https://doi.org/10.3799/dqkx.2018.111

西藏青草山斑岩铜金矿床含矿斑岩锆石 U-Pb 年代学及岩石成因

郑海涛^{1,2},郑有业^{1*},徐 净¹,吴 松³,郭建慈⁴,高顺宝²,次 琼⁴

1.中国地质大学地质过程与矿产资源国家重点实验室,湖北武汉 430074
 2.中国地质大学地质调查研究院,湖北武汉 430074
 3.中国地质大学地球科学与资源学院,北京 100083
 4.西藏自治区地质矿产勘查开发局,西藏拉萨 850000

摘要:西藏青草山 Cu-Au 矿床是班公湖 - 怒江缝合带北侧新发现的具有大型远景的斑岩型矿床,但该矿床含矿斑岩的年龄、 成因及源区一直未得到有效的约束.对青草山花岗闪长岩以及含矿花岗岩闪长斑岩进行了锆石年代学、Hf 同位素以及岩石地 球化学研究.结果显示,花岗闪长岩与含矿花岗闪长斑岩的侵入时代分别为131.2±0.3 Ma 与117.9±0.8 Ma,代表了班公湖 -怒江缝合带早期的成岩作用以及斑岩 Cu-Au 成矿作用.二者具有相似的地球化学特征,表明二者可能具有相同的岩浆源区, 是不同时期同源岩浆活动的产物.结合含矿花岗闪长斑岩锆石 Hf 同位素组成,认为青草山含矿斑岩形成于班公湖 - 怒江洋壳 向北俯冲过程中,是下地壳部分熔融的产物,受到了少量地幔物质的混合.

关键词:岩石成因;锆石 U-Pb 年龄;斑岩铜金矿床;青草山;班公湖-怒江成矿带;西藏;地球化学;地质年代学. 中图分类号: P597 文章编号: 1000-2383(2018)08-2858-17 收稿日期: 2018-05-24

Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet

Zheng Haitao^{1,2}, Zheng Youye^{1*}, Xu Jing¹, Wu Song³, Guo Jianci⁴, Gao Shunbao², Ci Qiong⁴

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China 2. Geological Survey Institute, China University of Geosciences, Wuhan 430074, China

3. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

4. Tibet Autonomous Region Geological and Mineral Exploration and Development Bureau, Lhasa 850000, China

Abstract: The Qingcaoshan porphyry Cu-Au deposit, located in the northern Bangong Co-Nujiang belt, is a newly discovered porphyry deposit with huge potential. However, the age, origin and source area of the ore-bearing porphyry have not been effectively constrained. In this paper, we present the zircon geochronology, Hf isotope, and geochemistry of Qingcaoshan granodiorite and granodiorite porphyry. The analysis results show that the ages of granodiorite porphyry and granodiorite are 117.9 ± 0.8 Ma and 131.2 ± 0.3 Ma, respectively, which represent porphyry mineralization of Bangong Co-Nujiang metallogenic belt. They also exhibit relatively uniform in-situ zircon Hf isotopic compositions. In conclusion, Qingcaoshan ore-bearing porphyries were derived from the partial melting of mafic lower crust, which were induced by the subduction of the Bangong Co-Nujiang ocean crust, and they were also mixed by a small amount of enriched lithospheric mantle.

基金项目:国家自然科学基金项目(No.41302065);中国地质调查局项目(Nos.12120114081401,12120114000701);中央高校基本科研业务费专项资金(No.CUGL170413).

作者简介:郑海涛(1982-),男,博士研究生,主要从事成矿规律研究专业.ORCID:0000-0002-8046-7529.E-mail: haitao16@qq.com

^{*} 通讯作者:郑有业, ORCID: 0000-0002-0337-3131. E-mail: zhyouye@163.com

Key words: petrogenesis; zircon U-Pb age; porphyry Cu-Au deposit; Qingcaoshan; Bangong Co-Nujiang metallogenic belt; Tibet; geochemistry; geochronology.

0 引言

青草山斑岩 Cu-Au 矿床位于西藏自治区改则 县境内,地处班公湖一怒江缝合带北缘,是班公湖一 怒江成矿带具有良好找矿前景的矿产地之一.近年 来,随着多龙超大型斑岩 Cu-Au 矿集区(波龙、多不 杂斑岩 Cu-Au 矿床,以及分布于矿集区外围的南北 宽 10~15 km、东西长 40~45 km 范围内的拿若铜 矿、色拉金矿、拿顿金矿、荣嘎斑岩钼矿、地保那木岗 铜矿、鹫山铅锌矿、铁格龙金矿和尕尔勤铜矿等铜金 铅锌矿床(点))以及尕尔穷与嘎拉勒等斑岩一矽卡 岩金铜矿床的相继发现与评价(曲晓明和辛洪波, 2006;佘宏全等,2009;祝向平等,2011;姚晓峰等, 2012,2013;陈华安等,2013;Li et al.,2014;丁帅 等,2017;张志等,2017;郑有业等,2017),揭示出班 公湖-怒江成矿带斑岩型 Cu-Au 矿床的成矿条件 优越,找矿潜力巨大.但是,关于该带斑岩型矿床的 成矿动力学背景存在2种截然不同的认识,一种观 点是矿床的形成与班公湖一怒江洋向北俯冲有关 (李金祥等,2008;佘宏全等,2009;陈华安等,2013; Li et al., 2014), 另一种观点是其与班公湖-怒江 洋闭合后的拉萨地块与羌塘地块碰撞后地壳隆升有 关(曲晓明和辛洪波,2006;辛洪波等,2009).

2006年开展的区域化探扫面发现了青草山矿 点,随后开展了预查和普查工作.青草山、波龙及多 不杂斑岩 Cu-Au 矿床均位于班公湖-怒江缝合带 北缘,对于多不杂与波龙成矿斑岩的岩石成因与源 区特征目前仍存在争议,主要在于源区物质是以下 地壳的部分熔融为主还是以幔源物质为主.辛洪波 等(2009)以及吕立娜(2012)对多不杂斑岩 Cu-Au 矿床进行 Sr-Nd 同位素研究,获得较高的(⁸⁷Sr/ ⁸⁶Sr); 值(0.704 25~0.712 19)以及较低的 $\epsilon_{Nd}(t)$ (-18~-4.3),表明其成矿岩浆起源于下地壳,有 少量幔源物质的混入.侯可军等(2007)得到多不杂 成矿花岗闪长斑岩的锆石 e_{HI}(t)同位素组成为 -8.3~-3.9(均值-6.1),指示其来自于地壳物质 的部分熔融.辛洪波等(2009)研究多不杂成矿斑岩 Pb 同位素时发现其含有较多的放射性成因 Pb,有 地幔 Pb 与下地壳 Pb 的混合,但壳源物质在其成因 中占主导作用.陈华安等(2013)获得波龙斑岩 Cu-Au矿床的成矿花岗闪长斑岩的 Sr-Nd-Hf 同位

素组成,结果显示其(⁸⁷Sr/⁸⁶Sr);比值为 0.705 62~ $0.70850, 较小的负的 \epsilon_{Nd}(t) 值 (-8.0 ~ -2.4), 以$ 及较均一的 $\epsilon_{\rm HI}(t)$ 同位素组成(2.5~6.9), 暗示了岩 浆起源于下地壳,可能有俯冲洋壳熔融物质的混入. 然而,李金祥等(2008)研究多不杂花岗闪长斑岩时 发现其具有高的 Sr 含量(430×10⁻⁶~460×10⁻⁶) 及 Sr/Y 比值(44~135)、低的 Y(3.4×10⁻⁶~9.6× 10^{-6})及 Yb(0.44×10⁻⁶~1×10⁻⁶)含量、高的 $({}^{87}Sr/{}^{86}Sr)_i$ 比值(0.706 5)以及较小的 $\epsilon_{Nd}(t)$ 值 (-4.1),显示出 O 型埃达克岩地球化学特征,推测 其岩浆源区来源于俯冲洋壳的直接熔融,表现为俯 冲背景下的成矿事件.祝向平等(2011)对比波龙与 多不杂矿床中辉钼矿中的 Re 含量,含量均较高,分 别变化于 279×10⁻⁶~3 066×10⁻⁶ 以及397×10⁻⁶~ 3 013×10⁻⁶,指示多不杂和波龙斑岩铜金矿床的成 矿物质主要为地幔来源.因此,本文介绍青草山矿床 地质特征,进行含矿斑岩的岩石地球化学、锆石 U-Pb年代学研究,约束岩石成因与源区特征,进一步 探讨区域成矿背景,为区域成矿规律和找矿勘查工 作部署提供依据.

1 区域地质背景

青草山斑岩 Cu-Au 矿床(82°53′50″E、 33°14′00″N),距多龙斑岩矿集区北西约70 km,位 于班公湖-怒江缝合带北侧(图 1a)、羌塘地块南缘 的磨盘山断裂带中.磨盘山断裂带分别以近东西向 的磨盘山断层及鸭子泉断层为北、南边界,北与达鄂 地块相接,南与麦尔则地块为邻,组成一个宽约 35 km的断裂带.带内构造线主要呈近东西向,往东 与丁固幅走构由茶断裂带相联,向西延至图边宽仅 3 km 左右,两断层有明显汇合趋势;其次为北西向、 近东西向、北东向次级断裂.卷入构造的地层以二叠 系龙格组、三叠系日干配错组、侏罗系为主,局部见 二叠系展金组、曲地组、白垩系美日切错组、阿布山 组,古近系康托组、新近系唢纳湖组零星分布.区域 构造为岩浆活动提供了有利条件,形成了以铜、铅、 锌、金等为主的异常浓集区,具有很好的找矿远景. 岩浆岩以花岗闪长岩为主,少量侵入二长花岗岩.展 金组、曲地组及龙格组中有基性侵入岩及喷发岩,侏 罗系、白垩系及新近系中有中基性火山岩.

图 1 青藏高原大地构造分区(a)和青草山斑岩 Cu-Au 矿床地质简图(b)

2 矿区地质特征

青草山矿区内主要出露地层为中侏罗统雀莫错 组(J₂q)和第四系(图 1b).雀莫错组岩性主要为青灰 色板岩、灰白色粉砂岩.矿体主要位于北西向的磨盘 山断裂带中,断裂构造主要表现为北西走向的破碎 带或小型裂隙,与区域构造线方向一致,倾向北东或 南西,地表延伸一般几十米至数百米,宽数十厘米至 十几米.

矿区出露的岩浆岩主要为花岗闪长斑岩和花岗 闪长岩,以及少量石英斑岩、石英闪长岩脉等.花岗 闪长斑岩侵位于雀莫错组岩层中,地表呈不规则长 条状,长轴为北西-南东走向,是矿区出露面积最大 的岩体.岩石呈灰色,斑状结构,块状构造.斑晶主要 为斜长石(15%~20%)、碱性长石(10%~15%)、石 英(10%~15%)、角闪石(4%~5%)、黑云母(3%~ 5%);副矿物主要有磁铁矿、锆石、榍石、磷灰石等, 约占3%.基质成分与斑晶成分相似,约占50%.花岗 闪长岩在地表呈岩株状以及近北西向岩脉产出.岩 石呈浅灰白色,中粗粒结构,块状构造,主要成分为 斜长石(40%~45%)、石英(25%)、碱性长石 (15%~20%)、角闪石(10%~15%)、黑云母(约 5%)等,副矿物有钛铁矿、磁铁矿、磷灰石、锆石等. 石英斑岩呈脉状产出,主要为北北东一南西西或近 南北走向.岩石具有斑状结构,块状构造,斑晶主要 为石英(25%~35%)和少量的正长石(5%);基质主 要为长英质,隐晶结构,约占60%.石英闪长岩脉,主

Fig.1 Tectonic framework of the Tibetan Plateau (a) and simplified geological map (b) of the Qingcaoshan porphyry Cu-Au deposit图 b 据西藏地勘局第二地质大队,2011.2011 改则青草山矿区铜矿普查设计报告

长石(45%~50%)、石英(20%~25%)、碱性长石 (8%~10%)、角闪石(3%~5%)和黑云母(5%~ 8%),副矿物约占5%,为磁铁矿、锆石、磷灰石等.

围岩主要有硅化、黄铁绢英岩化、青磐岩化和角 岩化蚀变等.硅化在矿区分布面积较大,主要表现形 式为岩体和围岩中的脉状石英脉、岩体中石英斑晶 的次生加大现象以及在构造活动强烈地段形成的硅 化岩.黄铁绢英岩化在矿区分布范围较小,主要表现 为岩体中斜长石斑晶或黑云母的绢云母化,并伴有 浸染状分布的次生黄铁矿和石英以及石英一绢云母 一金属硫化物细脉.青磐岩化主要发育于围岩中,主 要表现为绿帘石、绿泥石和碳酸盐脉的形成,在矿区 围岩中普遍存在.角岩化主要分布在围岩中,由泥质 砂岩、泥质粉砂岩等岩石受接触变质作用形成.近岩 体部分已经几乎全部角岩化,原岩结构已经被彻底 改造,向外围则角岩化减弱.矿区蚀变分带呈不规则 状渐变或相互叠加,由岩体向外大致可划分为强硅 化带一黄铁绢英岩化带(+角岩化带)-青磐岩化 带,与铜矿化关系密切的蚀变主要为强硅化和黄铁 绢英岩化.

铜金矿化主要发育于花岗闪长斑岩及其南西侧 的角岩中.矿体平面上呈北东走向的不规则状,长为 800~900 m, 宽为 50~150 m. 剖面上形态复杂, 由 多个近水平的似层状或不规则展布的楔形组成,并 具有多个分支.矿床达中型矿床规模,估算工业矿体 (333+334)资源量 Cu 为102 878.7 t(0.58%),伴生 元素 Au 为6 304.2 kg(0.358 g/t), Ag 为67 563.4 kg (3.835 g/t);低品位矿体(333+334)Cu为337 090.9 t (0.23%),伴生元素 Au 为37 446.7 kg(0.252 g/t),Ag 为272 603.7 kg(1.832 g/t).金属矿物主要为黄铁 矿、黄铜矿、辉钼矿,其次为磁铁矿以及地表浅层的 孔雀石、蓝铜矿等氧化矿物.黄铜矿、黄铁矿、辉钼矿 等金属硫化物主要呈脉状、浸染状产于角岩或花岗 闪长斑岩中,构成多金属硫化物石英脉.孔雀石、蓝 铜矿等呈薄膜状、皮壳状分布于岩石表面和岩石裂 隙面.矿石结构主要为自形、半自形和他形结构.矿 石构造以细脉状、浸染状构造为主,其次为团块状、 块状、薄膜状等.

3 样品及分析方法

锆石 LA-ICPMS U-Pb 定年样品为花岗闪长斑 岩(QCS-B3)和花岗闪长岩(QCS-B9),均采自青草 山矿区钻孔岩心.锆石样品破碎和挑选由河北省廊

坊区域地质矿产调查研究所实验室完成,样品破碎 过筛后通过重一磁分选后,最后在双目镜下挑出锆 石.锆石制靶、阴极发光(CL)和透反射光显微照相 以及锆石原位微区 U-Pb 定年和 Hf 同位素分析均 在中国地质大学(武汉)地质过程与矿产资源国家重 点实验室完成.锆石原位微区 U-Pb 定年采用激光 剥蚀等离子体质谱(LA-ICPMS),激光束斑直径为 32 μm,采用 91500 标准锆石作为外标进行同位素 分馏校正和同位素比值漂移校正(Liu et al., 2010),每分析 5 个待测样品插入分析 2 个 91500 年 龄标样.详细的仪器操作条件、数据处理方法和采用 的 ICPMSDataCal 软件同 Liu et al. (2010). 锆石 U-Pb年龄谐和图的绘制和年龄加权平均计算采用 Isoplot 3.27 和 3.23 处理,其加权平均值的误差为 2o. 锆石 Hf 同位素测试仪器为 Neptune Plus 型 MC-ICPMS,采用 Geolas2005 激光剥蚀系统,激光 束斑大小为 44 μm,分析位置与锆石 U-Pb 定年的 测点处于同一颗锆石,所用的锆石标样为 91500,具 体的测试程序及流程参见 Hu et al.(2012).主量、 微量、稀土元素均在武汉岩矿综合测试中心完成,主 量元素分析方法为 X 射线荧光光谱(XRF),分析精 度优于1.4%;稀土和微量元素分析方法为电感耦合 等离子体发射光谱仪(ICP-AES),精度优于 5%.

4 分析结果

4.1 锆石年代学

青草山花岗闪长斑岩中的锆石为无色透明,均 为长柱状,长轴在 150~300 μm 之间,长宽比为 2:1~3.5:1, 锆石均具有明显的结晶环带(图 2). 锆石 U-Pb 同位素分析结果列于表 1.19 颗锆石中 U 和 Th 含量分别为 407×10⁻⁶~1 017×10⁻⁶和76× 10⁻⁶~309×10⁻⁶, Th/U比值一般在 0.13~0.30 之 间,具有岩浆锆石的典型特征.锆石的²⁰⁶ Pb/²³⁸ U 年 龄变化范围比较广,分布于112~130 Ma之间,具 有多期多阶段特征,可以分为4个阶段年龄, ²⁰⁶ Pb/²³⁸ U 加权平均年龄为 117.9±0.8 Ma(n=8, MSWD = 0.52, 122.4 ± 1.1 Ma (n = 4, MSWD = 0.7), 127.8 \pm 1.2 Ma (n = 3, MSWD = 0.009) π 131.7±1.0 Ma(n=4, MSWD=0.02), 其中最年轻 的锆石年龄(117.9±0.8 Ma)代表了花岗闪长斑岩 的结晶年龄,而其他的多阶段年龄可能为随岩体侵 入时捕获的外围花岗闪长岩的年龄(图 3).

花岗闪长岩样品中锆石为无色透明,多呈短柱

图 2 青草山花岗闪长斑岩(QCS-B3)和花岗闪长岩(QCS-B9)锆石阴极发光图

Fig.2 The cathodoluminescence (CL) images of zircons for the Qingcaoshan granodiorite porphyry (QCS-B3) and granodiorite (QCS-B9)

实线圆圈为 U-Pb 年龄测点,圆圈边数值表示年龄;虚线圆圈为 Hf 同位素测点,圆圈边数值表示锆石 Hf 同位素组成

状,长轴一般为 100~250 μm,相对于花岗闪长岩中 的锆石要稍小,长宽比为 2:1~3:1,背散射图像 显示锆石均具有明显的结晶环带(图 2).13 颗锆石 中 U和 Th含量分别为 $647 \times 10^{-6} \sim 1146 \times 10^{-6}$ 和 $113 \times 10^{-6} \sim 472 \times 10^{-6}$, Th/U比值在 0.15~0.43 之间,同样显示出岩浆锆石的典型特征.锆石的 ²⁰⁶ Pb/²³⁸ U年龄集中在 130~134 Ma 之间,基本落 在谐和线上,加权平均计算结果为 131.2±0.8 Ma (*n* =13,MSWD=1.2),代表了花岗闪长岩的结晶 年龄(表 1,图 3).

4.2 锆石 Hf 同位素

花岗闪长斑岩锆石原位 Hf 同位素数据见表 2 和图 2. 花岗闪长斑岩中锆石的¹⁷⁶ Yb/¹⁷⁷ Hf 和 ¹⁷⁶ Lu/¹⁷⁷ Hf 值分别为 0.017 094 ~ 0.033 375 和 0.000 643~0.001 241,大多数¹⁷⁶ Lu/¹⁷⁷ Hf 值小于 0.002,表明这些锆石在形成后仅有较少的放射成因 Hf 的积累,因而可以用初始¹⁷⁶ Hf/¹⁷⁷ Hf 值代表锆 石形成时的¹⁷⁶ Hf/¹⁷⁷ Hf 值(吴福元等,2007).本文获 得 15 颗锆石的 Hf 同位素数据由 2 部分组成.第 1 部分由 QCS-B3-8、QCS-B3-11、QCS-B3-15、QCS-B3-12、QCS-B3-15 五个分析点组成,¹⁷⁶ Yb/¹⁷⁷ Hf 和¹⁷⁶ Lu/¹⁷⁷ Hf 值分别为0.017 094~0.024 251 和 0.000 643~0.000 899, $\epsilon_{\rm Hf}$ (t)分布于一0.61~ -0.14, $t_{\rm DM2}$ (Hf)模式年龄为1054~1087 Ma.第 2 部分由其余的 10个分析点组成,¹⁷⁶ Yb/¹⁷⁷ Hf 和 ¹⁷⁶ Lu/¹⁷⁷ Hf 值分别为0.018 597~0.033 375 和 0.000 679~0.001 241, $\epsilon_{\rm Hf}$ (t)分布于 0.02~1.10, $t_{\rm DM2}$ (Hf)模式年龄为996~1051 Ma.这 2 部分锆石 在形态特征上没有明显差别,且在误差范围内 ²⁰⁶ Pb/²³⁸ U 年龄值保持大致一致,表明花岗闪长斑 岩体具有相对均一的 Hf 同位素组成.

₩
裄
\mathcal{T}
Pb
5
μ
监
S
N.
D
Ŧ
ľ
卝
*
R
买
嵸
Ш,
분
ち
4
کلا حز
1 ≻ ⊐⊏
Ë
뼆
#m
表

2 . -÷ -Ċ -, , , Ā ; ; E

	● 晋 令	(10 ⁻⁶)				· mic wingeau 	suan granot		t and gran	מוחדונב	年齢の	Ma)	
测点号	Th	n	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	10 1	²⁰⁶ Pb/ ²³⁸ U	10	$^{207}{ m Pb}/^{235}{ m U}$	10	²⁰⁶ Pb/ ²³⁸ U	1
花岗闪长斑岩													
QCS-B3-1	92	639	0.14	0.050 0	0.0017	0.130 6	0.004 3	0.018 9	0.000 2	118	3.65	118	1.02
QCS-B3-2	76	600	0.13	0.045 2	0.001 5	0.115 6	0.0037	0.018 6	0.000 2	112	3.48	117	1.05
QCS-B3-3	78	581	0.13	0.049 4	0.001 6	0.128 5	0.004 2	0.018 9	0.000 2	120	3.68	119	1.06
QCS-B3-4	131	670	0.20	0.047 1	0.001 6	0.133 2	0.004 7	0.020 5	0.000 2	123	3.37	128	1.15
QCS-B3-5	188	786	0.24	0.0487	0.001 3	0.135 9	0.003 5	0.020 2	0.000 2	128	3.23	128	1.12
QCS-B3-6	121	686	0.18	0.047 0	0.001 5	0.1264	0.004 0	0.019 5	0.000 2	120	3.85	122	1.21
QCS-B3-7	187	785	0.24	0.0467	0.0014	0.133 8	0.003 9	0.020 8	0.000 2	128	3.42	132	1.07
QCS-B3-8	136	732	0.19	0.045 6	0.001 3	0.1296	0.003 8	0.020 6	0.000 2	126	3.43	132	0.94
QCS-B3-10	131	536	0.24	0.048 0	0.001 9	0.122 0	0.004 5	0.018 6	0.000 2	119	4.13	118	1.19
QCS-B3-11	309	$1 \ 017$	0.30	0.048 5	0.001 3	0.134 8	0.003 6	0.020 1	0.000 2	125	3.15	128	0.97
QCS-B3-12	139	671	0.21	0.048 2	0.001 6	0.130 3	0.004 4	0.019 5	0.000 2	122	3.97	123	1.07
QCS-B3-13	234	878	0.27	0.047 8	0.001 2	0.1368	0.003 5	0.020 7	0.000 2	130	3.10	132	1.10
QCS-B3-14	78	588	0.13	0.047 8	0.001 6	0.126 3	0.004 2	0.019 3	0.000 2	117	3.58	118	1.12
QCS-B3-15	102	653	0.16	0.049 1	0.0017	0.125 9	0.004 1	0.018 6	0.000 2	118	3.69	118	1.21
QCS-B3-16	101	675	0.15	0.051 5	0.0017	0.138 6	0.0047	0.019 6	0.000 2	122	4.32	122	1.24
QCS-B3-17	174	797	0.22	0.048 0	0.0014	0.138 5	0.003 9	0.020 9	0.000 2	130	3.73	132	1.14
QCS-B3-18	109	407	0.27	0.050 3	0.002 2	0.124 7	0.005 1	0.018 1	0.000 2	118	4.63	117	1.32
QCS-B3-19	108	449	0.24	0.045 9	0.0018	0.115 7	0.004 6	0.018 3	0.000 2	114	4.14	117	1.10
QCS-B3-20	118	650	0.18	0.046 5	0.001 6	0.1240	0.004 3	0.019 4	0.000 2	120	4.06	121	1.10
花岗闪长岩													
QCS-B9-1	206	784	0.26	0.047 2	0.001 3	0.135 2	0.003 6	0.020 8	0.000 2	128	3.3	131	1.0
QCS-B9-2	258	1 113	0.23	0.049 9	0.001 6	0.141 6	0.004 4	0.020 9	0.000 4	127	3.1	130	1.0
QCS-B9-3	309	1 033	0.30	0.050 6	0.001 5	0.1478	0.0048	0.021 1	0.000 2	133	4.0	131	1.5
QCS-B9-4	263	970	0.27	0.050 0	0.0014	0.143 6	0.004 0	0.020 8	0.000 2	131	3.6	130	1.4
QCS-B9-7	281	1 146	0.25	0.048 6	0.001 3	0.141 3	0.004 0	0.021 0	0.000 2	131	3.5	131	1.5
QCS-B9-9	307	1 084	0.28	0.046 9	0.001 2	0.131 1	0.003 2	0.020 2	0.000 2	125	3.0	131	1.1
QCS-B9-10	113	774	0.15	0.052 4	0.0017	0.149 3	0.0047	0.020 7	0.000 2	138	4.0	130	1.2
QCS-B9-14	235	1 022	0.23	0.0497	0.001 3	0.147 9	0.003 9	0.021 4	0.000 2	136	3.4	133	1.2
QCS-B9-15	310	771	0.40	0.048 2	0.001 6	0.1424	0.0047	0.021 4	0.000 2	132	4.1	134	1.3
QCS-B9-16	206	789	0.26	0.047 0	0.0014	0.139 6	0.004 1	0.021 5	0.000 2	132	3.7	134	1.4
QCS-B9-17	130	647	0.20	0.053 1	0.001 5	0.159 8	0.004 9	0.021 6	0.000 3	139	4.8	132	1.8
QCS-B9-18	472	1 098	0.43	0.0497	0.001 3	0.139 1	0.003 5	0.020 3	0.000 2	131	3.3	130	0.9
QCS-B9-19	239	817	0.29	0.049 1	0.001 3	0.1416	0.0038	0.020 8	0.000 2	133	3.4	131	1.1

图 3 青草山花岗闪长斑岩(QCS-B3)和花岗闪长岩(QCS-B9)锆石 U-Pb 年龄谐和图 Fig.3 Zircon U-Pb concordia diagrams of the Qingcaoshan granodiorite porphyry (QCS-B3) and granodiorite (QCS-B9)

表 2	青草山	花岗闪	长斑岩针	古原位	Hf 🗖	位素数据
-----	-----	-----	------	-----	------	------

Table 2 In-situ zircon Hf isotope data of the Qingcaoshan granodiorite porphyry

测点号	t (Ma)	$^{176}{ m Yb}/^{177}{ m Hf}$	$^{176}Lu/^{177}Hf$	$^{176}{ m Hf}/^{177}{ m Hf}$	$\pm \sigma$	$\varepsilon_{\rm Hf}(t)$	$\pm 1\sigma$	$t_{\rm DM2}({ m Hf})$	$f_{ m Lu/Hf}$
QCS-B3-3	120.8	0.021 689	0.000 797	0.282 707	0.000 379	0.27	0.57	1 029	-0.98
QCS-B3-1	121.0	0.019 219	0.000 697	0.282 712	0.000 340	0.48	0.57	1 018	-0.98
QCS-B3-18	117.0	0.018 597	0.000 679	0.282 719	0.000 174	1.10	0.61	997	-0.98
QCS-B3-4	130.5	0.020 163	0.000 737	0.282 694	0.000 232	0.02	0.61	1 051	-0.98
QCS-B3-5	129.0	0.021 672	0.000 798	0.282 702	0.000 122	0.30	0.62	1 034	-0.98
QCS-B3-7	132.7	0.024 334	0.000 899	0.282 712	0.000 209	0.72	0.58	1 014	-0.97
QCS-B3-8	131.2	0.019 496	0.000 706	0.282 675	0.000 425	-0.61	0.58	1 087	-0.98
QCS-B3-10	119.1	0.033 375	0.001 241	0.282 725	0.000 176	0.85	0.60	996	-0.96
QCS-B3-11	128.3	0.024 251	0.000 899	0.282 681	0.000 235	-0.47	0.58	1 077	-0.97
QCS-B3-12	124.6	0.019 970	0.000 730	0.282 689	0.000 357	-0.27	0.62	1 063	-0.98
QCS-B3-13	132.0	0.022 365	0.000 816	0.282 711	0.000 191	0.65	0.61	1 017	-0.98
QCS-B3-16	124.9	0.031 567	0.001 255	0.282 703	0.000 614	0.19	0.75	1 037	-0.96
QCS-B3-14	123.1	0.017 094	0.000 644	0.282 693	0.000 161	-0.14	0.59	1 054	-0.98
QCS-B3-15	119.1	0.017 330	0.000 643	0.282 690	0.000 069	-0.35	0.58	1 063	-0.98
QCS-B3-17	133.6	0.020 659	0.000 744	0.282 701	0.000 108	0.37	0.57	1 034	-0.98

注: $\varepsilon_{Hf}(t) = 10\ 000 \times \{[(^{176}\ Hf/^{177}\ Hf)_{S} - (^{176}\ Lu/^{177}\ Hf)_{S} \times (e^{\lambda t} - 1)]/[(^{176}\ Hf/^{177}\ Hf)_{CHUR,0} - (^{176}\ Lu/^{177}\ Hf)_{CHUR} \times (e^{\lambda t} - 1)] + t_{DM} = 1/\lambda \times In\{1 + [(^{176}\ Hf/^{177}\ Hf)_{S} - (^{176}\ Hf/^{177}\ Hf)_{S} - (^{176}\ Lu/^{177}\ Hf)_{S} + (^$

Fig.4 Discrimination diagrams for the Qingcaoshan granodiorite porphyry and granodiorite

图 a 据 Wilson(1989);图 b 据 Peccerillo and Taylor(1976).多不 杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009) 及陈华安等(2013)

4.3 岩石地球化学

青草山斑岩 Cu-Au 矿床的 9 个花岗闪长斑岩 和 2 个花岗闪长岩样品的地球化学分析结果见表 3. 花岗闪长斑岩和花岗闪长岩具有近似的地球化学特 征,其 SiO₂ 含量变化范围较小,为 66.30% ~ 69.17%,属于富硅的中酸性岩浆岩.岩体的 K₂O/Na₂O比值为2.76~5.14,(Na₂O+K₂O)含量 为8.00%~9.18%;较之波龙、多不杂花岗闪长斑 岩,青草山岩体偏向于花岗岩范围(图4a).K₂O含 量为5.87%~7.60%,在K₂O-SiO₂图解中波龙与 多不杂岩体显示高钾钙碱性到钾玄岩系列特征,而 青草山岩体的K₂O含量最高,样品点均落入钾玄岩 系列(图4b).岩石Al₂O₃含量较高,为14.68%~ 15.59%,A/CNK为1.03~1.20,属于过铝质岩系, 具有I型向S型过渡的岩性特征,而波龙与多不杂花 岗闪长斑岩的铝饱和指数分布范围广泛.显示强过铝 质S型花岗岩的特征(图4c).岩体具有中等的MgO 含量(0.75%~1.64%),Mg^{*}值为36.07~51.96.

青草山花岗闪长斑岩和花岗闪长岩具有一致的稀土配分模式(图 5a). 岩体 Σ REE 含量为 $105 \times 10^{-6} \sim 142 \times 10^{-6}$, (La/Yb)_N值与Sr/Y值均

- 图 5 青草山花岗闪长斑岩和花岗闪长岩球粒陨石标准化 稀土元素配分模式(a)和原始地幔标准化微量元素蛛 网图(b)
- Fig.5 Chondrite-normalized rare earth element pattern (a) and primitive mantle-normalized trace element spider diagram (b) for the Qingcaoshan granodiorite porphyry and granodiorite

标准化数值据 Sun and McDonough(1989).多不杂与波龙矿床的花 岗闪长斑岩数据分别来源于佘宏全等(2009)及陈华安等(2013)

表 3 青草山岩体主量(%)、微量(10⁻⁶)及稀土元素(10⁻⁶)分析结果

 Table 3 Major elements (%), trace elements (10⁻⁶) and rare earth elements (10⁻⁶) compositions of intrusions from Qingcaoshan porphyry Cu-Au deposit

					花岗闪	习长斑岩				花岗	闪长岩
性的	QCS-B3	QCS-B4	QCS-B5	QCS-B6	QCS2015-1	QCS2015-2	QCS2015-3	QCS2015-4	QCS2015-5	QCS-B9	QCS-B10
SiO_2	66.30	67.51	67.77	67.14	67.23	66.90	67.13	67.45	66.87	69.17	67.97
${\rm TiO}_2$	0.44	0.40	0.42	0.42	0.41	0.45	0.42	0.41	0.45	0.35	0.43
$\mathrm{Al}_2\mathrm{O}_3$	15.59	14.68	15.11	15.50	15.94	15.33	15.44	15.39	15.20	14.76	15.43
Fe_2O_3	1.35	1.42	1.62	1.38	1.46	1.45	1.57	1.51	1.67	0.93	1.82
FeO	1.65	1.30	1.40	1.13	1.29	1.34	1.62	1.46	1.51	1.37	0.73
MnO	0.02	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.01	0.03	0.02
MgO	1.64	1.41	1.24	1.44	1.54	1.45	1.42	1.41	1.56	1.10	0.75
CaO	1.62	1.31	1.82	1.42	1.66	1.75	1.64	1.57	1.50	2.21	1.34
Na ₂ O	2.05	1.48	2.13	2.19	2.11	2.03	2.09	2.23	2.12	2.17	1.55
$\mathrm{K}_2\mathrm{O}$	6.95	7.60	5.87	6.91	6.99	6.78	7.01	6.95	6.28	6.24	7.26
P_2O_5	0.20	0.18	0.17	0.19	0.19	0.21	0.18	0.19	0.18	0.13	0.17
$\mathrm{H_{2}O^{+}}$	1.60	1.52	1.52	1.48	1.57	1.49	1.56	1.54	1.45	1.10	1.51
CO_2	0.22	0.75	0.60	0.40	0.56	0.66	0.34	0.37	0.49	0.18	0.70
Total	99.63	99.58	99.69	99.61	100.96	99.86	100.44	100.5	99.29	99.74	99.68
Mg^{\sharp}	50.49	49.35	43.60	51.96	51.46	49.56	45.62	47.27	48.13	47.03	36.07
$Na_2O + K_2O$	9.00	9.08	8.00	9.10	9.10	8.81	9.10	9.18	8.40	8.41	8.81
$Na_2 O/K_2 O$	3.39	5.14	2.76	3.16	3.31	3.34	3.35	3.12	2.96	2.88	4.68
La	24.7	29.2	27.0	27.2	26.8	25.1	26.4	28.9	27.4	24.7	27.9
Ce	46.4	53.7	49.0	48.7	47.1	41.8	49.1	52.9	52.0	44.5	66.9
Pr	5.51	5.99	5.64	5.65	5.56	5.67	5.55	5.70	5.62	5.03	5.73
Nd	20.1	21.5	20.4	20.5	20.0	19.5	20.3	22.6	20.9	17.9	21.0
Sm	3.82	3.86	3.72	3.77	3.79	3.72	3.90	3.88	3.73	3.17	3.97
Eu	0.891	0.861	0.898	0.867	0.905	0.829	0.866	0.912	0.883	0.884	1.00
Gd	3.50	3.32	3.36	3.40	3.45	3.29	3.50	3.43	3.48	2.81	3.52
Tb	0.499	0.486	0.473	0.496	0.488	0.491	0.479	0.477	0.502	0.416	0.509
Dy	2.86	2.63	2.67	2.66	2.96	2.61	2.78	2.73	2.59	2.26	2.84
Ho	0.539	0.491	0.509	0.513	0.499	0.521	0.517	0.488	0.500	0.433	0.523
Er	1.57	1.65	1.45	1.47	1.71	1.49	1.62	1.58	1.54	1.36	1.66
Tm	0.255	0.222	0.225	0.228	0.234	0.229	0.231	0.246	0.243	0.196	0.243
Yb	1.70	1.55	1.48	1.54	1.67	1.51	1.49	1.60	1.76	1.37	1.66
Lu	0.248	0.223	0.230	0.227	0.229	0.236	0.241	0.219	0.250	0.200	0.237
Y	16.1	24.8	14.4	15.4	13.9	11.8	15.8	16.0	16.7	13.9	22.5
Li	37.0	36.4	31.7	36.9	34.6	35.8	0.8	33.5	38.1	21.8	15.8
Be	1.70	1.42	1.92	1.62	1.55	1.67	1.78	1.85	1.59	1.87	1.69
Sc	7.53	6.43	6.99	6.80	6.45	6.09	7.13	6.84	6.76	4.98	6.15
Cr	8.78	10.10	12.00	7.24	8.98	7.77	10.34	9.79	10.50	11.00	9.57
Со	7.71	10.10	8.30	7.18	7.89	8.97	9.02	9.45	8.34	4.77	7.63
Cu	1 767	2 931	1 287	1 921	1 367	1 786	1 573	1 005	2 450	541	1 257
Zn	72.4	134	46.2	65.2	56.7	99.0	76.5	121.0	90.2	60.9	57.6
Ga	18.0	18.4	17.1	17.9	17.8	19.0	18.2	16.8	16.4	17.4	19.0
Ge	1.30	1.35	1.33	1.21	1.18	1.40	1.37	1.26	1.24	1.25	1.11
Rb	232	230	197	201	221	218	208	233	213	176	218

续表3

					花岗闪	日长斑岩				花岗	闪长岩
件币	QCS-B3	QCS-B4	QCS-B5	QCS-B6	QCS2015-1	QCS2015-2	QCS2015-3	QCS2015-4	QCS2015-5	QCS-B9	QCS-B10
Cs	9.51	9.69	10.70	9.23	9.76	9.45	9.99	10.43	9.82	9.44	10.90
Pb	49.4	551	12.5	14.1	78.0	47.0	17.0	32.0	23.0	26.2	14.4
Th	10.1	8.6	12.0	12.3	12.4	11.8	10.5	9.5	11.2	11.8	13.4
U	2.45	1.98	2.19	2.64	2.40	2.23	2.38	2.55	1.89	2.78	2.50
Ni	9.8	13.5	10.0	13.2	9.0	14.1	11.3	13.7	12.5	8.9	13.9
Sr	243	186	240	225	194	209	231	199	216	275	189
V	75.0	63.5	68.0	63.3	67.1	69.3	71.2	64.8	73.0	43.2	47.0
Zr	115	151	109	4 383	157	148	134	166	123	179	164
Nb	10.4	12.7	12.6	12.6	11.4	10.6	12.4	11.5	13.4	11.1	13.4
Ba	460	398	371	433	89	403	386	428	415	436	491
Hf	3.40	4.38	3.37	87.40	4.50	3.76	3.48	3.97	3.84	4.92	4.62
Ta	0.67	1.09	0.95	1.59	1.13	0.89	1.05	0.76	0.98	1.89	1.29
As	3.89	7.93	1.55	3.90	3.76	3.09	4.03	3.82	3.97	4.49	6.76
Hg	0.031	0.019	0.020	0.018	0.017	0.023	0.030	0.025	0.016	0.014	0.017
Bi	24.3	58.1	6.43	24.2	54.3	45.7	37.8	32.4	5.9	3.92	14.7
Sb	0.50	0.65	0.27	0.29	0.76	0.43	0.54	0.38	0.62	0.28	2.07
Mo	16.9	294	6.21	5.77	20.1	7.97	8.04	6.83	4.73	13.3	6.67
W	10.4	73.6	3.6	10.1	15.1	13.5	16.8	9.8	9.4	14.1	9.1
Sn	9.07	9.57	7.24	9.58	9.87	9.03	8.78	8.02	9.45	7.38	7.52
Ag	1.78	4.09	1.09	2.18	2.09	2.34	1.89	1.73	1.99	0.761	1.45
Au	166	137	76.8	218	156	139	189	167	187	11.4	67.7
Σ ree	112	125	117	117	129	119	133	142	138	105	137
LREE/HREE	9.1	10.9	10.2	10.1	9.3	9.3	9.8	10.7	10.2	10.6	11.3
Sr/Y	15.1	7.5	16.7	14.6	14.0	17.7	14.6	12.4	12.9	19.7	8.4
La/Yb	14.6	18.8	18.2	17.7	16.0	16.6	17.7	18.1	15.6	18.0	16.9
$(La/Yb)_N$	10.5	13.5	13.1	12.7	11.5	11.9	12.7	13.0	11.2	12.9	12.1
Dy/Yb	1.70	1.70	1.80	1.70	1.69	1.69	1.80	1.73	1.77	1.65	1.71
δEu	0.73	0.72	0.76	0.73	0.75	0.71	0.70	0.75	0.74	0.89	0.80

注: $Mg^{\#} = 100 \times Mg/(Mg + Fe)(原子个数比)$;TFeO=FeO+0.89×Fe₂O₃;A/CNK=摩尔 Al₂O₃/(CaO+Na₂O+K₂O); $\delta Eu = 2 \times Eu_N/(Sm_N+Gd_N)$.

较低,分别为 10.5~13.5 和 7.5~19.7,具有弱的 Eu 负异常(δ Eu = 0.70~0.89),呈轻稀土微弱富集的 右倾模式.青草山岩体的稀土配分模式与波龙以及 多不杂成矿斑岩相似,其中多不杂成矿花岗闪长斑 岩具有更强的 Eu 负异常及 Gd 正异常,显示相似的 岩浆源区特征.原始地幔标准化微量元素蛛网图显 示,青草山、多不杂及波龙成矿斑岩明显亏损高场强 元素 Nb、Ta、P、Ti,富集大离子亲石元素 Rb、Th、K (图 5b),显示出一定的弧岩浆岩特征,且其强烈亏 损大离子亲石元素 Ba(371×10⁻⁶~491×10⁻⁶)、 U(1.89×10⁻⁶~2.78×10⁻⁶)和 Sr (186×10⁻⁶~ 243×10⁻⁶).

5 讨论

5.1 成矿年代学

班公湖-怒江缝合带位于西藏北部,西起班公 湖的日土,向东经改则、安多、丁青后沿怒江进入滇 西,近东西走向,在西藏境内长约2800km.缝合带 南北两侧分布着大量的斑岩、砂卡岩Cu-Au矿床, 如缝合带北缘的多龙超大型矿集区中的波龙、多不 杂、拿顿、拿若、尕尔勤矿床等(祝向平等,2011;丁帅 等,2017),以及缝合带南侧的尕尔穷、嘎拉勒Au-Cu矿床(李志军等,2011;姚晓峰等,2012,2013;张 志等,2017),共同构成班公湖-怒江多金属成矿带; 该带成矿条件优越,找矿潜力巨大(图1a).青草山斑 岩 Cu-Au 矿床位于班公湖一怒江缝合带北缘,距多 龙超大型 Cu-Au 矿集区西北约 70 km,是班公湖一 怒江成矿带又一具有良好找矿前景的矿产地.

多不杂斑岩 Cu-Au 矿床的成矿花岗闪长斑岩 的锆石 U-Pb 年龄集中于 117~122 Ma(李金祥等, 2008;佘宏全等,2009),其辉钼矿 Re-Os 等时线年 龄为118.0±1.5 Ma,与成矿斑岩体侵入时间一致. Li et al.(2011)通过钾长石与绢云母的⁴⁰ Ar-³⁹ Ar 年 代学研究,基本约束了斑岩体中的钾长石化与绢英 岩化的时间(分别为 115.2±1.1 Ma 与 115.2± 1.2 Ma),其年龄值略小于成岩、成矿年龄.波龙斑岩 Cu-Au 矿床中的花岗闪长斑岩与石英闪长玢岩具 有一致的成岩年龄,集中于 118~121 Ma(Li et al., 2011;陈华安等,2013).祝向平等(2011)获得花岗闪 长斑岩中的辉钼矿的 Re-Os 等时线年龄为119.4± 1.5 Ma,与矿区内岩浆岩的侵入年龄一致.吕立娜 (2012)对多龙矿集区外围的拿若、铁格龙以及尕尔 勤 Cu-Au 矿床相关成矿岩体进行了 SHRIMP U-Pb年代学研究,得到一致的成岩年龄,分别为 119.5±0.6 Ma (拿若花岗闪长斑岩)、119.7± 0.6 Ma(铁格龙英云闪长斑岩)以及 122.5±0.6 Ma (尕尔勤龙英云闪长斑岩).以上结果显示,多龙矿集 区的成矿时代一致,集中于118~122 Ma.位于班公 湖一怒江缝合带南缘的嘎拉勒与尕尔穷斑岩一矽卡 岩 Cu-Au 矿床的成岩成矿年龄显示, 尕尔穷成矿石 英闪长岩侵入时代与辉钼矿 Re-Os 等时线年龄一 致,分别为 87.1±0.4 Ma(姚晓峰等, 2012)与 86.87±0.5 Ma(李志军等, 2011);嘎拉勒矽卡岩型 Cu-Au 矿床的成岩成矿年龄为 87~91 Ma(吕立娜 等,2011;汪傲等,2014),揭示了缝合带南北两侧在 成矿时代上的差异性(表 4).

笔者在青草山斑岩 Cu-Au 矿床的含矿花岗闪 长斑岩中获得了 4 组年龄,分别为 117.9±0.8 Ma、 122.4±1.1 Ma、127.8±1.2 Ma 和 131.7±1.0 Ma, 表明矿区内可能存在多期构造岩浆事件(图 3).其中 较老的 2 组年龄(127.8 Ma 与 131.7 Ma),代表了矿 区内早期的岩浆活动,与本文获得的外围花岗闪长 岩年龄(131.2±0.3 Ma)一致,很有可能是后期岩浆 在侵入时捕获了早期岩浆中的锆石导致.对于 122.4 Ma的锆石年龄,与区域上的多龙矿集区中的 多不杂(121.6±1.9 Ma;李金祥等,2008)与尕尔勤 (122.5±0.6 Ma;吕立娜,2012)的构造岩浆活动与 成矿事件一致,表明其受到该期岩浆作用的影响.最 年轻的锆石年龄(117.9±0.8 Ma)代表了含矿花岗 闪长斑岩的结晶年龄,表明了青草山斑岩铜金矿化时代与区域上的斑岩成矿事件相一致,集中于118~120 Ma.

5.2 岩石成因

国内外许多学者将斑岩矿床的成矿作用与埃达 克岩浆作用紧密结合在一起,然而,研究表明钾质钙 碱性的岩浆组合同样有利于斑岩型 Cu-Au 矿床的 形成.Oyarzun et al.(2001)指出幔源型埃达克岩之 所以是富金斑岩型铜矿床重要的成矿母岩,是由于 其具有较高的含水量、高氧逸度以及富硫的特征,由 此推断埃达克质岩浆的形成不是斑岩铜金矿化产生 的必要条件; Mungall (2002) 进一步证实具有高于 FMQ两个对数单位的氧逸度的弧岩浆岩能使亲铜 性元素从地幔中释放出来,具有形成斑岩铜金矿床 的潜力.因此,无论哪种岩浆成矿,均需要其具有高 含水量、高氧逸度和富硫特征.青草山 Cu-Au 矿区 的含矿斑岩具有低的(La/Yb)_N 与 Sr/Y 值(分别为 10.5~13.5 和 7.5~17.7), 以及相对偏高的 Y $(11.8 \times 10^{-6} \sim 24.8 \times 10^{-6})$ 与 Yb $(1.48 \times 10^{-6} \sim$ 1.76×10⁻⁶)含量,与典型由俯冲的年轻大洋板片部 分熔融形成的埃达克岩的高 Sr/Y(>20) 与低 Y(<18×10⁻⁶)、Yb(<1.9×10⁻⁶)特征不同,而类 似于典型的岛弧岩浆岩.此外,青草山含矿斑岩明显 亏损高场强元素 Nb、Ta、P、Ti 以及富集大离子亲 石元素 Rb、Th、K(图 5),亦表明其具有弧岩浆岩的 特征(Wilson,1989).

微量元素常被用来判别岩石形成的构造背景 (Pearce et al., 1984),图 6显示青草山岩体具有火 山岛弧岩浆岩的特点,高场强元素 Nb、Ta、P、Ti 亏 损暗示源区存在金红石以及磷灰石的残余,大离子 亲石元素 Rb、Th、K 等富集表明成岩源区经受了流 体的交代,而斜长石的结晶分异可能导致了青草山 含矿斑岩体具有弱的 Eu 负异常以及 Ba、Sr 元素的 亏损.相比多龙矿集区的花岗闪长岩经历了明显的 源区部分熔融过程,青草山岩体受部分熔融的控制 不明显,表现出一定程度的结晶分异趋势(图7).岩 体 Ba($176 \times 10^{-6} \sim 232 \times 10^{-6}$)、Sr($186 \times 10^{-6} \sim$ 243×10⁻⁶)含量均略低于大陆上地壳值(Ba 为 $371 \times 10^{-6} \sim 460 \times 10^{-6}$, Sr 为 $282 \times 10^{-6} \sim 348 \times$ 10⁻⁶;高山等,2003),排除了大规模地壳混染的可能 性.此外,岩浆演化过程对分配系数 D 相等的微量 元素(如 Zr、Hf、Sm 等)的影响是一致的,它们的比 值不受岩浆演化方式的影响,青草山含 矿斑岩体具有相对集中的Zr/Hf(32.0~41.8)与

矿区	岩性	测试对象	方法	年龄(Ma)	资料来源
	石英闪长岩			87.1±0.4	姚晓峰等(2012
尕尔穷	花岗斑岩	锆石	LA-ICPMS U-Pb	83.2±0.7	姚晓峰等(2013
	石英闪长岩	辉钼矿	Re-Os 等时线	86.87±0.5	李志军等(2011
	花岗闪长岩			86.52±0.41	
~ 1) #4		锆石	LA-ICPMS U-Pb	88.59±0.45	吕立娜等(2011
嘎拉勒	闪长坋岩			88.09 ± 0.41	
	矽卡岩	白云母	⁴⁰ Ar- ³⁹ Ar	91.48 ± 0.68	汪傲等(2014)
				120.9 ± 2.4	佘宏全等(2009
		锆石	SHRIMP U-Pb	121.6 ± 1.9	李金祥等(2008
	# 비 전 시 과 비			116.7 ± 1.7	Li et al.(2011)
多个亲 化冈内氏斑石	化冈闪长斑石	辉钼矿	Re-Os 等时线	118.0 ± 1.5	佘宏全等(2009
		绢云母	40 A 20 A	115.2 ± 1.2	T: 1 (0011)
		钾长石	⁴⁰ Ar- ³⁹ Ar LA-ICPMS U-Pb	115.2 ± 1.1	Li et al.(2011)
				120.2 ± 2.0	
			LA-ICPMS U-Pb	119.5 ± 0.9	陈华安等(2013
				119.3 ± 1.3	
	花岗闪长斑岩		SHRIMP U-Pb	121.1 ± 1.7	Li et al.(2011)
花岗闪长斑		锆石		117.5 ± 1.0	
				118.0 ± 1.0	
			SIMS U-Pb	118.5 ± 1.0	Li et al.(2014)
	丁 苯 內 匕 八 山			118.4 ± 1.1	
	石央内长坊石			118.6 ± 1.0	
	花岗闪长斑岩	辉钼矿	Re-Os 等时线	119.4 ± 1.5	祝向平等(2011
拿若	花岗闪长斑岩	锆石	SHRIMP U-Pb	119.5 ± 0.6	吕立娜(2012)
铁格龙	英云闪长斑岩	锆石	SHRIMP U-Pb	119.7 ± 0.6	吕立娜(2012)
尕尔勤	英云闪长斑岩	锆石	SHRIMP U-Pb	122.5 ± 0.6	吕立娜(2012)
	ᆂᄔᇏᅒᇧᇗᇑᆔ			114.6 ± 1.2	周胜金等(2013
青草山	化冈内长地岩	锆石	LA-ICPMS U-Pb	117.9 ± 0.8	+ ->-
	花岗闪长岩			131.2 ± 0.3	平义

р 11

Fig.6 Discrimination diagrams for the Qingcaoshan granodiorite porphyry and granodiorite 图 b 据 Pearce et al.(1984).多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009)及陈华安等(2013); VAG.火山岛弧花岗 岩;WPG.板内花岗岩;Syn-COLG.同碰撞花岗岩;ORG.洋脊花岗岩

多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等 (2009)及陈华安等(2013)

Hf/Sm(0.9~1.2)比值,说明岩浆侵位过程中没有 明显的地壳物质混染,可以根据其岩石成分探讨岩 浆源区的特征.

青草山含矿斑岩具有较低的 MgO 含量,以及 低含量的相容元素 Cr(7.24×10⁻⁶~12.00×10⁻⁶)、 Ni(9.0 \times 10⁻⁶ \sim 14.1 \times 10⁻⁶), Co(7.18 \times 10⁻⁶ \sim 10.10×10^{-6})以及 V(63.3×10⁻⁶~75.0×10⁻⁶),明 显不同于俯冲大洋板片脱水所释放流体交代上覆楔 形地幔部分熔融而形成的钙碱性岩浆(如拉萨地块 南缘早白垩世俯冲型岩浆岩;Zhu et al.,2009),而 类似于起源于下地壳的岩浆岩.不相容元素 Nb、Ta 和 Th、U 由于性质相近,Nb/Ta、Th/U 比值在岩浆 演化过程中不会有较大的分异,因此可以用来指示 岩浆源区特征及演化过程.壳源岩浆的 Th/U 比值 为 3.8~6.0, Nb/Ta 比值为 11~12; 而幔源岩浆的 Th/U平均比值为 4.05, Nb/Ta 比值为 17.5±2.0 (Sun and McDonough, 1989).青草山含矿斑岩的 Th/U 比值为 3.7~5.9, Nb/Ta 比值为 7.9~15.4, 指示下地壳可能是岩体源区物质的重要组成部分, 但受到了少量地幔物质的混染.实验岩石学研究表 明,不论下地壳熔融程度如何,其产物均以 Mg[#]值 小于 40 为特征, 而青草山含矿斑岩 Mg[#] 值为 43.6~52.0.同时, Taylor and McLennan (1985)统 计资料后得出上地壳 Rb/Sr 比值约为 0.32,大陆平 均值为 0.24, 青草山含矿斑岩的 Rb/Sr 比值为 0.8~ 1.2,大于地壳平均值.此外,青草山含矿斑岩的 Hf

图 8 青草山花岗闪长斑岩锆石 ε_{Hf}(t)-t 图解

Fig.8 $\varepsilon_{\text{Hf}}(t) - t$ diagram for the Qingcaoshan granodiorite porphyry

波龙花岗闪长斑岩与多龙矿集区成矿斑岩数据分别来源于陈华 安等(2013)

同位素值集中在-0.61~1.10(表 2),小于波龙花岗 闪长斑岩值(2.5~6.9;陈华安等,2013),而大于多 不杂花岗闪长斑岩值(-8.3~-3.9;侯可军等, 2007)(图 8).综上笔者推测青草山含矿斑岩体岩浆 起源于下地壳,有少量幔源物质的混入.实验研究表 明,在相对高温(~950 ℃)高压(~1 GPa)的条件 下,含角闪石相的镁铁质下地壳在玄武质岩浆高温 底侵的作用下可以发生脱水熔融产生花岗质岩浆. 青草山含矿斑岩具有较高的 K₂O 含量; Furman and Graham (1999)研究指出源区如果存在富钾矿 物相(金云母、富钾角闪石和钾长石),其部分熔融会 导致形成的岩浆中富钾.青草山岩体具有弱的 Eu 负 异常,以及高的 Rb/Sr 比值(0.6~1.2) 与低的 Ba/ Rb比值(1.5~2.5),暗示了源区富钾矿物相主要为 金云母(与金云母平衡的熔体具有高的 Rb/Sr (>0.1)和低的 Ba/Rb(<20)比值)以及少量的钾长 石,而不是角闪石(与角闪石平衡的熔体具有低的 Rb/Sr(<0.06)和高的 Ba/Rb(>20)比值).因此,笔 者推测下地壳源区较多的金云母矿物相的部分熔融 导致青草山含矿斑岩体显示出富钾的特征.

5.3 地球动力学背景

长期以来,关于班公湖一怒江缝合带的形成过 程(开启、扩张、俯冲消减、闭合以及俯冲极性)存在

争议,这直接制约了对其成矿动力学背景的认识.黄 汲清和陈炳蔚(1993)最早根据区域构造和狮泉河地 区地层沉积相分析及相关年代学研究,指出班公湖 一怒江洋盆在三叠纪打开,早侏罗世扩张成深海洋 盆,至晚侏罗世洋壳开始向北侧羌塘地块之下俯冲 消减,到晚侏罗世末一早白垩世初洋盆闭合,随后进 入弧一陆碰撞演化阶段,使拉萨地块与羌塘地块碰 撞拼合.邱瑞照等(2004)根据缝合带中段改则地区 舍玛拉沟辉长岩全岩 Sm-Nd 定年进一步限定新特 提斯洋开启于早侏罗世.史仁灯(2007)对该带的 SSZ 型蛇绿岩中的辉长岩进行锆石 SHRIMP U-Pb 定年得到年龄为167.0±1.4 Ma,其代表了新特提斯 洋在该区俯冲消减的时限,限定了班公湖-怒江新 特提斯洋至少从中侏罗世开始由扩张转换为俯冲消 减,而不是到晚侏罗世才开始发生洋壳俯冲.此外, 对于班公湖-怒江洋的闭合时限,曲晓明和辛洪波 (2006)通过对班怒带多不杂与尕尔穷矿床的成矿时 代与构造环境的研究,提出班公湖-怒江洋盆的闭 合时间为145 Ma;曲晓明等(2012)对缝合带中段申 扎一班戈一带的 A 型花岗岩进行了详细的岩石成 因研究,判断其属于 A2 型花岗岩,并结合其锆石 U-Pb年代学,推测班公湖-怒江洋盆的闭合时间至少 应该在白垩纪初.然而,在多玛和塔仁本地区发现了 大面积形成于以洋壳为基底的洋岛环境的 OIB 型 玄武岩(110 Ma 左右;潘桂堂等,2006;朱弟成等, 2006a);在具有弧火山岩特征的美日切错组火山岩 中获得英安岩锆石 SHRIMP U-Pb 年龄为 111.1± 1.4 Ma(李光明等, 2011)以及李金祥等(2008)通过 对多不杂矿区岩浆作用的研究,认为矿区的花岗闪 长斑岩(120 Ma)具有典型的埃达克岩特征,且形成 于典型的岛弧俯冲构造背景.因此,班公湖一怒江洋 壳在早白垩世尚未彻底消亡,暗示班公湖一怒江洋 的闭合时限应该在早白垩世晚期,甚至更晚.

对于班公湖-怒江洋的俯冲极性,既有认为它 是向北俯冲的(Zhang et al.,2004),也有认为其具 有双向俯冲的特点(杜德道等,2011).伴随班公湖-怒江洋于侏罗纪向北俯冲,在南羌塘陆块南缘形成 了楔形增生体以及系列逆断层,大量中酸性斑岩体 以及基性火山岩和侵入岩沿该系列逆断层侵位于楔 形增生体,并同时形成了多个斑岩系统矿床.多龙矿 集区是羌塘陆块南缘增生楔的重要组成部分,其中 代表性的波龙和多不杂 Cu-Au 矿床即为在此大陆 增生楔基础上发育的斑岩铜金矿床 (李光明等, 2011).杜德道等(2011)的研究表明该缝合带具有双 向俯冲性质,在班公湖-怒江缝合带的北侧形成了 羌南活动大陆边缘构造一岩浆弧,在其南侧形成了 斑戈--色林错--噶尔火山岩浆弧.此外,朱弟成等 (2006b)对该带南侧措勤地区则弄群火山岩进行了 锆石 LA-ICP-MS 测年,得到年龄为 120~130 Ma, 与北侧多不杂斑岩铜矿床的形成时代相同,由此指 出在早白垩世末,陆块与岛弧间的盆地普遍受南向 挤压而闭合消亡,碰撞型花岗岩就位,完成了洋一陆 转化过程.本文的青草山斑岩 Cu-Au 矿床位于班公 湖一怒江缝合带北侧,其含矿花岗闪长斑岩和花岗 闪长岩形成于118~130 Ma之间,岩石地球化学特 征表明其具有典型的岛弧岩浆岩特征,且形成于火 山岛弧(VAG)的构造背景.因此,笔者推测在早白 垩世初期,班公湖-怒江洋成矿带依然存在向北的 俯冲作用,当大洋板片俯冲到地下一定深度时,发生 脱水熔融,其释放的流体交代上覆地幔楔并诱发镁 铁质下地壳部分熔融,产生富 H₂O、硫、Cu 以及 Au 等金属元素的高氧逸度钾玄岩性一高钾钙碱性弧岩 浆,后浅成一超浅成侵位成青草山 Cu-Au 斑岩体及 斑岩型矿床.

6 结论

(1) 青草山斑岩 Cu-Au 矿床与花岗闪长斑岩成 矿关系密切,成矿时代与斑岩时代大致相同 (117.9±0.8 Ma),与区域上的成矿事件一致.

(2)青草山含矿斑岩是下地壳部分熔融的产物, 受到了少量地幔物质的混合.

(3)含矿花岗闪长斑岩以及花岗闪长岩形成于 班公湖一怒江洋壳向北俯冲的动力学构造背景中, 其代表了该带早期的岩浆活动以及斑岩成矿事件.

References

- Chen, H.A., Zhu, X.P., Ma, D.F., et al., 2013. Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit, Tibet and Its Mineralizing Significance. Acta Geologica Sinica, 87 (10): 1593 - 1611 (in Chinese with English abstract).
- Ding,S.,Tang,J.X.,Zheng,W.B., et al., 2017. Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. *Earth Science*, 42(1):1-23 (in Chinese with English abstract). https://doi.org/10. 3799/dqkx.2017.001
- Du, D. D., Qu, X, M., Wang, G. H., et al., 2011. Bidirectional

Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet; Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. *Acta Petrologica Sinica*, 27(7):1993-2002 (in Chinese with English abstract).

- Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. *Lithos*, 48 (1): 237 - 262. https://doi.org/10.1016/s0024-4937 (99)00031-6
- Gao, S., Rudnick, R., Richard, W., et al., 2003. Removal of Lithospheric Mantle in the North China Craton: Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth. *Earth Science Frontiers*, 10 (3): 61 - 67 (in Chinese with English abstract).
- Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. *Geochimica et Cosmochimica Acta*, 64 (1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
- Hou, K.J., Li, Y. H., Xie, G.Q., 2007. LA-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon. Journal of Chinese Mass Spectrometry Society, 28 (Suppl.): 26-28 (in Chinese with English abstract).
- Hu,Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10. 1039/c2ja30078h
- Huang, J.Q., Chen B.W., 1987. The Evolution of the Tethys in China and Adjacent Regions. Geological Publishing House, Beijing (in Chinese).
- Li,G.M., Duan, Z. M., Liu, B., et al., 2011. The Discovery of Jurassic Accretionary Complexes in Duolong Area, Northern Bangong Co-Nujiang Suture Zone, Tibet, and Its Geologic Significance. *Geologcal Bulletin of China*, 30(8):1256-1260 (in Chinese with English abstract).
- Li, J. X., Li, G. M., Qin, K. Z., et al., 2008. Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet: Constraints on Metallogenic Tectonic Settings. Acta Petrologica Sinica, 24 (3):531-543 (in Chinese with English abstract).
- Li,J.X., Qin, K.Z., Li, G.M., et al., 2011. Magmatic-Hydrothermal Evolution of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Metallogenic Belt,

Tibet: Evidence From U-Pb and ⁴⁰ Ar/³⁹ Ar Geochronology. Journal of Asian Earth Sciences, 41(6):525-536.

- Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2014.Petrogenesis of Cretaceous Igneous Rocks From the Duolong Porphyry Cu-Au Deposit,Central Tibet: Evidence From Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics.Geological Journal,51(2):285-307.
- Li, Z. J., Tang, J. X., Yao, X. F., et al., 2011. Re-Os Isotope Age and Geological Significance of Molybdenite in the Gaerqiong Cu-Au Deposit of Geji, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 38 (6): 678 - 683 (in Chinese with English abstract).
- Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. *Journal of Petrology*, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
- Lü,L.N.,2012. Metallogenic Model of Rich Iron and Copper (Gold) Deposit in Western Part of Bangong Co-Nujiang Metallogenic Belt, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
- Lü, L.N., Cui, Y.B., Song, L., et al., 2011. Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold (Copper) Deposit, Tibet and Its Significance. *Earth Science Frontiers*, 18(5):224-242 (in Chinese with English abstract).
- Mungall, J. E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits.Geology, 30 (10): 915 - 918. https://doi.org/10.1130/ 0091-7613(2002)030<0915:rtmsma>2.0.co;2
- Oyarzun, R., Márquez, A., Lillo, J., et al., 2001. Giant Versus Small Porphyry Copper Deposits of Cenozoic Age in Northern Chile: Adakitic Versus Normal Calc-Alkaline Magmatism. *Mineralium Deposita*, 36 (8): 794 - 798. https://doi.org/10.1007/s001260100205
- Pan, G. T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22 (3): 521 - 533 (in Chinese with English abstract).
- Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. *Journal of Petrology*, 25 (4): 956-983. https://doi.org/10.1093/petrology/25.4.956
- Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Ar-

ea, Northern Turkey. *Contributions to Mineralogy and Petrology*, 58 (1): 63 - 81. https://doi.org/10.1007/ bf00384745

- Qiu, R.Z., Zhou, S., Deng, J.F., et al., 2004. Dating of Gabbro in the Shemalagou Ophiolite in the Western Segment of the Bangong Co-Nujiang Ophiolite Belt, Tibet-With a Discussion of the Age of the Bangong Co-Nujiang Ophiolite Belt. *Chinese Geology*, 31(3): 262 - 268 (in Chinese with English abstract).
- Qu, X. M., Xin, H. B., 2006. Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet, China. Geolog cal Bulletin of China, 25(7):792-799 (in Chinese with English abstract).
- Qu, X.M., Xin, H.B., Du, D.D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. *Geochimica*, 41 (1):1-14 (in Chinese with English abstract).
- She, H. Q., Li, J. W., Ma, D. F., et al., 2009. Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Porphyry Copper Deposit in Tibet and Its Geological Implications.*Mineral Deposits*, 28(6):737-746 (in Chinese with English abstract).
- Shi,R.D., 2007. The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Chinese Science Bulletin, 52(2):223-227 (in Chinese).
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. *Geological Society*, London, Special Publications, 42 (1): 313 – 345. https:// doi.org/10.1144/gsl.sp.1989.042.01.19
- Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. *Earth and Planetary Science Letters*, 219(3-4):311-324.https://doi.org/10.1016/s0012-821x(04)00012-3
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication. Boston.
- Wang, A., Zhao, Y. Y., Xu, H., et al., 2014.⁴⁰ Ar/³⁹ Ar Age of Muscovite from the Galale Skarn Type Copper-Gold Deposit in Tibet and Its Geological Significance.*Geological Bulletin of China*, 33(7):1008-1014 (in Chinese with English abstract).
- Wilson, M. 1989. Igneous Petrogenesis: A Global Tectonic Approach.Chapman & Hall,London.
- Wu, F.Y., Li, X. H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic

Systematic and Their Applications in Petrology. *Acta Petrologica Sinica*, 23(2):185-220 (in Chinese with English abstract).

- Xin, H. B., Qu, X. M., Wang, R. J., et al., 2009. Geochemistry and Pb, Sr, Nd Isotopic Features of Ore-Bearing Porphyries in Bangong Lake Porphyry Copper Belt, Western Tibet. *Mineral Deposits*, 28(6):785-792 (in Chinese with English abstract).
- Yao, X.F., Tang, J.X., Li, Z.J., et al., 2012. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and Its Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf Isotope Characteristics. Journal of Jilin University (Earth Science Edition), 42 (S2): 188-197 (in Chinese with English abstract).
- Yao, X. F., Tang, J. X., Li, Z. J., et al., 2013. The Redefinition of the Ore-Forming Porphyry's Age in Gaerqiong Skarn-Type Gold Copper Deposit, Western Bangong Lake—— Nujiang River Metallogenic Belt, Xizang (Tibet). Geological Review, 59(1): 193-200 (in Chinese with English abstract).
- Zhang, Z., Song, J. L., Tang, J. X., et al., 2017. Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. *Earth Science*, 42 (6): 862 - 880 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.523
- Zheng, Y. Y., Ci, Q., Wu, S., et al., 2017. The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet. *Earth Science*, 42(9):1441-1453 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.109
- Zhou, J.S., Meng, X.J., Zang, W.S., et al., 2013. Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-Bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit, Tibet, and Its Geological Significance. Acta Petrologica Sinica, 29 (11): 3755 - 3766 (in Chinese with English abstract).
- Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006a. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau: Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9): 1312-1328 (in Chinese with English abstract).
- Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006b. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English abstract).

- Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction? Journal of Asian Earth Sciences, 34(3):298-309.https:// doi.org/10.1016/j.jseaes.2008.05.003
- Zhu, X. P., Chen, H. A., Ma, D. F., et al., 2011. Re-Os Dating for the Molybdenite from Bolong Porphyry Copper-Gold Deposit in Tibet, China and Its Geological Significance. Acta Petrologica Sinica, 27(7):2159-2164 (in Chinese with English abstract).

附中文参考文献

- 陈华安,祝向平,马东方,等,2013.西藏波龙斑岩铜金矿床成 矿斑岩年代学、岩石化学特征及其成矿意义.地质学 报,87(10):1593-1611.
- 丁帅,唐菊兴,郑文宝,等,2017.西藏拿若斑岩型铜(金)矿含 矿岩体年代学、地球化学及地质意义.地球科学,42(1): 1-23.https://doi.org/10.3799/dqkx.2017.001
- 杜德道,曲晓明,王根厚,等,2011.西藏班公湖一怒江缝合带 西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆 石 U-Pb 年龄和元素地球化学的证据.岩石学报,27 (7):1993-2002.
- 高山,Rudnick,R.,Richard,W.,等,2003.华北克拉通岩石圈 地幔置换作用和壳幔生长耦合的 Re-Os 同位素证据. 地学前缘,10(3):61-67.
- 侯可军,李延河,谢桂青,2007.锆石 Hf 同位素的 LA-MC-ICP-MS 分析方法.质谱学报,28(增刊):26-28.
- 黄汲清,陈炳蔚,1987.中国及邻区特提斯海的演化.北京:地 质出版社.
- 李光明,段志明,刘波,等,2011.西藏班公湖-怒江结合带北 缘多龙地区侏罗纪增生杂岩的特征及意义.地质通报, 30(8):1256-1260.
- 李金祥,李光明,秦克章,等,2008.班公湖带多不杂富金斑岩 铜矿床斑岩一火山岩的地球化学特征与时代:对成矿 构造背景的制约.岩石学报,24(3):531-543.
- 李志军,唐菊兴,姚晓峰,等,2011.班公湖一怒江成矿带西段 尕尔穷铜金矿床辉钼矿 Re-Os 年龄及其地质意义.成 都理工大学学报(自然科学版),38(6):678-683.
- 吕立娜,崔玉斌,宋亮,等,2011.西藏嘎拉勒夕卡岩型金(铜) 矿床地球化学特征与锆石的LA-ICP-MS定年及意义. 地学前缘,18(5):224-242.
- 吕立娜,2012.西藏班公湖一怒江成矿带西段富铁与铜(金) 矿床模型(硕士学位论文).北京:中国地质科学院.
- 潘桂棠,莫宣学,侯增谦,等,2006.冈底斯造山带的时空结构 及演化.岩石学报,22(3):521-533.
- 邱瑞照,周肃,邓晋福,等,2004.西藏班公湖-怒江西段舍马

拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江 蛇绿岩带形成时代.中国地质,31(3):262-268.

- 曲晓明,辛洪波,2006.藏西班公湖斑岩铜矿带的形成时代与 成矿构造环境.地质通报,25(7):792-799.
- 曲晓明,辛洪波,杜德道,等,2012.西藏班公湖一怒江缝合带 中段碰撞后 A 型花岗岩的时代及其对洋盆闭合时间的 约束.地球化学,41(1):1-14.
- 佘宏全,李进文,马东方,等,2009.西藏多不杂斑岩铜矿床辉 钼矿 Re-Os 和锆石 U-Pb SHRIMP 测年及地质意义. 矿床地质,28(6):737-746.
- 史仁灯,2007.班公湖 SSZ 型蛇绿岩年龄对班-怒洋时限的 制约.科学通报,52(2):223-227.
- 汪傲,赵元艺,许虹,等,2014.西藏嘎拉勒夕卡岩型铜金矿白 云母⁴⁰ Ar-³⁹ Ar 年龄及其地质意义.地质通报,33(7): 1008-1014.
- 吴福元,李献华,郑永飞,等,2007.Lu-Hf 同位素体系及其岩 石学应用.岩石学报,23(2):185-220.
- 辛洪波,曲晓明,王瑞江,等,2009.藏西班公湖斑岩铜矿带成 矿斑岩地球化学及 Pb、Sr、Nd 同位素特征.矿床地质, 28(6):785-792.
- 姚晓峰,唐菊兴,李志军,等,2012.班怒带西段尕尔穷铜金矿 两套侵入岩源区及其地质意义——来自 Hf 同位素特 征的指示.吉林大学学报(地球科学版),42(S2): 188-197.
- 姚晓峰,唐菊兴,李志军,等,2013.班公湖-怒江带西段尕尔 穷砂卡岩型铜金矿含矿母岩成岩时代的重新厘定及其 地质意义.地质论评,59(1):193-200.
- 张志,宋俊龙,唐菊兴,等,2017.西藏嘎拉勒铜金矿床的成岩 成矿时代与岩石成因:锆石 U-Pb 年龄、Hf 同位素组成 及辉钼矿 Re-Os 定年.地球科学,42(6):862-880. https://doi.org/10.3799/dqkx.2017.523
- 郑有业,次琼,吴松,等,2017.西藏班公湖-怒江成矿带荣嘎 斑岩型钼矿床的发现及意义.地球科学,42(9):1441-1453.https://doi.org/10.3799/dqkx.2017.109
- 周金胜,孟祥金,臧文栓,等,2013.西藏青草山斑岩铜金矿含 矿斑岩锆石 U-Pb 年代学、微量元素地球化学及地质意 义.岩石学报,29(11):3755-3766.
- 朱弟成,潘桂棠,莫宣学,等,2006a.青藏高原中部中生代 OIB型玄武岩的识别:年代学、地球化学及其构造环境. 地质学报,80(9):1312-1328.
- 朱弟成,潘桂棠,莫宣学,等,2006b.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报,22(3):534-546.
- 祝向平,陈华安,马东方,等,2011.西藏波龙斑岩铜金矿床的 Re-Os同位素年龄及其地质意义.岩石学报,27(7): 2159-2164.