 0.16 0.28 0.25 $kk \xi \Xi$ 1.32 1.34 3.04 3.47 3.73 3.59 8.08 0.27 9.98 NacOKxO 0.55 0.92 0.85 0.92 0.97 0.80 0.28 0.79 0.81 Ma 40.20 49.21 44.72 50.49 50.25 50.58 49.33 52.12 49.13 Kf(An) 8.32 10.12 10.96 10.65 11.91 10.63 27.05 25.11 22.6 $d \chi t (\Lambda n)$ 8.32 23.14 31.78 33.33 31.64 31.04 38.23 33.48 35.71 $d \kappa t (\Lambda n)$ 34.32 22.47 22.56 23.33 27.65 10.14 10.89 10.42 σ 2.50 2.3.72 2.43 2.52 2.33 2.56 10.31 2.33 2.34 30.64 2.67 La	K ₂ O	3 99	3.92	4 22	4.06	3.60	4 30	1 44	1.58	1.51
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P _a O _z	0.27	0.27	0.23	0.28	0.31	0.30	0.16	0.28	0.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	格生量	1.52	1.35	1.91	0.66	0.85	0.87	1.1	1.57	1.59
NR 0.10	TEO	3 31	3.40	3.04	3.47	3.73	3 59	8.08	9.27	9.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Na O/K O	0.95	0.02	0.85	0.92	0.07	0.80	2.60	2 10	2.45
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A/NCK	1.02	1.02	0.85	0.92	0.97	0.00	0.82	2.13	0.91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A/ NCK Ma#	1.03	1.02	0.91	50.40	50.92	50.59	40.22	52.12	40.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wig 海ビエ(A=)	49.20	49.21	40.72	10.65	11.01	10.62	49.33	96 11	49.10
$\begin{array}{c} \mathrm{Heg}(\mathrm{Q}) & 25, 24 & 25, 04 & 24, 3 & 23, 11 & 23, 11 & 23, 14 & 31, 04 & 34, 23 & 34, 8 & 35, 71 \\ \mathrm{If}(\mathrm{K}^+(\mathrm{G})) & 25, 62 & 25, 17 & 26, 7 & 25, 86 & 23, 33 & 27, 65 & 10, 14 & 10, 89 & 10, 42 \\ \hline \sigma & 2, 50 & 2, 35 & 2, 43 & 2, 52 & 23, 13 & 2, 56 & 3, 03 & 2, 38 & 2, 26 \\ \mathrm{La} & 81, 82 & 80, 14 & 77, 19 & 81, 28 & 90, 26 & 85, 38 & 23, 14 & 30, 64 & 26, 79 \\ \mathrm{Ce} & 141, 2 & 139, 6 & 132, 3 & 139, 4 & 156, 3 & 148, 2 & 44, 41 & 68, 69 & 51, 27 \\ \mathrm{Pr} & 16, 50 & 16, 10 & 15, 20 & 15, 64 & 17, 87 & 16, 76 & 5, 38 & 9, 36 & 6, 34 \\ \mathrm{Nd} & 56, 71 & 55, 08 & 51, 62 & 53, 78 & 61, 54 & 56, 74 & 20, 59 & 37, 67 & 23, 97 \\ \mathrm{Sm} & 8, 92 & 8, 51 & 7, 93 & 8, 23 & 9, 60 & 8, 54 & 4, 02 & 7, 51 & 48, 82 \\ \mathrm{Eu} & 2, 06 & 2, 09 & 1, 94 & 1, 89 & 2, 11 & 1, 98 & 1, 23 & 1, 59 & 1, 29 \\ \mathrm{Gd} & 6, 53 & 6, 19 & 5, 68 & 6, 34 & 7, 26 & 6, 63 & 3, 77 & 6, 32 & 4, 32 \\ \mathrm{Tb} & 0, 970 & 0, 913 & 0, 851 & 0, 496 & 1, 04 & 0, 994 & 0, 653 & 1, 04 & 0, 735 \\ \mathrm{Er} & 2, 20 & 2, 07 & 1, 94 & 2, 03 & 2, 31 & 2, 06 & 2, 12 & 3, 19 & 2, 42 \\ \mathrm{Tm} & 0, 327 & 0, 318 & 0, 286 & 0, 301 & 0, 346 & 0, 308 & 0, 347 & 0, 514 & 0, 425 \\ \mathrm{LREE} & 307, 20 & 301, 55 & 286, 19 & 300, 23 & 337, 66 & 317, 58 & 98, 77 & 155, 44 & 114, 46 \\ \mathrm{HREE} & 18, 26 & 17, 19 & 15, 74 & 16, 89 & 19, 37 & 17, 58 & 98, 77 & 15, 51, 44 & 114, 46 \\ \mathrm{HREE} & 18, 26 & 17, 19 & 15, 74 & 16, 89 & 19, 37 & 17, 58 & 98, 77 & 15, 51, 44 & 114, 46 \\ \mathrm{HREE} & 16, 82 & 17, 54 & 18, 19 & 17, 77 & 17, 74 & 17, 18 & 13, 87 & 21, 77 & 15, 92 \\ \mathrm{La} & 0, 79 & 0, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 & 0, 77 & 0, 74 & 0, 78 & 0, 95 & 0, 69 & 0, 84 \\ \mathrm{Rb} & 120, 70 & 9, 84 & 0, 84 &$	钙 天 石 (All)	0.34	10.12	10.96	10.05	11.91	10.03	27.05	20.11	22.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		23.24	25.64	24.5	23.17	25.47	23.03	10.6	7.19	9.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	納大石(Ab) エドエ(O)	34.23	32.43	31.78	33.33	31.64	31.04	38.23	33.48	35.71
σ 2.50 2.43 2.52 2.13 2.56 3.03 2.88 2.26 La 81.82 80.14 77.19 81.28 90.26 85.38 23.14 30.64 267.9 Ce 141.2 139.6 132.3 139.4 156.3 148.2 44.41 68.69 51.27 Pr 16.50 16.10 15.20 15.64 17.87 16.76 5.38 9.36 6.34 Nd 56.71 25.06 5.78 61.54 4.02 7.51 4.82 Eu 2.06 2.09 1.94 1.89 2.11 1.98 1.23 1.59 1.29 Gd 6.53 6.13 7.26 6.63 3.77 6.32 4.32 Tb 0.970 0.913 0.851 0.896 1.04 0.939 0.653 1.04 0.755 Er 2.20 2.07 1.94 2.03 2.31 2.06 2.12 3.19 2.42<	止长石(Ur)	25.62	25.17	26.7	25.86	23.33	27.65	10.14	10.89	10.42
	σ	2.50	2.35	2.43	2.52	2.13	2.56	3.03	2.38	2.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	81.82	80.14	77.19	81.28	90.26	85.38	23.14	30.64	26.79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce	141.2	139.6	132.3	139.4	156.3	148.2	44.41	68.69	51.27
	Pr	16.50	16.10	15.20	15.64	17.87	16.76	5.38	9.36	6.34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nd	56.71	55.08	51.62	53.78	61.54	56.74	20.59	37.67	23.97
	Sm	8.92	8.51	7.93	8.23	9.60	8.54	4.02	7.51	4.82
	Eu	2.06	2.09	1.94	1.89	2.11	1.98	1.23	1.59	1.29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gd	6.53	6.19	5.68	6.34	7.26	6.63	3.77	6.32	4.32
	Tb	0.970	0.913	0.851	0.896	1.04	0.939	0.653	1.04	0.735
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dy	4.85	4.56	4.10	4.35	4.97	4.48	3.76	5.76	4.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ho	0.893	0.817	0.753	0.797	0.904	0.826	0.769	1.16	0.875
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Er	2.20	2.07	1.94	2.03	2.31	2.06	2.12	3.19	2.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tm	0.327	0.318	0.286	0.301	0.346	0.308	0.325	0.503	0.381
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yb	2.18	2.02	1.85	1.89	2.19	1.98	2.13	3.28	2.50
LREE 307.20 301.55 286.19 300.23 337.66 317.58 98.77 155.44 114.46 HREE 18.26 17.19 15.74 16.89 19.37 17.53 13.87 21.77 15.92 LREE/HREE 16.82 17.54 18.19 17.77 17.44 18.12 7.12 7.14 7.19 $(La/Yb)_N$ 25.31 26.78 28.12 29.01 27.75 29.10 7.33 62.29 7.21 $(La/Sm)_N$ 5.77 5.92 6.12 6.21 5.91 6.29 3.62 2.57 3.50 $(Gd/Yb)_N$ 2.42 2.48 2.48 2.71 2.67 2.70 1.43 1.55 1.39 δEu 0.79 0.84 0.84 0.77 0.74 0.78 0.95 0.69 0.84 Rb 120.70 94.78 98.96 126.20 116.90 112.90 41.56 47.22 60.55 Ba 1053.73 1092.70 1296.55 935.80 800.41 1093.66 405.00 352.50 354.00 Th 32.34 33.80 29.26 29.97 32.04 32.80 1.66 2.67 3.24 U 5.06 7.28 5.04 3.70 3.78 3.92 0.38 1.11 1.66 Nb 26.50 24.71 20.05 25.32 29.20 26.97 9.48 13.82 7.97 Ta 2.10 1.91	Lu	0.319	0.309	0.277	0.289	0.333	0.306	0.347	0.514	0.425
HREE18.2617.1915.7416.8919.3717.5313.8721.7715.92LREE/HREE16.8217.5418.1917.7717.4418.127.127.147.19(La/Yb)_N25.3126.7828.1229.0127.7529.107.336.297.21(La/Sm)_N5.775.926.126.215.916.293.622.573.50(Gd/Yb)_N2.422.482.482.712.672.701.431.551.39 δ Eu0.790.840.840.770.740.780.950.690.84Rb120.7094.7898.96126.20116.90112.9041.5647.2260.55Ba1053.731092.701296.55935.80800.411093.66405.00352.50354.00Th32.3433.8029.2629.9732.0432.801.662.673.24U5.067.285.043.703.783.920.381.111.66Nb26.5024.7120.0525.3229.2026.979.4813.827.97Ta2.101.911.291.942.061.950.740.860.50Sr769.15758.20781.40725.55702.57724.04474.52458.21496.32Hf7.486.936.097.057.857.436.255.974.07	LREE	307.20	301.55	286.19	300.23	337.66	317.58	98.77	155.44	114.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HREE	18.26	17.19	15.74	16.89	19.37	17.53	13.87	21.77	15.92
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LREE/HREE	16.82	17.54	18.19	17.77	17.44	18.12	7.12	7.14	7.19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(La/Yb) _N	25.31	26.78	28.12	29.01	27.75	29.10	7.33	6.29	7.21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(La/Sm)_N$	5.77	5.92	6.12	6.21	5.91	6.29	3.62	2.57	3.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(Gd/Yb)_{\rm N}$	2.42	2.48	2.48	2.71	2.67	2.70	1.43	1.55	1.39
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	δEu	0.79	0.84	0.84	0.77	0.74	0.78	0.95	0.69	0.84
Ba1053.731092.701296.55935.80800.411093.66405.00352.50354.00Th32.3433.8029.2629.9732.0432.801.662.673.24U5.067.285.043.703.783.920.381.111.66Nb26.5024.7120.0525.3229.2026.979.4813.827.97Ta2.101.911.291.942.061.950.740.860.50Sr769.15758.20781.40725.55702.57724.04474.52458.21496.32Hf7.486.936.097.057.857.436.255.974.07Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Rb	120.70	94.78	98.96	126.20	116.90	112.90	41.56	47.22	60.55
Th32.3433.8029.2629.9732.0432.801.662.673.24U5.067.285.043.703.783.920.381.111.66Nb26.5024.7120.0525.3229.2026.979.4813.827.97Ta2.101.911.291.942.061.950.740.860.50Sr769.15758.20781.40725.55702.57724.04474.52458.21496.32Hf7.486.936.097.057.857.436.255.974.07Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Ba	1053.73	1092.70	1296.55	935.80	800.41	1093.66	405.00	352.50	354.00
U5.067.285.043.703.783.920.381.111.66Nb26.5024.7120.0525.3229.2026.979.4813.827.97Ta2.101.911.291.942.061.950.740.860.50Sr769.15758.20781.40725.55702.57724.04474.52458.21496.32Hf7.486.936.097.057.857.436.255.974.07Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Th	32.34	33.80	29.26	29.97	32.04	32.80	1.66	2.67	3.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U	5.06	7.28	5.04	3.70	3.78	3.92	0.38	1.11	1.66
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb	26.50	24.71	20.05	25.32	29.20	26.97	9.48	13.82	7.97
Sr769.15758.20781.40725.55702.57724.04474.52458.21496.32Hf7.486.936.097.057.857.436.255.974.07Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Ta	2.10	1.91	1.29	1.94	2.06	1.95	0.74	0.86	0.50
Hf7.486.936.097.057.857.436.255.974.07Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Sr	769.15	758.20	781.40	725.55	702.57	724.04	474.52	458.21	496.32
Zr244.80237.10210.10235.50265.80250.9090.40117.6080.50Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Hf	7.48	6.93	6.09	7.05	7.85	7.43	6.25	5.97	4.07
Y22.9221.8420.2020.5223.8221.8220.1429.1222.29Cr24.9425.8418.1935.9146.2741.0722.2945.2586.59Ni17.8118.2215.1422.3324.5523.8823.7127.7024.64Ga/Al1.771.941.882.352.222.162.202.232.21	Zr	244.80	237.10	210.10	235.50	265.80	250.90	90.40	117.60	80.50
Cr 24.94 25.84 18.19 35.91 46.27 41.07 22.29 45.25 86.59 Ni 17.81 18.22 15.14 22.33 24.55 23.88 23.71 27.70 24.64 Ga/Al 1.77 1.94 1.88 2.35 2.22 2.16 2.20 2.23 2.21	Υ	22.92	21.84	20.20	20.52	23.82	21.82	20.14	29.12	22.29
Ni 17.81 18.22 15.14 22.33 24.55 23.88 23.71 27.70 24.64 Ga/Al 1.77 1.94 1.88 2.35 2.22 2.16 2.20 2.23 2.21	Cr	24.94	25.84	18.19	35.91	46.27	41.07	22.29	45.25	86.59
Ga/Al 1.77 1.94 1.88 2.35 2.22 2.16 2.20 2.23 2.21	Ni	17.81	18.22	15.14	22.33	24.55	23.88	23.71	27.70	24.64
	Ga/Al	1.77	1.94	1.88	2.35	2.22	2.16	2.20	2.23	2.21

注:主微量元素在国土资源部武汉矿产资源监督检测中心完成.

为2.41~2.71,轻稀土分馏程度大于重稀土分馏程 度.δEu为0.74~0.84,Eu弱负异常,说明在成岩过 程中存在一定程度的斜长石分离结晶作用.

与寄主花岗闪长岩相比,暗色包体稀土元素 Σ REE为132.8×10⁻⁶~206.9×10⁻⁶,低于寄主花 岗闪长岩.LREE/HREE=7.12~71.8,(La/Yb)_N 为6.29~7.32,轻稀土富集,重稀土亏损(图10). (La/Sm)_N值为2.57~3.62,(Gd/Yb)_N值为1.39~ 1.52,轻稀土分馏程度大于重稀土分馏程度,但分馏 程度低于寄主花岗闪长岩. δ Eu为0.94~0.84,略高 于寄主岩.暗色包体相对寄主花岗闪长岩,稀土配分 曲线更加平缓,轻重稀土分馏程度更低,重稀土曲线 分布平坦,暗色包体中暗色包体稀土配分曲线位于 寄主花岗闪长岩下部,说明两者之间源区或者岩浆 混合混合程度的差异(图9).

在微量元素蛛网图上,寄主花岗闪长岩亏损 Nb、Ta、P、Ti、Yb等高场强元素,富集 Rb、K等大 离子亲石元素,其 Ga/Al×10⁴为2.16~2.35,小于 2.6,低于 A型花岗岩的平均值(Whalen *et al.*, 1987).暗色包体相对亏损 Nb、Ta、P、Ti、Yb等高场 强元素,富集 Rb、K、等大离子亲石元素.包体中 Cr、 Ni 含量相对寄主花岗闪长岩较高,说明包体源区具 有幔源性质(图 10).

3.4 Sr-Nd 同位素地球化学特征

本文分别挑选了 3 件寄主花岗闪长岩和 3 件暗 色包体进行 Sr-Nd 同位素测试,结果见表 4.暗色包 体 Sr 同位素初始值为 0.706 4~0.706 7,寄主花岗 闪长岩 Sr 同位素初始值为 0.709 3~0.709 5,两者 Sr 同位素初始值相差较大.寄主花岗闪长岩 Sr 同位 素初始值与祁连造山带 I 型花岗岩相似(Wu et al.,

表 4	赛支寺寄主岩及包体样品的 Sr-Nd 同位素组成

Table 4 Sr-Nd isotopic results of mafic microgranular enclaves and hosts rocks of the Saizhisi pluton

		$^{87} m Sr/^{86} m Sr$	$^{87}{ m Rb}/^{86}{ m Sr}$	$({}^{87} m{Sr}/{}^{86} m{Sr})_t$	2σ	$^{143}{ m Nd}/^{144}{ m Nd}$	$\varepsilon_{\rm Nd}(t)$	2σ
	PM2-1	0.710 262	0.503 4	0.709 3	0.000 016	0.512 255	$-7.467\ 062\ 528$	0.000 009
寄主	PM2-3	0.710 249	0.481 5	0.709 4	0.000 013	0.512 260	$-7.379\ 476\ 356$	0.000 009
	PM2-3	0.710 316	0.4513	0.709 5	0.000 012	0.512 230	$-7.967\ 415\ 603$	0.000 010
	PM3-1	0.706 847	0.253 4	0.706 4	0.000 016	0.512 581	$-1.114 \ 821 \ 765$	0.000 009
包体	PM3-2	0.707 046	0.298 1	0.706 5	0.000 015	0.512 585	$-1.030\ 161\ 635$	0.000 009
	PM3-3	0.707 354	0.353 0	0.706 7	0.000 014	0.512 548	$-1.751\ 723\ 438$	0.000 010

2011).寄主花岗闪长岩的 $\epsilon_{Nd}(t)$ 值为 -7.379 4~ -7.967 4, 暗色包体 $\epsilon_{Nd}(t)$ 值为 -1.751 7~ -1.030 1, 包体 $\epsilon_{Nd}(t)$ 值高于寄主花岗闪长岩, 在指 示它们均为壳幔混源岩浆结晶的产物.包体与寄主 岩 Sr-Nd 同位素组成相差较大, 说明两者不可能为 同一源区(刘亮等, 2012).

4 讨论

4.1 年代学

通过以上对岩石的锆石 U-Pb 年代学分析结果 可知,赛支寺花岗闪长岩的 LA-ICP-MS 锆石 U-Pb 年龄为 446.0±1.3 Ma;赛支寺花岗闪长岩中暗色包 体的 LA-ICP-MS 锆石 U-Pb 年龄为 446.0± 1.0 Ma,两者在误差范围内一致,均形成于晚奥陶 世.雍拥等(2008)在中祁连董家庄测得花岗岩的锆 石 U-Pb 年龄为 446±1 Ma;陈隽璐等(2008)测得中 祁连什川杂岩锆石 U-Pb 年龄为 444.6 Ma.前人研 究结果与本文测得的花岗闪长岩的年龄非常接近, 说明中南祁连在 446.0 Ma 左右存在一期构造岩浆 活动.

4.2 暗色包体成因

赛支寺暗色包体中 MgO(4.41%~5.66%)、 TFeO(8.08%~9.98%)、Cr(22.29×10⁻⁶~86.09× 10⁻⁶)和 Ni(23.71×10⁻⁶~27.70×10⁻⁶)含量较高, SiO₂含量相对较低(图 12,表 3).初始 Sr 同位素值 为 0.706 4~0.706 7, $\epsilon_{Nd}(t)$ 值为 - 1.751 7~ -1.030 1,在⁸⁷ Sr/⁸⁶ Sr- $\epsilon_{Nd}(t)$ 图解中,暗色包体落在 祁连洋中脊玄武岩和莫河基底之间,具有壳幔混合 源岩浆特征(图 11).

赛支寺花岗闪长岩中靠近寄主岩浆的暗色包体 大多呈浑圆状、长条状,具有明显的火成结构(图 2),并且暗色包体与寄主花岗岩在年龄的误差范围 内一致,包体中未发现继承性锆石,这排除了包体的 围岩捕掳体和源区残留物成因.暗色包体中未见富

据吴才来等(2010)、熊子良等(2012)和 Chen et al.(2015)

铝的特征变质矿物,如红柱石、夕线石、石榴子石等 不发育变晶结构和片理结构等变质特征,缺乏含水 矿物的脱水残留相,也说明存在非基底变质岩的难 溶残留物(刘亮等,2012).

在液态不混溶模式中,暗色包体与寄主花岗闪 长岩稀土配分曲线基本一致,但中基性岩浆比长英 质质岩浆更加富集 REE.而赛支寺暗色包体中稀土 元素总量 Σ REE(132.8×10⁻⁶~206.9×10⁻⁶)明显 低于寄主花岗闪长岩稀土元素总量 Σ REE (344.10×10⁻⁶~356.90×10⁻⁶),这一特征明显与 液态不混溶成因不相符,因此排除包体与寄主岩为 液态不混溶成因(刘亮等,2012).

暗色包体⁸⁷ Sr/⁸⁶ Sr 和 $\varepsilon_{Nd}(t)$ 值与寄主花岗闪长 岩相差较大(表 4),说明暗色包体和寄主花岗闪长 岩不是同一源区,与岩浆结晶分异不符.并且在 SiO₂-⁸⁷ Sr/⁸⁶ Sr 和 SiO₂- $\varepsilon_{Nd}(t)$ (图 12)图解中,与 AFC 演化趋势相一致,也不能用单纯的同一岩浆结 晶分异来解释.

暗色包体中发育淬冷结构的磷灰石等针状矿物 (图 2c),它们应该是高温的岩浆与低温的岩浆混合 作用的产物,被认为是岩浆混合的重要标志(Hib-

图例同图 6;FC.分离结晶作用;AFC.岩浆同化混染-结晶分离作用

bard,1991).暗色包体中发育长石斑晶也常被作为 基性岩浆和酸性岩浆混合的重要证据(Baxter and Feely,2002),这些长石斑晶不是原地结晶形成的, 而是先在酸性岩浆中结晶出来,而后被基性岩捕获, 赛支寺暗色包体中发育长石斑晶也证实存在这一过 程(图 2a).暗色包体 $\epsilon_{Nd}(t)$ 为一1.03~一1.75 远远 高于寄主岩—7.38~一7.96,指示暗色包体镁铁质 组分要高于寄主岩,说明两者岩浆并非均匀混合(刘 亮等,2012).综上所述,暗色包体是由幔源岩浆与长 英质岩浆经不均匀混合形成.

4.3 花岗闪长岩成因

4.3.1 岩石成因类型花岗岩成因类型的判定是花岗岩研究的重要问题,目前 ISMA 是比较流行的分类方案,其中 ISA 三种花岗岩成因类型比较多见. Whalen *et al.*(1987)提出根据 Ga/Al 的值来区分 A型花岗岩和 I-S 型花岗岩.本次研究中,所采集样品在 Ga/Al vs.(K₂O+Na₂O)和 Ga/Al vs.TFeO/

MgO 判别图(图 13)中均落在 I-S 型花岗岩范围内. S型花岗岩为具有强过铝质特点,A/CNK>1.1,而 赛支寺花岗闪长岩 A/CNK 为 0.91~1.03,在 A/ NCK vs.A/NK 的判别图解中均投在准铝质到弱过 铝质之间(图 8).研究表明,P2O5 在强过铝质花岗岩 中,均处于不饱和状态,因而 P2O5 含量均随着分异 演化作用的进行而升高或者不变,而在准铝质到弱 过铝质岩浆中,由于磷灰石的溶解度较低,均优先结 晶,因此使得 P₂O₅ 有随 SiO₂ 含量增加而逐渐减小 的趋势.在 SiO₂-P₂O₅ 图解中(图 14),赛支寺花岗 闪长岩 P₂O₅ 随着 SiO₂ 有逐渐降低的趋势,与 I 型 花岗岩一致(Chappell et al., 1987).赛支寺花岗闪 长岩⁸⁶ Sr/⁸⁷ Sr 值为 0.709 3~0.709 5, ε_{Nd}(t) 值为 -7.3794~-7.9674, 与祁连造山带 I 型花岗岩一 致.在⁸⁶ Sr/⁸⁷ Sr- $\epsilon_{Nd}(t)$ 图解中投在 I 型花岗岩范围内 (图 13).稀土元素配分曲线图上,呈明显的右倾,轻 稀土富集,重稀土亏损,富集 Rb、Th、U、K,亏损

图 13 Ga/Al-K₂O+Na₂O和 Ga/Al-TFeO/MgO 判别图解 Fig.13 The discrimination diagram of Ga/Al-K₂O+Na₂O and Ga/Al-TFeO/MgO Whalen et al.(1987);图例同图 6;A.A型花岗岩;I-S.I-S型花岗岩

Nb、Ta、P、Ti 等, 与 I 型花岗岩相似(Defant and Drummond, 1990; Defant *et al.*, 1992; Wu *et al.*, 2011).综上所述,赛支寺花岗闪长岩为 I 型花岗岩.

4.3.2 岩浆源区 近年来,随着研究的深入,目前 普遍认为 I 型花岗岩是壳幔岩浆混合作用的产物. 赛支寺花岗闪长岩具有轻稀土富集,重稀土亏损,重 稀土曲线分布平坦,这种分配模式与中南祁连造山 带壳幔混合成因的岩体相类似,这也说明赛支寺花 岗闪长岩具有壳幔混合成因(陈隽璐等,2008).赛支 寺花岗闪长岩具有较高的初始 Sr 同位素值和负的 $\epsilon_{Nd}(t)$ 值,在(⁸⁶Sr/⁸⁷Sr)- $\epsilon_{Nd}(t)$ 投图上,投在 MORB 和漠河基底之间.在 SiO₂-(⁸⁶ Sr/⁸⁷ Sr)和 SiO₂- $\epsilon_{Nd}(t)$ 投图上,投影点与 AFC 趋势线一致,说明赛支寺花 岗闪长岩可能与幔源岩浆受下地壳组分的混染或者 幔源基性岩浆和壳源的岩浆混合有关.赛支寺花岗 闪长岩中 $\varepsilon_{Nd}(t)$ 值和暗色包体中 $\varepsilon_{Nd}(t)$ 截然不同, 两者之间不连续,说明赛支寺花岗闪长岩可能并非 中基性岩浆直接演化而来.前已述及,赛支寺花岗闪 长岩中暗色包体为岩浆混合成因,也说明赛支寺花 岗闪长岩发生过壳幔岩浆混合作用.

锆石具有极强的稳定性,使其 Hf 同位素较少 受到后期地质时间的影响,极低的 Lu 含量也可以 获得锆石形成时准确的 Hf 同位素组成,这些特性 使得锆石 Hf 成为目前探讨地壳演化和示踪岩石源 区的重要工具(Amelin *et al.*,1999).锆石 Hf 同位 素可以记录壳幔混合岩浆两端元的初始信息,较低 的 ε_{Hf}(t)代表早期未受幔源组分影响的古老基底物 质熔融形成的岩浆成分,而较高的 ε_{Hf}(t)则指示受 到不同程度幔源岩浆混染后结晶.前已述及,赛支寺 花岗闪长岩形成于壳幔岩浆混合作用.地幔岩浆参 与岩浆形成过程有两种形式,一种为幔源岩浆与其 诱发的地壳物质部分熔融形成的长英质岩浆在地壳 深部混合形成壳幔混源岩浆;另一种方式是幔源岩 浆首先侵入到地壳中形成初生地壳,然后在后期热 时间的影响下,这种即有新生地壳又有古老基底地 壳构成的混合地壳发生部分熔融形成花岗质岩浆.

赛支寺花岗闪长岩中锆石 $\epsilon_{\rm HF}(t)$ 为 1.7~6.8, 均为正值, T_{DM2}值为 980~1 750 Ma, 在锆石 Hf 同 位素演化中,测试点均位于亏损地幔和球粒陨石之 间,暗示赛支寺花岗闪长岩可能来源于新生的下地 壳物质的再熔融或在循环(图 5),与上述第 2 种模 式相似即幔源岩浆首先侵入到下地壳中,造成下地 壳物质熔融,形成新的花岗岩岩浆.Yan et al. (2015)通过对化隆地块基底化隆岩群基性岩系统的 研究发现,化隆群片麻岩主要形成于 850~940 Ma 之间, $\varepsilon_{\text{Hf}}(t)$ 值为-3.0~+4.9, T_{DMI} 年龄为1259~ 1580 Ma.在赛支寺花岗闪长岩中含有 863 Ma 的继 承性锆石,其 $\varepsilon_{\rm HI}(t)$ 值为3.8,与化隆群片麻岩 $\varepsilon_{\rm HI}(t)$ 一致,说明赛支寺花岗闪长岩在形成过程中有化隆 群物质的混入.综上所述,赛支寺花岗闪长岩形成于 幔源岩浆上涌,侵入到下地壳中,造成下地壳物质熔 融,由这种既有幔源物质又有古老地壳物质的花岗 岩岩浆形成.

祁连造山带作为中国研究最 4.3.3 动力学背景 为透彻的板块之一,普遍认为其形成于俯冲一碰撞 造山过程(吴才来等,2006,2010; Wu et al., 2011). 但对于俯冲极性仍存在很大分歧,主要存在以下 3 种观点:向南俯冲(张旗等,2003;宋述光等,2004)、 向北俯冲(夏林圻等,1998)、双向俯冲(左国朝和吴 汉泉, 1997; 吴才来等, 2006, 2010; Wu et al., 2011).宋述光等(2004)研究认为,北祁连存在两条 俯冲杂岩,向南深部俯冲,向北浅层俯冲.区域上中 祁连造山带中酸性岩体呈带状分布,与俯冲类型花 岗岩分布特征相类似.在中晚奥陶世,中南祁连造山 带存在大量俯冲型花岗岩.例如什川杂岩(444 Ma) (陈隽璐等,2008)等,也说明北祁连洋存在向南俯冲 的作用.已有研究表明,南祁连洋在440~490 Ma 期 间,未发生俯冲作用(Xiao et al., 2009).综上所述, 推断北祁连洋有可能发生过向南的俯冲作用.

本次获得的赛支寺花岗闪长岩 LA-ICP-MS 锆石 U-Pb 年龄在 446 Ma.在构造判别图解上,赛支寺花岗闪长岩主要投在岛弧花岗岩和同碰撞花岗岩区域(图 15).与赛支寺花岗闪长岩相邻什川杂岩(444 Ma)(陈隽璐等,2008)、董家庄花岗岩体(446.9 Ma)(雍拥等,2008)均形成于俯冲环境,与赛支寺花岗闪长岩相似.前人研究认为祁连洋于

445 Ma左右闭合(Zheng et al., 2004; Song et al., 2006; Wu et al., 2011).在晚奥陶时,祁连地区正处于由俯冲造山向碰撞造山的转换时期(Wu et al., 2011).赛支寺花岗闪长岩可能是由俯冲的地球动力学背景下,幔源岩浆侵入到下地壳中,形成初生地壳,由初生地壳物质熔融形成.进一步限定了中南祁连地块与北祁连洋初始碰撞的时限约为446 Ma.

5 结论

(1)本文对首次发现的赛支寺花岗闪长岩和暗 色包体进行锆石 U-Pb 测年,花岗闪长岩锆石 U-Pb 年龄为 446.0±1.3 Ma,暗色包体锆石 U-Pb 年龄为 446.0±1.0 Ma,两者年龄在误差范围内一致,均属 于加里东期岩浆活动的产物.

(2)岩石地球化学、Sr-Nd 同位素表明,赛支寺 花岗闪长岩中暗色包体是由幔源岩浆与长英质岩浆 经不均匀混合形成.

(3)岩石地球化学、Sr-Nd-Hf 同位素表明,赛支 寺花岗闪长岩为 I 型花岗岩,赛支寺花岗闪长岩形成 于幔源岩浆上涌,侵入到下地壳中,造成下地壳物质 熔融,由这种既有幔源物质又有古老地壳物质的花岗 岩岩浆形成.863.0±5.0 Ma 继承锆石的出现,说明赛 支寺花岗闪长岩形成过程中有化隆群物质的加入.

(4)结合区域构造演化认为,北祁连洋可能发生 过向南的俯冲作用.在 446 Ma 左右,中南祁连地区 正处于由俯冲造山向碰撞造山转换的时期.

References

Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999. Nature of the Earth's Crust from Hafnium Isotopes in Single Detrital Zircon. *Nature*, 399 (6733): 252 - 255. doi: 10. 1038/20426

- Baxter, S., Feely, M., 2002. Magma Mixing and Mingling Textures in Granitoids: Examples from Galway Granite, Connemara, Ireland. *Mineralogy and Petrology*, 76 (1-2):63-74.doi:10.1007/s007100200032
- Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contribution to Mineralogy and Petrology, 143 (5): 602 - 622. doi: 10.1007/ s00410-002-0364-7
- Chappell, B.W., White, A.J.R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. *Journal of Petrology*, 28 (6): 1111 – 1138.doi:10.1093/petrology/28.6.1111
- Chen, J. L., Xu. X. Y., Zeng, Z. X., et al., 2008. Geochemical Characters and LA-ICPMS Zircon U-Pb Dating Constraints on the Petrogenesis and Tectonic Setting of the Shichuan Intrusion, East Segment of the Central Qilian, NW China. Acta Petrologica Sinica, 24(4):841-854 (in Chinese with English abstract).
- Chen, S., Niu, Y., Sun, W., et al., 2015. On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids: Evidence from the Baojishan Pluton in the North Qilian Orogen, China. *Mineralogy and Petrology*, 109(5):577-596.doi:10.1007/s00710-015-0383-5
- Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. *Nature*, 347 (6294): 662 - 665. doi: 10. 1038/347662a0
- Defant, M. J., Jackson, T. E., Drummond, M. S., et al., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society, London,

149:569-579.doi:10.1144/gsjgs.149.4.0569

- Hibbard, M. J., 1991. Textural Anatomy of Twelve Magma-Mixed Granitoid Systems: Enclaves and Granite Petrology. Elsevier, Amsterdam.
- Hu,Z.C.,Liu,Y.S.,Gao,S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27 (9): 1391 - 1399. doi: 10.1039/ C2JA30078H
- Liu, L., Qiu, J. S., Li, Z., et al., 2012. Petrogenesis of the Early Cretaceous Quartz Monzonite Pluton at Muchen in Longyou County, Zhejiang Province: Evidences from Elemental and Isotopic Geochemistry of Mafic Microgranular Enclaves and Their Host Rocks. Acta Petrogica Sinica, 28 (12): 3993-4006 (in Chinese with English abstract).
- Pearce, J, A, , Harris, N. B., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. *Journal of Petrology*, 25 (4):956-983.doi:10.1007/ BF00384745
- Qin, H. P., Wu, C. L., Wang, C. S., et al., 2014. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr/Y-Type Granite from Xigela, Eastern Qilian Area. Acta Petrologica Sinica, 30(12):3759-3771 (in Chinese with English abstract).
- Song,S.G.,Zhang,L.,Niu,Y.,et al.,2007. Eclogite and Carpholite-Bearing Metasedimentary Rocks in the North Qilian Suture Zone, NW China: Implications for Early Paleozoic Cold Oceanic Subduction and Water Transport into Mantle. *Journal of Metamorphic Geology*,25(5):547-563.doi: 10.1111/j.1525-1314.2007.00713.x
- Song, S.G., Zhang, L.F., Song, B., et al., 2004. North Qilian Mountains Eclogite Zircon SHRIMP Dating and Tectonic Significance. *Chinese Science Bulletin*, 49 (6): 592-595(in Chinese).
- Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. *Journal of Petrology*, 47(3): 435-455.doi:10.1093/ petrology/ egi080
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M.J., eds., Magmatism in the Ocean Basins. *Geological* Society, London, Special Publication, 42(1):313-345. doi:10.1144/GSL.SP.1989.042.01.19
- Vervoort, J, D., Pachelt, P.J., Gehrels, G.E., et al., 1996. Con-

straints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. *Nature*, 379(6566): 624 – 627.doi:10.1038/379624a0

- Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419.
- Wu, C.L., Xu, X. Y., Gao, Q. M., et al., 2010. North Qilian Zoulang Nanshan Caledonian Subduction Complex Accretionary Terrane and Its Dynamics. *Acta Petrologica Sinica*, 26(4): 1027-1044 (in Chinese with English abstract).
- Wu, C.L., Yao, S.Z., Yang, J.S., et al., 2006. Double Subduction of the Early Paleozoic North Qilian Oceanic Plate: Evidence from Granites in the Central Segment of North Qilian, NW China. *Geology in China*, 33 (6): 1197-1208 (in Chinese with English abstract).
- Wu, C. L., Gao. Y, Frost, B. R., et al., 2011. An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. *International Geology Review*, 53(2):157-181.
- Wu,F.Y.,Li,X.H.,Zheng,Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract).
- Xia, L.Q., Xia, Z.C., Xu, X.Y., 1998. The Volcanic Action of the Early Paleozoic Oceanic Ridges, Oceanic Islands and the back Arc Basin in the North Qilian Mountains. Acta Gologica Sinica, 72 (4): 301 - 312 (in Chinese with English abstract).
- Xiao, W., Windley, B.F., Yong, Y., et al., 2009. Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3):323-333.doi:10.1016/j.jseaes.2008.10.001
- Xiong, Z. L., Zhang, H. F., Zhang, J., 2012. Petrogenesis and Tectonic Implications of the Maozangsi and Huangyanghe Granitic Intrusions in Lenglongling Area, the Eastern Part of North Qilian Mountains, NW China. Earth Science Frontiers, 19(3): 214-227 (in Chinese with English abstract).
- Yan, Z., Aitchison, J., Fu, C., et al., 2015. Hualong Complex, South Qilian Terrane: U-Pb and Lu-Hf Constraints on Neoproterozoic Microcontinental Fragments Accreted to the Northern Proto-Tethyan Margin. *Precambrian Research*, 266:65-85.doi:10.1016/j.precamres.2015.05.001
- Yang, G.X., Li, Y.J., Si, G.H., et al., 2010. LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications. *Earth Science*, 35

(4):597-610 (in Chinese with English abstract).

- Yang, T. L., Jiang, S. Y., 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12): 2002 - 2020 (in Chinese with English abstract).
- Yong, Y., Xiao, W. J., Yuan, C., et al., 2008. Geochronology and Geochemistry of Paleozoic Granitic Plutons from the Eastern Central Qilian and Their Tectonic Implications. Acta Petrologica Sinica, 24(4):855-866(in Chinese with English abstract).
- Zhang, Q., Zhou, G. Q., Wang, Y., 2003. The Distribution of Time and Space of Chinese Ophiolites and Their Tectonic Settings. Acta Petrologica Sinica, 19(1):1-8(in Chinese with English abstract).
- Zhao, X. M., Zhang, Z. H., Liu, M., et al., 2014. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Granites from the Xiaoliugou Deposit in the Western of the North Qilian. Acta Petrologica Sinica, 30(1):16-34 (in Chinese with English abstract).
- Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 180 Depletion Event in Igneous Rocks during the Neoproterozoic. *Geochimica et Cosmochimica Acta*, 68(20):4145-4165.doi:10.1016/j.gca.2004.01.007
- Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction Related Adakite Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.doi:10. 1016/j.jseaes.2008.05.003
- Zuo,G.C., Wu, H.Q., 1997. Subductionon Collision Orogenic Model of Early-Paleozoic in the Middle Part of North Qilian Area. Advance in Earth Sciences, 12(4): 315-323 (in Chinese with English abstract).

附中文参考文献

陈隽璐,徐学义,曾佐勋,等,2008.中祁连东段什川杂岩基的

岩石化学特征及年代学研究.岩石学报,24(4): 841-854.

- 刘亮,邱检生,李真,等,2012.浙江龙游沐尘早白垩世石英二 长岩体的成因:镁铁质包体及寄主岩的元素与 Sr-Nd 同位素地球化学证据.岩石学报,28(12):3993-4006.
- 秦海鹏,吴才来,王次松,等,2014.祁连东部西格拉高 Sr/Y 型花岗岩 LA-ICP-MS 锆石 U-Pb 定年及其地球化学特 征.岩石学报,30(12):3759-3771.
- 宋述光,张立飞,宋彪,等,2004.北祁连山榴辉岩锆石 SHRIMP 定年及其构造意义.科学通报,49(6): 592-595.
- 吴才来,徐学义,高前明,等,2010.北祁连早古生代花岗质岩 浆作用及构造演化.岩石学报,26(4):1024-1044.
- 吴才来,姚尚志,杨经绥,等,2006.北祁连洋早古生代双向俯 冲的花岗岩证据.中国地质,33(6):1197-1208.
- 吴福元,李献华,郑永飞,等,2007.Lu-Hf 同位素体系及其岩 石学应用.岩石学报,23(2):185-220.
- 夏林圻,夏祖春,徐学义,1998.北祁连山早古生代洋脊-洋 岛和弧后盆地火山作用.地质学报,72(4):301-312.
- 熊子良,张宏飞,张杰.2012.北祁连东段冷龙岭地区毛藏寺岩 体和黄羊河岩体的岩石成因及其构造意义.地学前缘, 19(3):214-227.
- 杨高学,李永军,司国辉,等,2010.东准库布苏南岩体和包体的LA-ICP-MS 锆石 U-Pb 测年及地质意义.地球科学, 35(4):597-610.
- 杨堂礼,蒋少涌,2015.江西九瑞矿集区东雷湾矿区中酸性侵 人岩及其铁镁质包体的成因:锆石 U-Pb 年代学、地球 化学与 Sr-Nd-Pb-Hf 同位素制约.地球科学,40(12): 2002-2020.
- 雍拥,肖文交,袁超,等,2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报,24
 (4):855-866.
- 张旗,周国庆,王焰,2003.中国蛇绿岩的分布、时代及其形成 环境.岩石学报,19(1):1-8.
- 赵辛敏,张作衡,刘敏,等,2014.北祁连西段小柳沟矿区花岗 质岩石锆石 U-Pb 年代学、地球化学及成因研究.岩石 学报,30(1):16-34.
- 左国朝,吴汉泉,1997.北祁连中段早古生代双向俯冲一碰撞 造山模式剖析.地球科学进展,12(4):315-323.