doi:10.3799/dqkx.2016.513

高温富硫化物热泉中硫代砷化物存在形态的 地球化学模拟:以云南腾冲热海水热区为例

庄亚芹^{1,2},郭清海^{1,2}*,刘明亮^{1,2},李洁祥^{1,2},周超^{1,2}

中国地质大学生物地质与环境地质国家重点实验室,湖北武汉 430074
 中国地质大学环境学院,湖北武汉 430074

摘要:天然水环境中地质成因砷的存在是世界范围内对人类威胁极大的环境问题之一.在高温富硫化物地热水中,硫代砷化物 是砷的主要存在形态之一.在国内尚无硫代砷化物定量检测方法的背景下,以云南腾冲地热带的热海水热区为典型研究区,基 于不同类型硫代砷化物的最新化学热力学数据 wateq4f.dat,利用水文地球化学模拟软件 PHREEQC 开展了不同类型热泉中 砷的存在形态的地球化学模拟.结果表明,热海热泉中砷的主要形态是硫代砷酸盐,砷酸盐和亚砷酸盐次之,硫代亚砷酸盐则 含量极低;在各类硫代砷酸盐中,按平均百分含量降序依次为:一硫代砷酸盐→三硫代砷酸盐→四硫代砷酸盐→二硫代砷酸 盐.pH、Eh 和总硫化物含量是热泉中砷的形态分布的控制性因素.在酸性条件下,砷以硫代砷酸盐和亚砷酸盐为主要存在形 式;而在中性/偏碱性条件下,砷的形态则以硫代砷酸盐为主,砷酸盐次之.偏还原环境和高硫化物含量是硫代砷化物、特别是 三硫代砷酸盐和四硫代砷酸盐稳定存在的有利条件.

关键词:热泉;硫代砷化物;热海水热区;腾冲地热带;地球化学.
中图分类号: P66
文章编号: 1000-2383(2016)09-1499-12

Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan

收稿日期:2016-01-20

Zhuang Yaqin^{1,2}, Guo Qinghai^{1,2}*, Liu Mingliang^{1,2}, Li Jiexiang^{1,2}, Zhou Chao^{1,2}

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China 2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

Abstract: The occurrence of geogenic arsenic in natural water environment is one of the significant hazards to human beings in the world. In high-temperature, sulfide-rich geothermal waters, thioarsenicals are likely the major species of arsenic. In view that there has been so far no quantitative test method for thioarsenic species in China, a hydrogeochemical code, PHREEQC, with its wateq4f.dat database being updated by the latest thermodynamic data for thioarsenicals, was used for calculating the arsenic species distribution in various types of hot springs from the Rehai hydrothermal area located in the Tengchong geothermal belt, Yunnan Province. The results show that the major species of arsenic in the Rehai hot springs is thioarsenate, arsenate and arsenite comes second, and the thioarsenite concentrations are extremely low; the descending order of thioarsenate species in terms of their average percentages is: monothioarsenate, trithioarsenate, tetrathioarsenate, and dithioarsenate. pH, *Eh* and total sulfide concentration are the controlling factors for the arsenic speciation in hot springs. Under acidic condition, the main species of arsenic are thioarsenate and arsenite, whereas under neutral/weak alkaline conditions, thioarsenate is predominant with arsenate being the second most important species. Comparative reducing environment and high sulfide concentration in ge-

基金项目:国家自然科学基金项目(Nos.41572335,41120124003,41521001);中国地质大学(武汉)生物地质与环境地质国家重点实验室自主研 究课题项目(No.GBL11505).

作者简介:庄亚芹(1990-),女,硕士研究生,从事高温地热流体地球化学领域的研究工作.E-mail:359572236@qq.com

^{*} 通讯作者:郭清海,E-mail:qhguo2006@gmail.com

othermal water are favorable for the stable existence of thioarsenicals, especially trithioarsenate and tetrathioarsenate. **Key words:** hot spring; thioarsenic species; Rehai hydrothermal area; Tengchong geothermal belt; geochemistry.

砷是一种典型有害元素,原生高砷地下水的广泛 存在已在世界范围内引发了地方性砷中毒(成东等, 2016).鉴于砷的危害,世界卫生组织、美国环保署、欧 盟以及中国等众多国际机构或国家都将砷的饮用水 标准由 0.050 mg/L 降低至 0.010 mg/L.水环境中的 砷主要来源于人类活动(如铜、铁、铅、锌等金属的冶 炼,木材和煤炭的焚烧、化工生产、含砷矿床的开采、 含砷农药的使用、含砷废物的不合理弃置等)或天然 过程(如地表岩石风化,地表水、地下水一沉积物系统 中的含砷矿物对砷的释放等).近年来,来源于地热水 系统的砷也日益引起研究者的关注.如意大利南部 Ischia 岛地热水的砷含量达1 558 µg/L(Lima et al., 2003),新西兰北岛 Tokaanu 地区地热水的砷含量高 达 5 200 µg/L(Hirner et al., 1998), 俄罗斯 Kamchatka 半岛 Uzon Caldera 地区地热流体的砷含量高达 8 600 µg/L(Cleverley et al., 2003),日本本州 Akita 地 区地热水的砷含量可高达 13 mg/L(Pascua et al., 2007),智利 Rio Loa 盆地 El Tatio 地热田出露的热泉 的砷含量更高达 27.0 mg/L(Romero et al., 2003).在 我国,西藏和云南也存在大量富砷的高温水热系统 (佟伟和章铭陶,1994;Guo et al.,2007).由此可见,地 热流体中砷含量一般较高,特别对于具有岩浆热源并 受到岩浆水补给的高温地热流体(流体温度在 150 ℃ 以上)而言,由于其中的砷很可能来自于深部岩石重 熔过程中分异出来的挥发性物质,砷含量往往还具有 异常高的特点(张知非等,1982).因此,富砷地热流体 的排放(以热泉的形式排放,或经人类开发利用后排 入环境)不但是环境中砷的重要来源,而且在进入地 表或浅部地下环境后常常还具有特别大的危害.

当前,天然水环境中砷的成因和存在形态受到 了越来越多的环境科学工作者和研究者的重视.然 而,当讨论砷在天然水中的地球化学行为时,砷酸 盐、亚砷酸盐、甲基砷和二甲基砷是通常考虑的砷的 形态.对于我国的富砷热泉系统,已有研究简单地认 为地热水中的砷一般以亚砷酸盐为主,而后在排泄 过程中被部分或全部氧化为砷酸盐.但近年来对富 硫化物天然水的研究发现,相当比例的砷事实上以 多种硫代砷化物的形式存在(Bostick *et al.*,2005; Helz and Tossell,2008).因此,砷在高温水热系统及 其相关环境中的存在形态事实上复杂得多.由于硫 浆挥发组分影响的地热流体中,硫代砷化物常常是 富砷高温热泉中砷的重要存在形式之一 (Planer-Friedrich *et al.*,2007),主要为H_nAsSO₃ⁿ⁻³ (一硫代砷酸盐)、H_nAsS₂O₂ⁿ⁻³(二硫代砷酸盐)、 H_nAsS₃Oⁿ⁻³(三硫代砷酸盐)、H_nAsS₄ⁿ⁻³(四硫代 砷酸盐)、H_nAsSO₂ⁿ⁻³(一硫代亚砷酸盐)、 H_nAsS₂Oⁿ⁻³(二硫代亚砷酸盐)、H_nAsS₃ⁿ⁻³(三硫 代亚砷酸盐)(以上化学结构式中 $n=0\sim3$)等无机 硫代砷化物,也包括不同类型的甲基硫代砷化物.

与砷酸盐、亚砷酸盐、甲基砷、二甲基砷等砷的 常见形态不同,不同类型硫代砷化物的毒性和生物 毒理作用大不相同(Rader et al., 2004; Planer-Friedrich et al., 2008). 与此不相符的是, 目前对于 热泉环境中与硫代砷化物有关的地球化学过程及其 环境地质效应的研究程度总体上非常低,存在一系 列未解决的科学问题.更重要的是,国内目前尚无硫 代砷化物的定量检测方法.然而,国外学者已针对硫 代砷化物开展了卓有成效的化学热力学研究,发表 了一系列可靠的化学热力学数据.因此,基于不同类 型硫代砷化物的最新化学热力学数据,利用地球化 学模拟软件计算天然地热水样品的硫代砷化物浓度 不失为一种开展热田水环境硫代砷化物研究的有效 方法.笔者以云南腾冲热海地热田为例,在更新 PHREEQC 软件化学热力学数据库的基础上,开展 了热海热田内不同类型热泉的地球化学模拟,获取 了热泉中各种硫代砷化物的含量,并对控制热泉中 硫代砷化物形成和分布的主导性地球化学因素进行 了深入分析.本研究是地热成因砷环境地球化学过 程研究不可或缺的组成部分.

1 研究区概况

在各类地热水系统中,具备岩浆热源的系统由 于受到深部岩浆房释放的 H₂S(直接释放或释放 SO₂并经歧化反应形成 H₂S)的影响,其所排泄的 地热流体中硫化物的含量一般远高于其他类型地下 水.岩浆热源型地热流体中砷和硫化物的富集为硫 代砷化物的形成提供了有利条件.在我国,云南腾冲 热海热田是典型的岩浆热源型地热田,也是大陆范 围内唯一大量发现强酸性热泉(pH 值为 2 左右,或 更低)的地热田(Guo *et al.*,2014),该热田是开展地

图 1 腾冲火山岩分布(a)和热海热田地热地质图及采样位置(b)

Fig.1 Volcanic rock distribution in Tengchong (a) and geothermal geological map of the Rehai field and sampling locations (b) 1.全新统; 2.晚更新统; 3.中更新统玄武岩; 4.早更新统安山岩; 5.中新统南林组; 6.元古宙高黎贡山群; 7.明矾石带; 8.高岭石-玉髓或蛋白石带; 9.高岭石-蒙脱石-玉髓带,高岭石-伊利石-蒙脱石混层矿物-玉髓石英带; 10.伊利石-蒙脱石混层矿物-石英带; 11.绿泥石-蒙脱石混层矿物带; 12.蒙脱石-方解石带; 13.伊利石-蒙脱石-高岭石-玉髓带; 14.断层; 15.取样点; 16.热泉/高程(m); 图 a 据赵慈平等 (2006)修改; 图 b 据廖志杰和赵平(1999)修改

热成因硫代砷化物地球化学研究的理想场地.

热海热田位于腾冲县城古永一大盈江断裂与腾 冲一陇川断裂之间(图 1a),是腾冲地区水热活动范 围最大、强度最高、类型最齐全的热田(李洁祥等, 2015).热田形成与近代火山活动密切相关,热源为 地壳内埋深不大的岩浆房(白登海等,1994;上官志 冠等,2000;赵慈平等,2006).热田内南北向、东西向 断裂发育,其交汇部位是导热、导水的良好通道,大 量地表地热显示均沿此分布,包括老滚锅、大滚锅、 怀胎井、鼓鸣泉、眼睛泉、珍珠泉、蛤蟆嘴等高温热 泉.热田内新近系(N)砂砾岩广泛出露,不整合覆盖 于高黎贡山群(Ptgl)变质岩和燕山期花岗岩(r₅³) 之上.其中南林组(N₁n)砂砾岩胶结紧密且普遍高 岭土化,因而渗透性差,是热田的良好盖层.下伏变 质岩和花岗岩经多期构造运动影响,节理、裂隙、断 裂发育,为地热水的储存和运移提供了空间和通道, 形成了不同层位的多级热储.

2 研究方法

2.1 热泉样品采集与分析

本次研究期间,共在热海热田采集热泉样品 24 件,采样位置见图 1b.所有样品在现场用 0.45 µm 滤 膜过滤,并收集到采样前已用去离子水润洗过 3 次 的聚乙烯瓶中.在每个采样点采集 4 份子样,其中 1 份用于砷含量分析;1 份用于阴离子分析;1 份加入 优级纯 HNO₃ 至 pH 值低于 1,并用于阳离子分析; 1 份稀释 10 倍用于 SiO₂ 分析.温度、pH、溶解氧和 总硫 化物含量用美国 Hach LDOTM HQ10 及 Hach sension2 便携式测定仪在现场测定;As(Ⅲ) 和 As(V)在现场用 Supelco LC-SAX 阴离子交换 柱分离,然后用 AFS-830 型原子荧光光度计测试其 浓度;碱度在取样当天用格兰氏法滴定.样品采集后 在 4℃环境中保存,并于 2 周内在教育部长江三峡 库 区 地质灾 害 研 究 中 心完 成测 试,其 中 阳 离 子 用 美国 IRISIntrepid II XPS型 ICP-AES 仪测定

T pH Eh SO4 Cl F NO3 Na K Ca Mg Fe(Ⅱ) Fe(Ⅲ) As(V) As(Ⅲ) As 硫化物 NF	1.6 1.85 229.8 882.7 22.8 0.5 3.5 9.9 26.2 3.3 0.7 1.94 3.70 30.9 6.8 26.0 0.01 0.4	$5.4 ext{ 1.85 199.8 776.1 22.6 0.7 4.5 4.2 4.6 8.4 0.9 1.22 2.30 35.1 7.1 35.9 0.02 3.2 0.02 1.2 0.$	38.7 1.93 196.4 879.0 24.8 1.4 5.0 18.0 35.4 3.5 1.2 5.69 12.60 120.2 16.3 147.8 0.02 1.6	5.4 2.04 168.1 1634.0 22.9 0.5 5.1 5.6 20.0 3.5 1.1 2.64 7.70 108.6 9.0 98.2 0.03 13.5	50.4 1.41 185.6 1699.6 23.3 1.3 3.9 11.3 35.8 3.7 2.4 2.60 16.30 113.6 32.3 158.6 0.04 14.3	6.8 2.96 128.5 135.1 41.9 1.4 0.2 56.4 26.5 2.1 0.5 0.03 0.51 11.7 47.0 62.8 0.03 6.0	9.0 2.81 119.9 235.9 35.9 0.8 1.2 54.6 28.8 3.6 0.7 0.07 0.87 26.4 32.1 62.8 0.04 5.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.1 2.73 160.6 653.8 58.1 2.6 3.6 161.1 29.4 10.1 1.8 0.56 0.58 12.6 17.9 27.9 0.02 0.0		0.1 5.10 -6.1 162.2 42.5 2.0 1.6 64.4 30.2 2.3 0.5 0.16 0.35 21.0 44.0 62.7 0.01 3.8 0.16 0.35 21.0 44.0 62.7 0.01 3.8 0.16	6.3 9.47 -404.6 34.0 561.7 14.7 3.0 793.8 139.7 1.0 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 0.01 0.00 107.4 597.6 958.8 0.35 0.1 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.0	0.1.1 8.88 $-4.35.3$ $3.3.1$ $5.94.0$ 15.3 2.9 771.0 133.8 1.2 0.1 0.00 0.03 31.6 574.8 347.8 3.40 0.3	31.1 9.32 -439.8 33.7 612.0 15.6 3.0 786.0 136.6 1.0 0.1 0.00 0.02 49.7 628.4 768.8 2.60 0.2	6.3 6.09 -95.5 35.8 134.1 3.2 2.9 253.1 47.6 17.9 1.1 0.01 0.13 136.5 20.3 129.0 0.01 0.1	16.0 7.60 -180.4 73.2 236.8 7.5 2.9 369.6 66.7 7.6 0.3 0.28 0.00 86.4 161.5 267.4 0.04 0.28 0.00 86.4 161.5 267.4 0.04 0.28 0.01 0.0	34.1 7.45 -334.4 40.3 715.9 19.2 2.8 893.4 153.6 1.0 0.1 0.03 0.01 940.6 104.6 548.9 0.21 0.0	57.5 7.40 -189.5 72.0 288.8 7.0 4.2 372.2 66.8 4.7 0.7 0.40 0.04 71.2 173.7 271.3 0.06 0.0	4.2 7.14 -213.1 63.7 332.0 8.1 4.6 420.9 76.5 3.6 0.5 0.45 0.01 115.3 249.3 425.5 0.13 0.0		31.6 7.13 —319.7 43.9 337.6 8.0 4.4 449.7 81.9 2.3 0.2 0.06 0.00 123.2 124.7 290.8 0.30 0.0
	3.3 0.3	8.4 0.9	3.5 1.2	3.5 1.	3.7 2.4	2.1 0.5	3.6 0.3	178.3 52.	10.1 1.8		2.3 0.5	1.0 0.1	1.2 0.	1.0 0.	17.9 1.	7.6 0.5	1.0 0.1	4.7 0.3	3.6 0.5	2.3 0.5	
Na K	9.9 26.2	4.2 4.6	8.0 35.4	5.6 20.0	1.3 35.8	6.4 26.5	4.6 28.8	5.5 18.2	31.1 29.4		4.4 30.2	93.8 139.7	71.0 133.8	36.0 136.6	53.1 47.6	59.6 66.7	93.4 153.6	72.2 66.8	20.9 76.5	19.7 81.9	
NO_3	3.5	4.5	5.0 1	5.1	3.9 1	0.2 5	1.2 5	3.6 5	3.6 10		1.6 6	3.0 75	2.9 7	3.0 78	2.9 2	2.9 30	2.8	4.2 3′	4.6 42	4.4 4	
ц	0.5	0.7	1.4	0.5	1.3	1.4	0.8	1.8	2.6		2.0	14.7	15.3	15.6	3.2	7.5	19.2	7.0	8.1	8.0	
CI	22.8	22.6	24.8) 22.9	5 23.3	41.9	35.9	9 32.0	58.1		42.5	561.7	594.0	612.0	134.1	236.8	715.9	288.8	332.0	337.6	
SO_4	882.7	776.1	879.0	1 634.0	1 699.6	135.1	235.9	1 506.9	653.8		162.2	34.0	33.1	33.7	35.8	73.2	40.3	72.0	63.7	43.9	
Eh	229.8	199.8	196.4	168.1	185.6	128.5	119.9	199.4	160.6		-6.1	-404.6	-435.3	-439.8	-95.5	-180.4	-334.4	-189.5	-213.1	-319.7	
Ηd	1.85	1.85	1.93	2.04	1.41	2.96	2.81	2.08	2.73		5.10	9.47	8.88	9.32	60.09	7.60	7.45	7.40	7.14	7.13	
Т	41.6	65.4	68.7	85.4	80.4	86.8	89.0	49.3	66.1		90.1	66.3	91.1	81.1	46.3	46.0	84.1	57.5	64.2	91.6	
泉名	地热体验区1号泉	地热体验区2号泉	地热体验区4号泉	地热体验区 6 号泉	地热体验区7号泉	珍珠泉一右	珍珠泉一出	大滚锅酸性泉	老滚锅(高温)		珍珠泉一左	眼镜泉汇	眼鏡泉左	眼鏡泉右	忠孝寺泉	澡塘河仙人澡塘	大滚锅	蛤蟆嘴亭中	蛤蟆嘴亭左	蛤蟆嘴池	
	TY-01	TY-02	TY-04	2TY-06	77Y-07	ZQ-R	ZZQ-C	GG-AS	GG-HT	扁碱性泉	ZZQ-L	YJQ-C	YJQ-L	YJQ-R	ZXS	ZT07	GG-NS	MZT-M	IMZT-L	HMZD	

注:T的单位为℃;Eh的单位为mV;As(V)、As(III)和As的单位为µs/L;其他化学组分的单位为mg/L.

热海热泉的水化学组成

表1

0.0 0.0 0.0 0.0

2.60

573.8 657.4 314.6 278.4

461.4151.3

127.9 403.6

0.02

0.00

0.10.10.1 0.1

1.0 1.41.3 1.0

124.5 100.1 127.9 113.1

692.6547.6

4.2 3.9 4.2 3.9

13.8 11.514.5

560.7 464.6 593.9 597.1

33.3 44.5 32.2 31.1

-385.1-317.2-424.2

7.40

92.4 85.4

怀胎井左

HTJ-L HTJ-R GMQ

TQL

怀胎并右 鼓鸣泉 听泉楼

6.88

699.0

14.6

-394.0

8.12 7.96

90.5 82.3

716.2

0.00 0.01 0.00

0.02 0.01 0.01

5.00 0.67

346.9

50.7 78.8

3.00

398.8

(检测限为 0.01 mg/L), 阴离子用美国 Dionex 公司的 DX-120 离子色谱仪测定(检测限为 0.01 mg/L). 样品分析结果见表 1.

2.2 热泉样品氧化还原电位(Eh)的计算

在一定环境条件下,如天然水中的氧化还原电 对已达到完全的氧化还原反应平衡,则其含量相对 大小受控于氧化还原电位(Eh)(张迪等,2014).笔 者基于热海热泉样品中不同氧化还原电对(包括 Fe([])/Fe([]), N(-[])/N(V), O(-[])/O(0),S(-Ⅱ)/S(Ⅱ)、As(Ⅲ)/As(V))的实测含量,用由 美国地调局开发、且被广泛使用的水文地球化学模 拟软件 PHREEQC 进行了对应热泉环境的 Eh 值 的计算,结果见图 2.图 2显示不同氧化还原电对计 算出的 Eh 值总体上差别很大,但基于 As(Ⅲ)/As (V)和 S(-Ⅱ)/S(Ⅱ)计算出的 *Eh* 值则非常接近. 这意味着热泉样品中的 Fe(Ⅱ)/Fe(Ⅲ)、N(-Ⅲ)/ N(V)、O(-Ⅱ)/O(0)远未达到氧化还原平衡,但 As(Ⅲ)/As(V)及S(-Ⅱ)/S(Ⅱ)则已达到平衡或 非常接近平衡,换言之,利用 As(Ⅲ)/As(V)和 S(-II)/S(VI)的实测含量计算出的 Eh 值可近似 代替热泉环境的实际氧化还原电位.本文最终用以 上两组氧化还原电对计算出的 Eh 值的平均值作为 样品的氧化还原电位(计算结果见表 1),并以其为 基础进行后续分析计算.

2.3 硫代砷化物化学热力学数据的获取

化学热力学数据是地球化学模拟和计算的基础,准确且完整的数据有助于获得更为符合实际情况的模拟结果.本次研究所采用的 S-As-O 体系的化学热力学数据来源于已发表的文献(Thilo *et al.*,

2004; Helz and Tossell, 2008; Zaksznova-Herzog and Seward, 2012)和数据库 wateq4f.dat(Parkhurst and Appelo, 1999), 如表 2 所示.

3 结果和讨论

3.1 地热水地球化学特征

如前文所述,热海热田是我国大陆范围内唯一 大量发现强酸性热泉的地热田(Guo et al., 2014), 热田内酸性热泉具有与中性/偏碱性热泉迥乎不同 的地球化学特征.由表1可见,本次研究采集的24 个水样的 pH 变化范围大,在 1.41 ~ 9.47 之间.笔 者以 pH=5.0 为临界值将所采集热泉样品分为酸 性(pH<5.0)和中性/偏碱性(pH>5.0)两组.其中 酸性热泉 9个,其 Eh 在 119.9~229.8 mV 之间,总 砷含量在 22.8~158.7 µg/L 之间,总硫化物含量在 0.01~0.07 mg/L 之间;中性/偏碱性热泉 15 个,其 Eh 在-435.3~-6.0 mV 之间,总砷含量在 62.8~ 962.3 µg/L 之间, 总硫化物含量在 0.01~5.00 mg/L 之间.以上数据指示酸性热泉的 Eh 值均大于 0,中 性/偏碱性热泉的 Eh 值则均小于 0,且酸性热泉的 总砷和总硫化物含量远低于中性/偏碱性热泉.此 外,热海中性/偏碱性热泉中的主要化学组分为 Na、 K、Cl和F,含量范围分别为64.4~893.4 mg/L、 47.6~153.6 mg/L、42.5~715.9 mg/L 和 2.0~ 19.2 mg/L.与中性/偏碱性热泉相比,酸性热泉中上 述组分的含量低得多,Na、K、Cl 和 F 的含量范围分 别是:4.2~161.6 mg/L、4.6~35.8 mg/L、22.6~ 58.1 mg/L和 0.5~2.6 mg/L, 而 SO₄、Ca、Mg 的含 量则较高,如 DGG-AS 样品的 Ca 和 Mg 浓度分别 为 178.3 mg/L 和 52.6 mg/L, DRTY-07 样品的 SO4 浓度高达 1 699.6 mg/L.

热海热田酸性热泉和中性/偏碱性热泉的水文 地球化学特征的差异是其不同地球化学成因的直接 反映.在热海,中性/偏碱性热泉是深部母地热流体 经不同冷却过程(绝热冷却、传导冷却、与地下冷水 混合)后排出地表所形成,其水化学组成受深部水文 地球化学过程的影响,是热田深部岩浆流体补给和 热储流体一岩石相互作用的综合体现(Guo and Wang,2012);而酸性热泉则是地热流体在绝热冷却 过程中分离出来的蒸汽加热浅层地下冷水且蒸汽中 的 H₂S 在浅部偏氧化环境被氧化为硫酸的结果 (Guo et al.,2014),除硫酸盐来自深源 H₂S 的氧化 外,其他水化学组分本质上源于入渗水在近地表浅

表 2 砷的不同形态的化学热力学数据

Table 2 Chemical thermodynamic data of arsenic species

			1					
砷的形态	化学结构式	化学反应式	$\lg K$	来源				
		$H_3AsO_3 = H_2AsO_3^- + H^+$	-9.15	Parkhurst and Appelot (1999)				
亚砷酸盐	$H_n AsO_3^{n-3}$	$H_2 AsO_3^{-} = HAsO_3^{2-} + H^+$	-23.85	Parkhurst and Appelot (1999)				
		$HAsO_{3}{}^{2-} = AsO_{3}{}^{3-} + H^{+}$	-39.55	Parkhurst and Appelot (1999)				
		$H_3 AsO_3 + H_2 S = H_3 AsSO_2 + H_2 O$	0.4	Helz and Tossell (2008)				
一硫代亚砷酸盐		$H_3AsSO_2 = H_2AsSO_2^- + H^+$	-3.8	Zaksznova-Herzog and Seward(2012)				
	$H_n AsSO_2^{n-3}$	${ m H}_{2}{ m AsSO_{2}}^{-} = { m HAsSO_{2}}^{2-} + { m H}^{+}$	≤-13.5	Zaksznova-Herzog and Seward(2012)				
		$HAsSO_2^{2-} = AsSO_2^{3-} + H^+$	≤-14.0	Zaksznova-Herzog and Seward(2012)				
		$H_3AsSO_2 + H_2S = H_3AsS_2O + H_2O$	3.8	Helz and Tossell (2008)				
		$H_3AsS_2O = H_2AsS_2O^- + H^+$	-3.8	Zaksznova-Herzog and Seward(2012)				
二硫代亚砷酸盐	$H_n AsS_2 O^{n-3}$	$H_2AsS_2O^- = HAsS_2O^{2-} + H^+$	-6.5	Zaksznova-Herzog and Seward(2012)				
		$HAsS_2O^{2-} = AsS_2O^{3-} + H^+$	-14.0	Zaksznova-Herzog and Seward(2012)				
		$H_3A_sS_2O + H_2S = H_3A_sS_3 + H_2O$	5.6	Helz and Tossell(2008)				
		$H_3A_8S_3 = H_2A_8S_3^- + H^+$	-3.77	Zaksznova-Herzog and Seward(2012)				
三硫代亚砷酸盐	$H_n As S_3^{n-3}$	$H_2AsS_3^{-} = HAsS_3^{2-} + H^+$	-6.53	Zaksznova-Herzog and Seward(2012)				
		$HAsS_{3}^{2-} = AsS_{3}^{3-} + H^{+}$	-9.29	Zaksznova-Herzog and Seward(2012)				
砷酸盐		$H_3AsO_4 = H_2AsO_4^- + H^+$	-2.3	Parkhurst and Appelot (1999)				
	$H_n AsO_4^{n-3}$	$H_2AsO_4^{-} = HAsO_4^{2-} + H^+$	-9.46	Parkhurst and Appelot (1999)				
		$HAsO_4{}^{2-} = AsO_4{}^{3-} + H^+$	-21.11	Parkhurst and Appelot (1999)				
		$H_3AsO_4 + H_2S = H_3AsSO_3 + H_2O$	11.0	Helz and Tossell(2008)				
		$H_3AsSO_3 = H_2AsSO_3^- + H^+$	-3.3	Thilo <i>et al</i> .(2004)				
一硫代砷酸盐	$H_n AsSO_3^{n-3}$	$\mathrm{H_2AsSO_3}^- = \mathrm{HAsSO_3}^{2-} + \mathrm{H^+}$	-7.2	Thilo <i>et al</i> .(2004)				
		$HAsSO_{3}{}^{2-} = AsSO_{3}{}^{-3} + H^{+}$	-11.0	Thilo <i>et al</i> .(2004)				
		$H_3 AsSO_3 + H_2 S = H_3 AsS_2 O_2 + H_2 O$	0.1	Helz and Tossell (2008)				
二硫代砷酸盐		$H_3 AsS_2 O_2 = H_2 AsS_2 O_2 - + H^+$	2.4	Helz and Tossell (2008)				
	$H_n AsS_2 O_2^{n-3}$	$H_2AsS_2O_2{}^- = HAsS_2O_2{}^{2-} + H^+$	-7.1	Thilo <i>et al</i> .(2004)				
		${\rm HAsS_2O_2{}^{2-}=~AsS_2O_2{}^{-3}\!+\!{\rm H^+}}$	-10.8	Thilo <i>et al</i> .(2004)				
三硫代砷酸盐		$H_{3} As S_{2} O_{2} + H_{2} S = H_{3} As S_{3} O + H_{2} O$	3.5	Helz and Tossell (2008)				
		$H_3AsS_3O = H_2AsS_3O^- + H^+$	1.7	Helz and Tossell (2008)				
	$H_n AsS_3 O^{n-3}$	$H_2AsS_3O^- = HAsS_3O^{2-} + H^+$	-1.5	Helz and Tossell (2008)				
		${ m HAsS_{3}O^{2-}=~AsS_{3}O^{3-}+H^{+}}$	-10.8	Thilo <i>et al</i> .(2004)				
		$H_3AsS_3O + H_2S = H_3AsS_4 + H_2O$	2.6	Helz and Tossell (2008)				
		$H_3AsS_4 = H_2AsS_4^- + H^+$	2.3	Helz and Tossell (2008)				
四硫代砷酸盐	$H_n As S_4^{n-3}$	$H_2 As S_4^{-} = H As S_4^{2-} + H^+$	-1.5	Helz and Tossell (2008)				
		$HAsS_{4}{}^{2-}=~AsS_{4}{}^{3-}+H^{+}$	-5.2	Thilo <i>et al</i> .(2004)				
-								

循环过程中对浅层含水层介质的溶滤.热海热泉样品 在地球化学特征上的差异性有助于笔者对硫代砷化 物在不同地球化学条件下的分布特征进行深入研究.

3.2 热泉中各种硫代砷化物含量的计算结果

基于表 2 中不同形态砷的化学热力学数据,用 水文地球化学模拟软件 PHREEQC 计算出了热泉 样品中各种硫代砷化物的浓度,结果见表 3.总体来 看,热海热泉中砷的主要形态为硫代砷酸盐,占总砷 含量的 2.04%~100%,平均百分含量为 69.68%;砷 酸盐和亚砷酸盐次之,平均百分含量分别为 25.41% 和15.49%;硫代亚砷酸盐的含量则远远小于其他 3 种形态的砷,在任一样品中的百分含量均低于 0.001%.值得注意的是,亚砷酸盐在酸性热泉中是 砷的主要存在形态,百分含量最高可达 97.96%;而 在碱性热泉中,所有样品的亚砷酸盐含量均不足 0.001%.在硫代砷酸盐中,按百分含量高低排序依 次为:一硫代砷酸盐(78.23%)→三硫代砷酸盐 (11.15%)→四硫代砷酸盐(9.31%)→二硫代砷酸 盐(1.30%).

3.3 酸性热泉和中性/偏碱性热泉中砷的形态分布 特征

在酸性热泉中,砷的形态以硫代砷酸盐和亚砷酸盐为主,其平均百分含量分别为56.68%和41.31%;砷酸盐和硫代亚砷酸盐的含量极低,其平均百分含量分别不足0.01%和0.0001%(表3).图3a指示酸性热泉中硫代砷酸盐和亚砷酸盐的含量与总砷浓度及总硫化物浓度无明显相关性,但与*Eh*密切相关.Eh对酸性泉中砷的存在形态的影响

表 3 热泉中各种硫代砷化物的含量

Table 3 Concentrations of different thioarsenate in the hot springs

投口炉日	亚砷酸	袁盐	砷酸	盐	硫代亚砷	1酸盐	硫代砷	总砷	
作前编写	(µg/L)	%	(µg/L)	%	(µg/L)	%	(µg/L)	%	$(\mu g /L)$
DRTY-01	2.54E+01	97.96	2.42E-05	0.000	1.99E-05	0.000	5.28E-01	2.04	25.91
DRTY-02	1.99E+01	55.56	5.11E-04	0.001	2.10E-05	0.000	$1.59E \pm 01$	44.44	35.86
DRTY-04	$1.10E \pm 02$	74.28	4.29E-03	0.003	3.28E-05	0.000	3.79E+01	25.71	147.50
DRTY-06	3.34E+01	33.98	1.22E-02	0.012	6.01E-06	0.000	6.49E+01	66.01	98.31
DRTY-07	7.22E+01	45.53	1.19E-02	0.008	1.74E - 05	0.000	8.64E+01	54.46	158.65
ZZQ-R	2.28E-01	0.36	1.96E-02	0.031	5.65E-08	0.000	6.26E+01	99.61	62.89
ZZQ-C	8.85E-02	0.14	3.82E-03	0.006	8.96E-08	0.000	6.28E+01	99.85	62.89
DGG-AS	1.35E+01	59.17	6.14E-05	0.000	7.31E-05	0.000	9.31E+00	40.83	22.80
LGG-HT	1.35E+00	4.83	2.49E-03	0.009	9.40E-07	0.000	2.66E+01	95.16	27.96
ZZQ-L	1.58E-04	0.000	3.94E+01	62.74	3.22E-13	0.000	2.34E+01	37.26	62.79
YJQ-C	5.30E-17	0.000	4.90E+02	50.92	5.94E-22	0.000	4.72E+02	49.08	962.30
YJQ-L	2.19E-18	0.000	3.04E+00	0.87	1.28E-21	0.000	3.46E+02	99.13	349.09
YJQ-R	3.50E-18	0.000	4.67E+01	6.05	4.09E-22	0.000	7.25E+02	93.95	771.63
ZXS	8.33E-05	0.000	$1.06E \pm 02$	81.89	8.64E-13	0.000	2.34E+01	18.11	129.25
ZT07	8.97E-10	0.000	$1.74E \pm 02$	65.10	7.90E-16	0.000	9.35E+01	34.90	268.03
DGG-NS	7.75E-12	0.000	6.03E+01	10.93	6.09E-17	0.000	4.91E+02	89.07	551.15
HMZT-M	7.86E-10	0.000	1.32E+02	48.45	8.12E-16	0.000	$1.40E \pm 02$	51.55	271.94
HMZT-L	2.68E-09	0.000	1.22E + 02	28.66	3.44E-15	0.000	3.04E+02	71.34	426.56
HMZD	1.37E-13	0.000	1.43E-01	0.05	6.56E-17	0.000	2.91E + 02	99.95	291.57
XKT-R	9.49E-19	0.000	4.01E-05	0.00	1.84E-20	0.000	2.94E+02	100.00	293.78
HTJ-L	9.01E-19	0.000	1.07E - 05	0.00	2.99E-20	0.000	5.76E + 02	100.00	575.75
HTJ-R	2.82E-12	0.000	2.02E-01	0.03	1.08E-15	0.000	6.59E+02	99.97	659.35
GMQ	2.72E-19	0.000	1.06E - 03	0.00	4.37E-21	0.000	$3.16E \pm 02$	100.00	315.71
TQL	7.50E-19	0.000	3.34E - 04	0.00	1.52E - 20	0.000	2.79E + 02	100.00	279.36
	一硫代砷	酸盐	二硫作	弋砷酸盐	Ē	硫代砷酶	<u> </u>	四硫代码	申酸盐
样品编号 -	(µg/L)	%	(µg/L)	%	(µg/	L)	% (μg/L)	%
DRTY-01	0.52	98.95	0.01	1.0	4 0.0	0	0.00	0.00	0.00
DRTY-02	15.71	98.61	0.22	1.3	9 0.0	0	0.00	0.00	0.00
DRTY-04	37.77	99.60	0.15	0.4	0.0	0	0.00	0.00	0.00
DRTY-06	64.71	99.73	0.18	0.2	7 0.0	0	0.00	0.00	0.00
DRTY-07	86.12	99.66	0.29	0.3	4 0.0	0	0.00	0.00	0.00
ZZQ-R	61.53	98.23	1.10	1.7	6 0.0	0	0.00	0.00	0.00
ZZQ-C	59.22	94.30	3.56	5.6	7 0.0	2	0.04	0.00	0.00
DGG-AS	8.55	91.83	0.75	8.0	9 0.0	1	0.08	0.00	0.00
LGG-HT	25.63	96.35	0.97	3.6	3 0.0	0	0.02	0.00	0.00
ZZQ-L	23.39	100.00	0.00	0.0	0.0	0	0.00	0.00	0.00
YJQ-C	472.28	99.99	0.03	0.0	1 0.0	0	0.00	0.00	0.00
YJQ-L	336.98	97.38	2.46	0.7	1 5.5	9	1.62	1.02	0.29
YJQ-R	723.88	99.86	0.77	0.1	1 0.2	5	0.03	0.02	0.00
ZXS	23.41	100.00	0.00	0.0	0.0	0	0.00	0.00	0.00
ZT07	93.53	100.00	0.00	0.0	0.0	0	0.00	0.00	0.00
DGG-NS	490.62	99.94	0.24	0.0	5 0.0	3	0.01	0.00	0.00
HMZT-M	140.18	99.99	0.01	0.0	1 0.0	0	0.00	0.00	0.00
HMZT-L	304.27	99.98	0.05	0.0	2 0.0	0	0.00	0.00	0.00
HMZD	158.50	54.39	9.29	3.1	9 120.	57	41.37	3.06	1.05
XKT-R	0.64	0.22	0.59	0.2	0 148.	51	50.55	44.03	49.03
HTJ-L	0.31	0.05	0.52	0.0	9 229.	58	39.88 3	345.33	59.98
HTJ-R	304.61	46.21	23.36	3.5	4 324.	55	49.24	6.63	1.01
GMQ	4.92	1.56	1.46	0.4	6 132.	25	41.89	177.06	56.08
TOL	2.19	0.78	0.94	0.3	4 119.	58	42.80	156.66	56.08

注:百分比为相对于总砷浓度的百分含量.

图 3 酸性热泉(a)和中性/偏碱性(b)热泉中砷的不同形态的百分含量随 *Eh*、总砷浓度和总硫化物浓度的变化 Fig.3 Percentage of different arsenic species vs. *Eh*, total arsenic, and total sulfide concentrations in acidic hot springs (a) and neutral/weak alkaline hot springs (b)

受一个临界值(160 mV)的控制,当 Eh 小于此临界 值(160 mV)时,对水中砷的形态几无影响,溶解态 砷全部以硫代砷酸盐的形式存在;而大于此临界值 (160 mV)时,Eh 值升高将导致硫代砷酸盐的百分 含量近线性降低(R²=0.903 4),亚砷酸盐的百分含 量则呈近线性增加(R²=0.903 5).Eh 大于 190 mV 时,酸性泉中亚砷酸盐的百分含量高于硫代砷酸盐, 是砷的主要存在形态.综上所述,Eh 是酸性热泉中 控制砷形态分布的主导性因素,而总砷浓度和总硫 化物的浓度则影响甚微.偏还原的环境条件是硫代 砷酸盐稳定存在的重要前提,如环境 Eh 上升,硫代 砷酸盐有向亚砷酸盐转化的趋势.

在中性/偏碱性热泉中,砷的存在形态以硫代砷 酸盐为主,其平均百分含量为71.91%;砷酸盐次之, 平均百分含量为28.09%;亚砷酸盐和硫代亚砷酸盐 的平均百分含量分别低于10⁻⁴%和10⁻¹³%.图3b 指示当Eh < -250 mV时,中性/偏碱性热泉中硫 代砷酸盐的百分含量大都在90%以上,远高于砷酸 盐;当Eh > -250 mV,硫代砷酸盐的百分含量总体 上随Eh值上升而下降(线性相关系数 $R^2 =$ 0.69581),砷酸盐百分含量则呈相反变化趋势(线 性相关系数 $R^2 = 0.86401$).需要指出的是,采自珍

图 4 中性/偏碱性热泉总砷浓度与 Eh 的关系

珠泉的 ZZQ-L 样品在图 3b 中为异常点,该样品在 中性/偏碱性热泉中具有最高的 Eh 值,但其硫代砷 酸盐的百分含量达37.26%,在该组样品中并不最 低.这与笔者划分酸性热泉和中性/偏碱性热泉时所 采用的临界值"pH=5.0"有关.在地球化学成因上, 珍珠泉是蒸汽加热型酸性水和自深部升流的中性氯 化物型地热流体的混合结果(Guo et al., 2014).所 谓"珍珠泉"由无数密集分布的小泉口组成,大部分 泉口排出的地热水中"蒸汽加热型"酸性水占主要比 例(如 pH 分别为 2.96 和 2.81 的样品 ZZQ-R 和 ZZQ-C),但对样品 ZZQ-L 而言,中性氯化物型地热 流体在其中的混合比偏高,该样品的 pH 值(5.10) 也远高于采自珍珠泉其他泉口的样品.因此,样品 ZZQ-L 事实上是酸性热泉和中性/偏碱性热泉之间 的亚类,其实际 pH 值也与笔者划分热泉类型时所 用的临界值"5.0"非常接近.这样,不论对于酸性热 泉还是对于中性/偏碱性热泉,Eh 均是影响砷的形 态的重要因素:区别在干,在酸性条件下低 Eh 环境 中稳定存在的硫代砷酸盐随 Eh 升高向亚砷酸盐转化,但在中性/偏碱性条件下则向砷酸盐转化.

另外,就中性/偏碱性热泉而言,水样的模拟结 果显示总砷浓度和总硫化物浓度对砷的形态分布也 有影响.如图 3b 所示,当总砷浓度<270 μg/L 时,砷 酸盐的百分含量大于硫代砷酸盐的百分含量;而当 总砷浓度>270 µg/L 时,硫代砷酸盐的百分含量一 般大于砷酸盐,但仔细分析样品的水化学测试结果 发现,中性/偏碱性热泉的总砷浓度与 Eh 值具有负 相关性(图 4; $R^2 = 0.4192$),因此总砷浓度对砷的形 态分布的影响事实上是 Eh 影响的间接反映(或者 说图 3b 中样品总砷浓度和砷的形态分布之间的关 系无地球化学指示意义).为证明此结论,笔者进行 了控制条件下的模拟,即设定其他模拟条件不变 (pH=7; pe=-5(相当于 Eh=-296 mV); 总硫化物含量=2 mg/L),仅考虑水中总砷含量的变化(从 100 µg/L 增加至 1 000 µg/L) 对砷的形态分布的影 响.模拟结果显示(图 5),在设定的总砷含量变化范 围内(100~1000 μg/L),砷的存在形态一直以硫代 砷酸盐为主(百分含量为 93.3%~99.2%),其次为 亚砷酸盐(百分含量为 0.6% ~ 6.4%), 硫代亚砷酸 盐与砷酸盐的百分含量极低.换言之,当水中其他地 球化学条件(包括 Eh 值)保持不变时,砷的各种形 态的百分含量几乎不随总砷含量变化.与总砷浓度 不同,总硫化物浓度对砷的形态分布具有直接影响. 图 3b 显示当样品的总硫化物浓度小于0.40 mg/L 时,硫代砷酸盐和砷酸盐的百分含量分别随总硫化 物浓度增加明显上升和下降;总硫化物浓度大于 0.40 mg/L时,硫代砷酸盐的百分含量稳定在 90%

图 5 控制条件下砷的形态分布与总砷含量的关系

图 6 不同形态硫代砷酸盐百分含量与 Eh 和总硫化物浓度的关系

Fig.6 Percentage of mono-, di-, tri- and tetra-thioarsenates vs. Eh (a) and total sulfide concentration (b) in all hot springs

以上,砷酸盐的百分含量则相应小于10%.

总体来看,中性/偏碱性条件比酸性条件更有利 于地热水中硫代砷化物的稳定存在.一方面,硫代砷 化物在酸性环境中极易以非定形态的形式形成沉淀 (Planer-Friedrich and Wallschläger,2009),从而影 响其稳定性;另一方面,酸性条件下热泉中的总硫化 物倾向于以 H₂S的形式存在,H₂S的易挥发性使酸 性热泉中总硫化物的含量一般远低于中性/偏碱性 热泉,而硫化物的富集则是天然水中的砷主要以硫 代砷化物的形式存在的必要前提.此外,如前文所 述,本次研究中的酸性热泉为蒸汽加热型酸性水(而 非岩浆流体吸收型酸性水),赋存于近地表偏氧化环 境,因此 Eh 值较高,从而不利于硫代砷化物以较高 含量和比例存在.

3.4 不同形态硫代砷酸盐的分布对 Eh 和总硫化 物浓度的响应

与硫代亚砷酸盐相比,硫代砷酸盐是本次研究所 采集的样品中硫代砷化物的占绝对优势的存在形式.如 表 3 所示,一硫代砷酸盐是大多数样品中硫代砷化物 的主要存在形式;在全部 24 个样品中,仅 6 个样品的一 硫代砷酸盐在总硫代砷化物中的百分含量小于 90%. 图 6 显示:不同形态的硫代砷酸盐的相对含量在一定 程度上受样品 Eh 值和总硫化物浓度的影响.在 Eh < -200 mV、总硫化物浓度>0.6 mg/L的情况下,部分样 品的三硫代和砷酸盐或四硫代砷酸盐的百分含量较高 (可达 40%~60%),甚至超过一硫代砷酸盐的百分含 量.而二硫代砷酸盐在任何情况下都不在硫代砷化物中 占优势地位,仅在 Eh >100 mV 和总硫化物浓度小于 0.1 mg/L时百分含量略高,可达 3%~8%.

4 结论

(1)热海热泉中砷的主要形态是硫代砷酸盐,平 均百分含量达 69.68%;砷酸盐和亚砷酸盐次之,平 均百分含量分别为 25.41%和 15.49%;硫代亚砷酸 盐的含量则极低.在硫代砷酸盐中,一硫代砷酸盐是 大多数热泉样品的主要存在形式,三硫代砷酸盐和 四硫代砷酸盐在少部分样品中占优势,而二硫代砷 酸盐在所有样品中百分含量均小于 10%.

(2)酸性热泉中砷的形态以硫代砷酸盐和亚砷酸盐为主;中性/偏碱性热泉中则以硫代砷酸盐为 主,砷酸盐次之.酸性环境中溶解态的硫代砷化物易 形成非晶态硫砷化合物沉淀,因而不是硫代砷化物 在水中富集的有利条件.在 pH 之外,*Eh* 和总硫化 物含量是控制热泉中砷的形态分布的主要因素.一 般而言,低 *Eh* 值和高硫化物含量有利于硫代砷化 物、特别是高硫代砷酸盐的稳定存在.随着 *Eh* 升 高,酸性热泉和中性/偏碱性热泉中的硫代砷酸盐分 别向亚砷酸盐和砷酸盐转化.

(3)硫化物的富集是中性/偏碱性地热水中硫代 砷化物(特别是高硫代砷酸盐)大量、稳定存在的必要 条件.对我国藏南、滇西广泛分布的富硫化物热泉而 言,硫代砷化物是最可能的砷的主要存在形式,而且 其中一定不乏砷主要以三硫代砷酸盐和四硫代砷酸 盐存在的情况.而国外研究表明:三硫代砷酸盐的毒 性与亚砷酸盐相当,且远高于一硫代砷酸盐和二硫代 砷酸盐(Planer-Friedrich *et al.*,2008).由此可见,热泉 中硫代砷化物形态的全面认识是探讨地热成因砷的 环境地球化学行为及其归宿的必要前提,对硫代砷化 物和其他形态砷相互转化规律的研究是客观评价地 热成因砷环境毒理效应的重要基础.加强我国富硫化物高温热泉中硫代砷化物的研究非常重要.

References

- Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. Deducing the Magma Resources by the Result of MT Sounding in Rehai Geothermal Field in Tengchong. *Chinese Science Bulletin*, 39(4):344-347(in Chinese).
- Bostick, B.C., Fendorf, S., Brown, G.E., 2005. In Situ Analysis of Thioarsenite Complexes in Neutral to Alkaline Arsenic Sulphide Solutions. *Mineralogical Magazine*, 69(5):781-795.doi:10.1180/0026461056950288
- Cheng, D., Liao, P., Yuan, S.H., 2016. Effect of FeS Colloids on Desorption of As(V) Adsorbed on Ferric Iron. *Earth Science*, 41(2):325–330(in Chinese with English abstract).
- Cleverley, J. S., Benning, L. G., Mountain, B. W., 2003. Reaction Path Modelling in the As-S System: A Case Study for Geothermal as Transport. *Applied Geochemistry*, 18 (9): 1325-1345.doi:10.1016/s0883-2927(03)00054-4
- Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10):1-12.
- Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215 - 216: 61 - 73. doi: 10.1016/j.jvolgeores. 2011.12.003
- Guo, Q, H,, Wang, Y. X., Liu, W., 2007. Major Hydrogeochemical Processes in the Two Reservoirs of the Yangbajing Geothermal Field, Tibet, China. Journal of Volcanology and Geothermal Research, 166(3-4):255-268.doi:10.1016/j.jvolgeores.2007.08.004
- Helz, G.R., Tossell, J.A., 2008. Thermodynamic Model for Arsenic Speciation in Sulfidic Waters: A Novel Use of Ab Initio Computations. *Geochimica et Cosmochimica Acta*, 72(18): 4457-4468. doi:10.1016/j.gca.2008.06.018
- Hirner, A. V., Feldmann, J., Krupp, E., et al., 1998. Metal (Loid) Organic Compounds in Geothermal Gases and Waters.Organic Geochemistry, 29(5-7):1765-1778. doi:10.1016/s0146-6380(98)00153-3
- Li,J.X., Guo, Q. H., Wang, Y.X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. *Earth Science*, 40 (9):1576-1584(in Chinese with English abstract).

Liao, Z.J., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt: Ge-

othermal Resources and Typical Geothermal System. Science Press, Beijing (in Chinese).

- Lima, A., Cicchella, D., Francia, S.D., 2003. Natural Contribution of Harmful Elements in Thermal Groundwaters of Ischia Island (Southern Italy). *Environmental Geology*, 43(8):930-940.
- Parkhurst, D. L., Appelo, C., 1999. User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report, 99-4259.
- Pascua, C.S., Minato, M., Yokoyama, S., et al., 2007. Uptake of Dissolved Arsenic during the Retrieval of Silica from Spent Geothermal Brine. *Geothermics*, 36(3):230-242. doi:10.1016/j.geothermics.2007.03.001
- Planer-Friedrich, B., Franke, D., Merkel, B., et al., 2008. Acute Toxicity of Thioarsenates to Vibrio Fischeri.*Environmental Toxicology and Chemistry*, 27(10):2027. doi:10.1897/07-633.1
- Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. *Environmental Science & Technology*, 41 (15): 5245 - 5251. doi: 10. 1021/ es070273v
- Planer-Friedrich, B., Wallschläger, D., 2009. A Critical Investigation of Hydride Generation-Based Arsenic Speciation in Sulfidic Waters. Environmental Science & Technology, 43(13):5007-5013. doi:10.1021/es900111z
- Rader, K. J., Dombrowski, P. M., Farley, K. J., et al., 2004. Effect of Thioarsenite Formation on Arsenic(Ⅲ) Toxicity. Environmental Toxicology and Chemistry, 23 (7):1649.doi:10.1897/03-443
- Romero, L., Alonso, H., Campano, P., et al., 2003. Arsenic Enrichment in Waters and Sediments of the Rio Loa (Second Region, Chile). *Applied Geochemistry*, 18(9): 1399-1416.doi:10.1016/s0883-2927(03)00059-3
- Shangguan, Z.G., Bai, C. H., Sun, M. L., 2000. Characteristics of Modern Released Mantle Gases in Tengchong Geothermal Area. Science in China (Series D), 30 (4): 407-414 (in Chinese).
- Thilo, E., Hertzog, K., Winkler, A., 1970. Über Vorgänge bei der Bildung des Arsen (V)-sulfids beim Ansäuern von Tetrathioarsenatlösungen. Zeitschrift für Anorganische und Allgemeine CHEMIE, 373(2):111-121.
- Tong, W., Zhang, M.T., 1994. A Record of Springs in Hengduan Mountainous Area. Science Press, Beijing (in Chinese).
- Zakaznova-Herzog, V.P., Seward, T.M., 2012. A Spectropho-

tometric Study of the Formation and Deprotonation of Thioarsenite Species in Aqueous Solution at 22 °C. *Geochimica et Cosmochimica Acta*,83:48-60.

- Zhang, D., Guo, H. M., Ni, P., et al., 2014. Effect of Redox Conditions on Arsenic Release and Transport in Groundwater Systems: A Case Study in the Tongyu County. Quaternary Sciences, 34 (5): 1072 - 1081 (in Chinese with English abstract).
- Zhang, Z. F., Zhu, M. X., Liu, S. B., et al., 1982. Preliminary Studies of Hydrothermal Geochemistry of Xizang. Acta Scicentiarum Naturalum Universitis Pekinesis, 18(3): 88-96(in Chinese with English abstract).
- Zhao, C. P., Ran, H., Chen, K. H., 2006. Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient. Acta Petrologica Sinica, 22(6):1517-1528(in Chinese with English abstract).

附中文参考文献

白登海,廖志杰,赵国泽,等,1994.从 MT 探测结果推论腾冲

热海热田的岩浆热源.科学通报,39(4):344-347.

- 成东,廖鹏,袁松虎,2016.FeS 胶体对三价铁吸附态 As(V) 的解吸作用.地球科学,41(2):325-330.
- 李洁祥,郭清海,王焰新,2015.高温热田深部母地热流体的 温度计算及其升流后经历的冷却过程:以腾冲热海热 田为例.地球科学,40(9):1576-1584.
- 廖志杰,赵平,1999.滇藏地热带:地热资源和典型地热系统. 北京:科学出版社.
- 上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩 浆气体释放特征. 中国科学(D辑), (4): 407-414.
- 佟伟,章铭陶,1994.横断山区温泉志.北京:科学出版社.
- 张迪,郭华明,倪萍,等,2014.氧化还原条件对地下水中砷释 放迁移的影响——以通榆县高砷地下水为例.第四纪 研究,34(5):1072-1081.
- 张知非,朱梅湘,刘时彬,等,1982.西藏水热地球化学的初步 研究.北京大学学报:自然科学版,18(3):88-96.
- 赵慈平,冉华,陈坤华,2006.由相对地热梯度推断的腾冲火山区现存岩浆囊.岩石学报,22(6):1517-1528.