https://doi.org/10.3799/dqkx.2019.150

黔西某煤层气开发区块产出水有毒有害 元素污染特征及其环境效应

李清光1,吴 攀1*,顾尚义1,刘 沛1,胡海洋2,3,高 为2,3,龚朝兵3,常溪溪3

1. 贵州大学资源与环境工程学院,国土资源部环境与地质灾害重点实验室,贵州贵阳 550025

2. 贵州省煤层气页岩气工程技术研究中心,贵州贵阳 550081

3. 贵州省煤田地质局,贵州贵阳 550008

摘 要:由于含煤地层不同程度地富集氟、砷、镉、铬、汞和锑等多种有毒有害元素,煤层气开发过程中的大量产出水会对表生 生态环境构成严重威胁.对贵州西部某煤层气开发区块产出水的水化学特征进行了系统研究,结果表明:与地下水质量标准 (GB/T 14848-2017)III类水质相比,研究区煤层气产出水中Ba和Hg严重超标,平均含量分别达到10 621.6 µg/L和16.5 µg/ L.较强的硫酸盐还原作用导致地层水中硫酸盐被耗尽,含Ba碳酸盐矿物的溶解进而造成产出水表现出明显的Ba异常.Hg主 要来源于含煤地层中的硫化物,而硫化物和碳酸盐矿物的溶解是Cr、Mo、Cd和Sb四种元素的主要来源;较高浓度的Mo与离 子交换反应有关,并可能以铁锰氧化物和氢氧化物、硫代钼酸盐和钼的金属硫化物等形式存在;Al的氢氧化物吸附态是产出 水中Cr、Mo、Mn、Cd、Sb、Cd、Cu、Pb和Ba的主要赋存形态;Ni主要来源于煤有机质的矿化.水质评价结果显示,研究区煤层气 产出水的污染状况极为严重;其中,Hg在SH9煤层气井中超标27倍,而Ba在SH8煤层气井中超标23倍.

关键词:煤层气产出水;有毒有害元素;钡异常;来源;水质评价;水文地质.

中图分类号: P595 **文章编号:** 1000-2383(2019)09-2862-12

Pollution Characteristics of Toxic and Harmful Elements and Its Environmental Impact in Water Co-Produced from Coalbed Methane Wells in the CBM Development Block in Western Guizhou

收稿日期:2019-06-14

Li Qingguang¹, Wu Pan^{1*}, Gu Shangyi¹, Liu Pei¹, Hu Haiyang^{2,3}, Gao Wei^{2,3}, Gong Chaobing³, Chang Xixi³

1. Key Lab of Karst Environment and Geohazard of Ministry of Land and Resources, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China

- 2. Guizhou Research Center of Shale Gas and CBM Engineering Technology, Guiyang 550081, China
- 3. Guizhou Bureau of Coal Geology, Guiyang 550008, China

Abstract: Coal seams are often enriched in various toxic and harmful elements such as F, As, Cd, Cr, Ni, Pb, Hg and Sb, so the ecosystem might be faced with serious environmental threats when the co-produced water is brought to the surface in the production of coalbed methane (CBM). In this paper, we present a systematic water chemistry study of co-produced water from

引用格式:李清光,吴攀,顾尚义,等,2019.黔西某煤层气开发区块产出水有毒有害元素污染特征及其环境效应.地球科学,44(9):2862-2873.

基金项目:国家自然科学基金项目(Nos.U1612442-6-7,41867050,41772122);贵州省公益性基础性地质工作项目(黔国土资地环函[2014]23 号);贵州省基础研究计划(黔科合基础[2019]1096);贵州大学人才培育项目(黔科合平台人才[2017]5788);贵州大学人才引进项目 (贵大人基合字[2017]73号);贵州省一流学科建设项目(No.GNYL[2017]007);贵州省人才基地项目(No. RCJD2018-21).

作者简介:李清光(1984-),男,博士,主要从事矿井水文地球化学研究.ORCID:0000-0003-1289-1771. E-mail:leeqg12@163.com *通讯作者:吴攀,ORCID:0000-0003-1083-3025. E-mail: pwu@gzu.edu.cn

Songhe coalbed methane development block in western Guizhou Province. The results show that, compared to Class III of Groundwater Quality Standard (GB/T 14848-2017), Ba and Hg in co-produced water in the study area exceeded the standard seriously, and the average concentrations were 10 621.6 μ g/L and 16.5 μ g/L, respectively. The Ba anomaly in co-produced water was attributed to the dissolution of Ba-bearing carbonates and the depletion of sulfate induced by sulfate reduction, and Hg was from sulfide minerals. The sources for Cr, Mo, Cd and Sb were sulfides and carbonates in coal seams. The high content of Mo is associated with ion exchange reactions under high salinity, and molybdate and metallic sulfides are the main forms for Mo. Under weak alkaline conditions, the hydroxide adsorption state of Al is the main occurrence form of Cr, Mo, Mn, Cd, Sb, Cd, Cu, Pb and Ba in the co-produced water. The sources of Ni were obviously different from those of other elements, and it most likely came from the mineralization of coal organic matters. The results of water quality evaluation showed that the pollution of the water co-produced from coalbed methane wells in the study area is very serious, which is mainly due to the serious overstandard of Hg and Ba. In SH9, mercury is 27 times the legal limits and that is 23 times for barium in SH8.

Key words: coalbed methane co-produced water; toxic and harmful element; enrichment of barium; source; water quality assessment; hydrogeology.

近年来,常规油气资源日益萎缩,而经济社会的快速发展对能源的需求却与日俱增.以煤层气、 页岩气和页岩油为代表的非常规能源的勘探开发 日益受到国内外的重视.我国2000m以浅煤层气 地质资源量为30×10¹²m³,可采资源量为12.5× 10¹²m³(张群,2007;张道勇等,2018).2017年,全国 煤层气地面抽采总量达50×10⁸m³,累计钻井 17000口.目前,我国煤层气开发主要集中在鄂尔多 斯、沁水盆地、两淮煤田和滇黔地区等煤炭资源丰 富的地区.为保证煤层气的排采效果,煤层气井通 常都需要对目标层位进行水力压裂.因此,在煤层 气排采过程中会有大量煤层气伴生水被带至地表. 以贵州松河煤层气开发区块为例,单井累计产水量 超过2100m³(Wu et al., 2018).

因长期与围岩相互作用,煤层水的化学组成十 分复杂.尽管不同煤矿区含煤地层的沉积埋藏环 境、构造演化过程和地层的赋水性等方面存在不 同,但煤层水中Na⁺、Cl⁻和F⁻等离子的浓度远高于 地表水体,局部地区总矿化度甚至超过94 000 mg/ L(温彩哨等,2014;Guo et al.,2017;Wu et al., 2018).并且,在水力压裂期间,混入含煤地层的压裂 液本身就有许多对环境有潜在影响的化学添加剂. 然而,煤层气产出水对环境的潜在危害认识程度远 远不够.产出水常常直接排入井场附近河流或者 用于农业灌溉.高盐碱度的煤层气产出水不仅会 对农田土壤的理化性质产生不利影响,大量重金属 等污染物还会威胁到周边地表水体和生态系统 (Jackson and Reddy, 2007;Brinck, et al., 2008; Yang et al., 2013).

前期对煤层气产出水的关注,主要集中在判识 产出水来源及其与煤层气产能关系的研究方面.产 出水的环境影响方面,也仅仅针对高盐碱度产出水 的资源化利用方面(孙悦等,2010; Nghiem et al., 2011; Li et al., 2018; Majee et al., 2018). 实际上, 我国西南地区含煤地层经历了多期次构造演化和 水热事件的影响(Li et al., 2013; Tang et al., 2016).氟、砷、镉、铬、镍、铅、汞和锑等多种有毒有害 元素在煤层中显著富集(曾荣树等, 1998; Dai et al., 2004; Feng and Qiu, 2008; Qi and Gao, 2008). 而煤层气开发过程中,含煤地层受到煤层气排采活 动的影响,造成这些元素随着煤层气产出水被带至 地表,进而对当地生态环境系统、甚至人体健康构 成严重威胁.另一方面,以六盘水煤田和织纳煤田 为代表的贵州主要含煤构造单元中,煤层气资源十 分丰富,且煤层气勘探开发力度逐年加大(Li et al., 2015; 易同生等, 2018). 鉴于贵州煤层气勘探 开发地区同时又是喀斯特生态脆弱区,煤层气产出 水中有毒有害元素的污染特征及其环境效应必须 引起高度重视.

选取位于贵州西部的某煤层气勘探开发区块为研究区,对煤层气产出水中的有毒有害元素的 污染特征进行系统研究,对不同有毒有害元素的 来源进行全面分析,采用单因子评价法和内梅罗 指数法对产出水有毒有害元素的污染水平进行合 理评价,借鉴美国环境保护局(USEPA)推荐的健 康风险模型对产出水的健康风险水平进行科学评 估,以期为煤层气产出水的资源化利用及污染防 治提供科学依据.

1 研究区概况

研究区位于贵州西部盘县煤田(图1),大地构

图 1 研究区煤层气开发区块位直 Fig.1 Location of the study area

造位置上属于滇黔桂台向斜一黔西南台凹一土城 向斜北翼中段.区内主要含煤地层为二叠系上统龙 潭组,该地层含煤47~66层,平均厚度341m.可采 煤层主要分布在含煤地层的上段和中段,煤层结构 较简单,厚度、间距比较稳定;下段可采煤层为薄煤 层,结构复杂,煤层间距比较稳定,而厚度变化比较 大.井田内有焦煤、肥煤、瘦煤3种煤质类型,变质程 度从上到下、从西到东逐渐增高.

区内二叠系上统峨眉山玄武岩组、龙潭组和三 叠系下统飞仙关组均为弱含水层.二叠系下统茅口 组和三叠系下统永宁镇组虽然含水量极高,但距离 龙潭组含煤地层较远,对煤层气开采影响不大.此 外,区内断层多为隐伏断层,同属含水微弱或不导 水的封闭性断层.因此,含煤地层与强含水层没有 直接的水力联系,但露头区基岩风化裂隙带富水性 较强,是煤组地层主要含水段.研究区共计施工有9 口煤层气开发试验井,经历了前期大规模排水降压 阶段以后,现处于煤层气正常排采阶段.

2 样品采集与分析测试

笔者于 2018年12月前往研究区进行煤层气产 出水样品采集.由于研究区煤层气开发采用合层分 段压裂工艺,煤层气产出水为1号、3~29号煤层裂 隙水的混合.本研究产出水样品直接采自煤层气排 采井的出水口,避免因与空气接触时间过长而造成 水质发生变化.样品采集前,通过 YSI Pro Plus 水质 参数仪现场测试 Eh、pH、DO、Ec 和水温等易变参 数.水样采用 0.45 μm 的尼龙滤膜过滤,之后置于 50 mL 无菌离心管中,用于阴离子测试的样品不添 加任何试剂,阳离子和重金属测试的样品分别滴入 优级纯浓硝酸,调节pH小于3.0;离心管内不留气 泡.采样期间,样品存放在内置干冰的泡沫冷藏箱 进行冷藏,回实验室以后转移至冰箱以4°C保存. 此外,现场还通过默克滴定盒(No. 1.11109.0001)对 水样的碱度进行滴定分析,为保证结果可靠性,每 个样品最少连续滴定3次.Cl⁻、SO²⁻、F⁻浓度采用 Dionex-500型离子色谱仪测试;PE-5100型原子吸 收光谱仪分析 K+、Na+、Ca2+、Mg2+浓度;重金属 (As, Cd, Cr, Pb, Hg, Al, Fe, Mn, Cu, Zn, Sb, Ba, Be、Mo、Ni)含量通过电感耦合等离子体质谱仪 (ICP-MS, Agilent 7700X)测试,采用平行样、空白 样和标样对数据质量进行控制,其中Rh作为内标, 回收率在95%以上.上述测试均在中国科学院地 球化学研究所环境地球化学国家重点实验室进行, 测试结果见表1.

3 煤层气产出水重金属污染特征 及来源

从检测结果看(表1),研究区煤层气产出水中 Ba的含量最高(6283.7~16224.8 μ g/L),平均 10621.6 μ g/L;其次为Fe(59.5~2831.9 μ g/L),平 均458.7 μ g/L;Mo元素(6.9~1318.4 μ g/L)的平均 含量达到376.2 μ g/L,主要是因为SH7、SH8和SH9 三口气井中Mo的含量较高;此外,Mn和Zn的平均 含量也达到143.5 μ g/L和140.7 μ g/L,而Cr在 SH7、SH8和SH9三口气井中的含量均超过100 μ g/ L;需要注意的是,Hg(5.4~27.4 μ g/L)的平均含量 高达16.5 μ g/L,严重超过国标GB/T 14848-2017中 表1 研究区煤层气产出水重金属含量 Table 1 The trace elements contents in coalbed methane co-produced water in the study area

采样点	Hd	Eh	As (µg/L)	Cd (µg/L)	Cr (µg/L)	Pb (μg/L)	Hg (µg/L)	Al (µg/L)	Fe (µg/L)	Mn (µg/L)	Cu (μg/L)	Zn (µg/L)	Sb (µg/L)	Ba (μg/L)	Be (μg/L)	Mo (µg/L)	Ni (µg/L)
SHI	7.13	-85	0.5	0.0	0.3	1.5	5.4	32.1	2 831.9	244.6	0.4	33.3	8.3	9 068.3	0.1	9.2	9.0
SH2	7.71	-133	0.7	0.2	0.1	1.4	22.7	45.5	60.0	67.9	0.0	18.5	4.7	6 283.7	0.0	11.7	0.0
SH3	7.71	-127	1.6	0.1	0.1	1.4	21.3	28.7	64.6	20.4	0.0	112.6	4.1	9 090.7	0.1	8.7	9.9
SH4	7.89	68	1.1	0.1	0.4	3.7	18.0	42.1	59.5	36.2	0.0	51.4	3.0	6 635.0	0.0	6.9	10.8
SHS	8.27	33	6.0	0.1	2.2	4.9	8.2	112.7	104.5	47.8	0.3	118.6	2.7	9 303.3	0.0	12.4	9.9
SH6	8.22	16	1.3	0.1	2.3	3.7	7.1	51.6	652.5	170.2	0.2	476.3	2.2	13 679.5	0.0	17.2	0.7
SH7	8.21	39	1.3	1.1	126.4	9.3	14.1	267.5	144.2	185.2	3.4	110.1	12.4	14 786.0	0.3	633.4	1.2
SH8	8.25	-76	1.4	2.0	247.7	10.6	24.8	274.6	115.6	286.8	1.2	101.1	21.4	16 224.8	0.1	1 318.4	1.3
SH9	8.48	-66	1.0	2.4	247.0	3.8	27.4	231.4	95.1	232.4	1.3	244.7	20.8	10 523.3	0.0	1 367.7	1.0
平均值	7.99	-40	1.1	0.7	69.69	4.5	16.5	120.7	458.7	143.5	0.7	140.7	8.8	10 621.6	0.0	376.2	3.6
地下水质量Ⅲ类 水质标准GB/T 14848-2017	6.5~8.5		10	Ś	50	10	-	200	300	100	1 000	1 000	S	700	7	70	20

规定的 III 类水质标准 1 μg/L 的限定值.根据地下 水质量标准(GB/T 14848-2017),III 类水质的地下 水化学组分含量中等,主要适用于集中式生活饮用 水水源及工农业用水.鉴于研究区周边农田较多、 村庄密集,煤层气产出水的水质评价以此标准为依 据.从超标情况来看,以Hg、Ba超标为主要特征;9 口煤层气井中,SH7、SH8和 SH9存在 Cr、Hg、Mn、 Sb、Ba、Mo的超标现象;As、Cd、Ni和 Pb在研究区 产出水样品中普遍不超标.

不同重金属之间的相关关系分析有助于揭示 其来源和迁移过程中的地球化学行为(黄冠星等, 2011; Zhou et al., 2014;郑天亮等, 2017). 从表 2可 以看出,Cr、Mo、Cd和Sb四种重金属的相关关系极 为显著.应用SPSS 19.0进行Pearson聚类分析的结 果也表明(图2),上述4种元素在较低的测度上具有 较高的相似性.鉴于它们都具有亲硫的特性,含煤 地层中的硫化物可能是其主要来源(Li et al., 2018). 然而,聚类分析还表明, Mn与Cr、Mo、Cd和 Sb也具有较好的相关性.Finkelman(1980)认为,Mn 主要赋存在碳酸盐矿物中.因此,煤层中碳酸盐矿 物也很有可能是上述4种重金属的重要来源,与此 同时,Cr、Mo、Mn、Cd、Sb、Cd、Cu、Pb和Ba等多种 重金属与Al均呈现良好的相关关系.而在弱碱性条 件下,Al通常以氢氧化物的形式呈胶体存在.因此, 这些重金属很可能是以吸附状态存在于产出水中. 此外,通常情况下海水中Mo的平均浓度仅约 10.5 μg/L(徐林刚和Lehmann, 2011), 而在研究区 SH9 井中 Mo 的浓度达到 1 367.7 μg/L. 考虑到研究 区煤层气产出水的矿化度水平较高, 如此高的 Mo 浓度很可能是离子交换反应造成的. 但是, 在较强 的硫酸盐还原作用下, 硫代钼酸盐(MoO_xS_{4-x}²⁻, $x=0\sim3$)和钼的金属硫化物(MoS₄²⁻)作为产出水 中高浓度 Mo 的来源更具有说服力(Erickson and Helz, 2000; 徐林刚和Lehmann, 2011). 当然, 铁锰 氧化物或氢氧化物的吸附作用, 也可能是其潜在的 重要存在形式(Goldberg *et al.*, 2009).

As与Fe存在一定的负相关关系,这可能与地 层水弱碱性条件有关,因为铁的水解作用和络合作 用造成 pH与Fe呈负相关关系(Liu et al., 2017).通 常情况下,As主要以类质同象赋存在硫化物当中. Hg通常来源于硫化物,鉴于其与Cr、Mo和Cd的相 关关系较为明显,硫化物应该是煤层气产出水中Hg 的主要来源,与Fe存在一定的负相关关系应该是铁 的水解作用导致.硫化物和碳酸盐矿物都有可能是 产出水中Pb的来源,但与Ba的相关关系较为显著, 因此,含铅碳酸盐矿物应该是其主要来源.Ni与Cr、 Mo、Cd、Sb等多种重金属元素都不存在显著的相关 关系,但是与Sr、Ca、Mg存在负相关关系.考虑到某 区块煤层气产出水的水质类型以Na-Cl-HCO3型为 主,且方解石为过饱和状态,硫酸盐还原菌和产甲 烷菌等微生物参与下的有机质降解产生 CO₂是形成 这一水质类型的主要原因.因此,产出水中的Ni与

	pН	Be	Al	Cr	Mn	Fe	Ni	Cu	Zn	As	Мо	Cd	Sb	Ва	Hg	Pb
pН	1.00															
Be	0.03	1.00														
Al	0.67	0.52	1.00													
Cr	0.60	0.24	0.90	1.00												
Mn	0.14	0.27	0.62	0.71	1.00											
Fe	-0.71	0.02	-0.34	-0.27	0.41	1.00										
Ni	-0.08	-0.19	-0.39	-0.40	-0.74	-0.32	1.00									
Cu	0.41	0.84	0.83	0.60	0.52	-0.12	-0.43	1.00								
Zn	0.52	-0.19	0.05	0.10	0.21	-0.10	-0.24	0.00	1.00							
As	0.48	0.35	0.35	0.31	-0.05	-0.58	0.33	0.24	0.34	1.00						
Mo	0.59	0.21	0.89	1.00	0.70	-0.27	-0.40	0.58	0.11	0.30	1.00					
Cd	0.61	0.20	0.88	0.99	0.68	-0.29	-0.41	0.59	0.12	0.28	1.00	1.00				
Sb	0.40	0.27	0.85	0.97	0.79	-0.08	-0.47	0.58	-0.03	0.18	0.97	0.96	1.00			
Ва	0.51	0.53	0.73	0.62	0.69	-0.07	-0.44	0.64	0.45	0.55	0.60	0.55	0.56	1.00		
Hg	0.32	-0.08	0.40	0.61	0.04	-0.61	0.04	0.08	-0.21	0.34	0.62	0.64	0.58	-0.02	1.00	
Pb	0.59	0.57	0.86	0.67	0.49	-0.33	-0.22	0.73	0.03	0.45	0.64	0.60	0.59	0.82	0.15	1.00

表2 研究区煤层气产出水重金属相关关系

Table 2 Correlation matrix of different trace elements in coalbed methane co-produced water in the study area

其他元素的来源明显不同,很有可能以有机态为 主,主要来源于煤有机质的矿化(Li et al., 2018).

4 煤层气产出水中异常富集 Ba 的来源

研究区煤层气产出水中Ba元素的含量高达 16 224.8 µg/L,这在地下水样品中较为少见.鉴于 世界卫生组织(WHO)、USEPA,以及我国生活饮 用水卫生标准(GB5749-2006)都限定饮用水中Ba²⁺ 的浓度不能超过700 μg/L,研究区煤层气产出水中 如此高的Ba²⁺浓度需要引起足够的重视.

对主要阴阳离子的分析表明,SO42-在产出水中 含量极低,说明研究区地层的封闭性较好.在还原 性条件下,地层水中脱硫酸作用进行得较为彻底, 而这也可能是Ba²⁺浓度异常高的一个主要原因 (Torres et al., 1996; Mokrik, et al., 2009). 以往研 究中,美国、爱沙尼亚北部等地区也发现过SO²⁻缺 失、Ba²⁺异常富集(Shaw et al., 1998; Marandi et al., 2004; Underwood, et al., 2009; Giménez -Forcada and Vega-Alegre, 2015). 我国四川盆地中 部上三叠统须家河组地层水也存在过类似的现象 (李伟等,2009).鉴于研究区龙潭组含煤地层封闭性 较好,地层水中Ba²⁺不应该有来自其他层位的补 充.因此,含煤地层自身含Ba²⁺矿物的溶解应该是 该地层水中 Ba²⁺的主要来源.并且, Ba²⁺与 Na⁺、 Cl^{-} 、Sr²⁺和TDS存在很好的相关关系(图3),这也 证明原位水岩交换反应应该是产出水 TDS 和 Na⁺、 Cl⁻、Ba²⁺等离子高浓度的主要原因.

通常情况下,重晶石的溶解度很低.只有在产 甲烷菌等微生物参与下的矿物界面反应过程中,重 晶石才会持续溶解(Torres *et al.*, 1996).煤层气产 出水中SO4²⁻浓度很低,可能是硫酸盐还原作用的 结果,但δ¹³C-CH4测试结果显示,研究区煤层气并非 生物成因气,产甲烷过程并不明显.因此,重晶石的 溶解不应该是煤层气产出水中Ba²⁺的主要来源.

Fig.3 The relationships between Ba^{2+} and Na^+ , Sr^{2+} , Cl^- and TDS

表 3	研究区煤层:	气产	"出水重金属水质评价结!	果

Table 3 Evaluation results of heavy metal quality of coalbed methane co-produced water in the study area

样品							单因子	评价法和	相对污迹	杂程度伯	直						内梅罗 指数法
编号	As	Cd	Cr	Pb	Hg	Al	Fe	Mn	Cu	Zn	Sb	Ва	Ве	Mo	Ni	S值	评价结果
SH1	0.05	0.01	0.01	0.15	5.40	0.16	9.44	2.45	0.00	0.03	1.66	12.95	0.03	0.13	0.03	9.29	极差
SH2	0.07	0.04	0.00	0.14	22.65	0.23	0.20	0.68	0.00	0.02	0.95	8.98	0.00	0.17	0.00	16.10	极差
SH3	0.16	0.01	0.00	0.14	21.25	0.14	0.22	0.20	0.00	0.11	0.82	12.99	0.03	0.12	0.50	15.13	极差
SH4	0.11	0.01	0.01	0.37	18.00	0.21	0.20	0.36	0.00	0.05	0.60	9.48	0.00	0.10	0.54	12.81	极差
SH5	0.09	0.02	0.04	0.49	8.20	0.56	0.35	0.48	0.00	0.12	0.54	13.29	0.00	0.18	0.33	9.47	极差
SH6	0.13	0.02	0.05	0.37	7.13	0.26	2.18	1.70	0.00	0.48	0.45	19.54	0.00	0.25	0.04	13.90	极差
SH7	0.13	0.22	2.53	0.93	14.11	1.34	0.48	1.85	0.00	0.11	2.47	21.12	0.13	9.05	0.06	15.16	极差
SH8	0.14	0.40	4.95	1.06	24.79	1.37	0.39	2.87	0.00	0.10	4.28	23.18	0.03	18.83	0.07	17.96	极差
SH9	0.10	0.48	4.94	0.38	27.38	1.16	0.32	2.32	0.00	0.24	4.17	15.03	0.00	19.54	0.05	19.69	极差

实际上,除硫酸盐类的重晶石和钡天青石外, 含煤地层中还有多种矿物富集Ba元素,如磷酸盐类 的磷钡铝石,碳酸盐类的钡解石、碳酸钙钡矿和碳 酸钡矿(毒重石)等.曾荣树等(1998)的研究表明, 水城矿区龙潭组含煤地层中Ba元素的最高含量可 达268 mg/kg.研究表明(Mokrik *et al.*, 2009),毒 重石是一种比重晶石更易溶解的含Ba²⁺矿物.饱 和度指数计算结果也显示,虽然煤层气产出水的矿 化度已经很高,但毒重石饱和度指数*SI*平均值 为-0.67,仍未到达饱和状态.因此,含煤地层中 Ba²⁺富集的碳酸盐等矿物的溶解应该是产出水中 Ba²⁺异常的重要原因.

5 煤层气产出水重金属污染状况评 价和健康风险评估

5.1 煤层气产出水重金属污染状况评价

综合前人的研究(林曼利等,2014; Li et al., 2016),本文选取单因子污染指数法、内梅罗综合污 染指数法,以及系统聚类分析法对研究区的煤层气 产出水水质进行评价.

单因子评价法是在综合分析的基础上,选定合适的评价标准,对地下水中各项水质参数进行逐项分析评价.根据现场调研和研究区水资源状况分析,本研究选定地下水质量标准(GB/T 14848-2017)III类水质标准作为评价依据.单因子污染指数计算公式:

 $I_i = C_i / C_{oi} , \qquad (1)$ 其中: I_i 为相对污染程度值; C_i 为实测浓度; C_{oi} 为

评价标准值.*I_i*>1.00,水质不符合功能区要求, 受到污染;*I_i*<1.00表明水质符合功能区要求, 尚未污染.

内梅罗综合污染指数法基于单因子污染指数法的评价结果,根据计算结果将研究区产出水的水质分为五级:S < 0.80,优良; $0.80 \leqslant S < 2.50$,良好; $2.50 \leqslant S < 4.25$,较好; $4.25 \leqslant S < 7.20$, 较差; $S \ge 7.20$,极差.

$$S = \sqrt{\frac{(I_{j,\max})^2 + (1/k\sum_{j=1}^k I_j)^2}{2}}, \qquad (2)$$

其中:S为水环境质量综合污染指数; I_{j.max} 为单因子 j 的最大污染指数; k 为污染因子个数; I_j为单因子 j 的污染指数.

表3和图4表明,研究区煤层气产出水的污染特征主要表现为Hg和Ba严重超标,SH1、SH7、SH8和SH9四口煤层气井的污染状况较为突出.虽然As、Cd、Cu、Zn、Be、Ni和Pb等参与评价的多种重金属在研究区产出水样品中普遍不超标,但研究区9口煤层气井产出水的污染状况都极为严重,水质极差(表3).这主要是由Hg和Ba的严重超标造成的.其中,Hg在SH9煤层气井中超标27倍,而Ba在SH8煤层气井中也超标达23倍.

5.2 研究区煤层气产出水重金属健康风险评估

研究区附近村庄较多,产出水的外排对地表耕地、水体和生态系统存在潜在危害,有必要开展相应的健康风险评估工作.本研究主要采用USEPA 推荐的健康风险评估模型,针对As、Cd和Cr3种致癌污染物,Pb、Hg、Al、Fe、Mn、Cu、Zn、Sb、Ba、

Fig.4 The pollution degree of different heavy metals in co-produced water in the study area

Be、Mo、Ni 12种非致癌污染物进行了评估.评估 结果见表4.

致 癌 污 染 物 的 健 康 风 险 模 型 为 (王 铁 军 等, 2008; 张 越 男 等, 2013; 吴 文 晖 等, 2018):

$$R_i^c = \frac{1 - \exp\left(-D_i q_i\right)}{A}, \qquad (3)$$

$$D_i = \frac{w \times C_i}{H}, \qquad (4)$$

其中: R_i^c 为化学致癌物i通过饮用水途径产生的平 均个人致癌风险, a^{-1} ; D_i 为化学致癌物i通过饮用水 途径的单位体重日均暴露剂量, mg/(kg•d); q_i 为化 学致癌物i通过饮用水途径的日均参考剂量, mg/ (kg•d);A为人均寿命,75岁;w为成人每日平均饮 水量,2.2 L; C_i 为化学致癌物i的质量浓度,mg/L;H为人均体重,60 kg.

非致癌物的健康风险模型为:

$$R_j^n = \frac{D_j^{\prime} \times 10^{-6}}{R_j D_j^{\prime} \times A} , \qquad (5)$$

其中: R_j^n 为化学非致癌物j通过饮用水途径产生的 平均个人致癌风险, a^{-1} ; D_j^n 为化学非致癌物j通过饮 用水途径的单位体重日均暴露剂量,mg/(kg•d); $R_f D_j^n$ 为非致癌物j通过饮用水途径的日均参考剂 量,mg/(kg•d);A为人均寿命,75岁.

国际上,不同机构推荐的最大可接受风险水平 不尽相同(Yang et al., 2012),以欧洲有关机构对健 康危害风险值的控制最为严格(表4).从表5可以看 出,研究区煤层气井产出水中的致癌物As和Cr的 健康危害风险值超过瑞典环境保护局、荷兰基础设 施与环境部,以及英国皇家协会的最大可接受风险 水平1×10⁻⁶ a⁻¹.在SH7、SH8和SH9三口煤层气

表4 不同国际机构最大可接受风险和可忽略水平

 Table 4
 Maximum acceptable risk and negligible levels for different international institutions

	机构	最大可接受(a-1)	可忽略水平(a ⁻¹)
国际辐	射防护委员会	5×10^{-5}	
国际	原子能机构	5×10^{-7}	
美国	环境保护局	1×10^{-4}	
瑞	典环保局	1×10^{-6}	
英国	国皇家协会	1×10^{-6}	1×10^{-7}
荷兰	建设环保局	1×10^{-6}	1×10^{-8}

注:据林曼利等(2014).

井中,产出水的Cr甚至超过了USEPA的风险限 定值 $1 \times 10^{-4} a^{-1}$,健康风险相当于人的自然死亡 率水平.非化学致癌物的健康危害风险都比较 低,除Hg、Ba和Al之外,其余9种元素甚至都低 于荷兰基础设施与环境部限定的可忽略风险水 平 $1 \times 10^{-8} a^{-1}$.

6 结论

(1)以地下水质量标准(GB/T 14848-2017)III 类水质为基准,研究区煤层气产出水主要表现为 Hg、Ba严重超标.煤层中含Ba碳酸盐矿物的溶解有 可能是产出水中Ba异常的主要原因,硫化物是Hg 的主要来源.Pearson聚类分析和相关性分析表明, Cr、Mo、Cd和Sb这4种重金属主要来源于煤中硫化 物和碳酸盐矿物的溶解.在高矿化度和较强的硫酸 盐还原作用下,产出水中较高浓度的Mo可能来源 于离子交换反应,并以硫代钼酸盐和钼的金属硫化 物等形式存在.在弱碱性条件下,Cr、Mo、Mn、Cd、

່ອ່
眞
创
X
<u>ا</u>
10
惠
重
¢
Å Å
14년 - 구선:
記
λΉλ
冊
渺
乆
桰
质
蔎
逼
致
补
ž
KH
金
ž
۲ <u>۲</u>
1-3
5
表

Table 5 Risk levels for health hazards (a⁻¹) of chemical carcinogens and chemical noncarcinogens in co-produced water in the study area

样品		致癌污染物							非致癌;	污染物					
编号	As	Cd	Cr	Pb	Hg	Al	Fe	Mn	Cu	Zn	Sb	Ba	Be	Мо	Ni
SH1	3.60×10^{-6}	8.65×10^{-8}	5.35×10^{-6}	5.28×10^{-10}	8.80×10^{-9}	3.14×10^{-8}	4.61×10^{-9}	2.60×10^{-9}	4.66×10^{-12}	5.42×10 ⁻¹¹	1.01×10^{-8}	2.22×10^{-8}	1.38×10 ⁻¹¹	9.04×10^{-10}	1.57×10 ⁻¹¹
SH2	4.94×10^{-6}	5.84×10^{-7}	1.13×10^{-6}	4.90×10^{-10}	3.69×10^{-8}	4.45×10^{-8}	9.78×10 ⁻¹¹	7.22×10^{-10}	2.15×10^{-13}	3.02×10^{-11}	5.79×10^{-9}	1.54×10^{-8}		1.15×10^{-9}	ı
SH3	1.17×10^{-5}	2.21×10^{-7}	2.99×10^{-6}	4.93×10^{-10}	3.46×10^{-8}	2.80×10^{-8}	1.05×10^{-10}	2.17×10^{-10}	I	1.83×10^{-10}	4.99×10^{-9}	2.22×10^{-8}	1.47×10^{-11}	8.55×10^{-10}	2.43×10^{-10}
SH4	7.90×10^{-6}	1.86×10^{-7}	8.78×10^{-6}	1.30×10^{-9}	2.93×10^{-8}	4.11×10^{-8}	9.70×10 ⁻¹¹	3.85×10^{-10}	1.07×10^{-14}	8.37×10 ⁻¹¹	3.66×10 ⁻⁹	1.62×10^{-8}		6.70×10^{-10}	2.65×10^{-10}
SH5	6.34×10^{-6}	2.46×10^{-7}	4.39×10^{-5}	1.69×10^{-9}	1.34×10^{-8}	1.10×10^{-8}	1.70×10^{-10}	5.08×10^{-10}	3.09×10 ⁻¹²	1.93×10^{-10}	3.29×10 ⁻⁹	2.27×10^{-8}		1.21×10^{-9}	1.61×10^{-10}
SH6	9.27×10^{-6}	3.00×10^{-7}	4.53×10^{-5}	1.29×10^{-9}	1.16×10^{-8}	5.05×10^{-8}	1.06×10^{-9}	1.81×10^{-9}	2.07×10^{-12}	7.76×10^{-10}	2.73×10^{-9}	3.34×10^{-8}		1.68×10^{-9}	1.75×10^{-11}
SH7	9.87×10 ⁻⁶	3.35×10^{-6}	2.31×10^{-3}	3.24×10^{-9}	2.30×10^{-8}	2.62×10^{-7}	2.35×10^{-10}	1.97×10^{-9}	4.10×10 ⁻¹¹	1.79×10^{-10}	1.51×10^{-8}	3.61×10^{-8}	6.17×10^{-11}	6.19×10^{-8}	2.84×10 ⁻¹¹
SH8	1.02×10^{-5}	5.96×10 ⁻⁶	4.14×10^{-3}	3.69×10^{-9}	4.04×10^{-8}	2.69×10^{-7}	1.88×10^{-10}	3.05×10^{-9}	1.43×10 ⁻¹¹	1.65×10^{-10}	2.62×10^{-8}	3.97×10 ⁻⁸	1.54×10^{-11}	1.29×10^{-7}	3.23×10 ⁻¹¹
6HS	7.61×10^{-6}	7.13×10^{-6}	4.14×10^{-3}	1.32×10^{-9}	4.46×10^{-8}	2.26×10^{-7}	1.55×10^{-10}	2.47×10 ⁻⁹	1.55×10 ⁻¹¹	3.99×10^{-10}	2.55×10^{-8}	2.57×10^{-8}		1.34×10^{-7}	2.33×10 ⁻¹¹
平均值	7.94×10^{-6}	2.01×10^{-6}	1.20×10^{-3}	1.56×10^{-9}	2.709×10^{-8}	1.18×10^{-7}	7.47×10^{-10}	1.52×10^{-9}	8.99×10^{-12}	2.29×10^{-10}	1.08×10^{-8}	2.60×10^{-8}	1.17×10^{-11}	3.69×10^{-8}	8.72×10^{-11}

Sb、Cd、Cu、Pb和Ba等多种有毒有害元素多以Al的 氢氧化物吸附态存在于产出水中.Ni与其他元素的 来源明显不同,很有可能以有机态为主,主要来源 于煤有机质的矿化.

(2)单因子污染指数法和内梅罗综合污染指数 法的评价结果显示,As、Cd、Cu、Zn、Be、Ni和Pb等 多种有毒有害元素在研究区产出水样品中普遍不 超标,但研究区9口煤层气井产出水的水质极差.这 主要是由Hg和Ba的严重超标造成的.其中,Hg在 SH9煤层气井中超标27倍,而Ba在SH8煤层气井 中也超标达23倍.

(3)针对As、Cd和Cr三种致癌污染物的健康风 险评估结果显示,As和Cr的健康危害风险值超过 瑞典环境保护局、荷兰基础设施与环境部,以及英 国皇家协会的最大可接受风险水平1×10⁻⁶ a⁻¹.其 中,Cr甚至超过了USEPA的风险限定值1×10⁻⁴ a⁻¹,健康风险相当于人的自然死亡率水平.除Hg、 Ba和Al之外,其余9种非化学致癌物的健康危害风 险水平都低于荷兰基础设施与环境部限定的可忽 略风险水平1×10⁻⁸ a⁻¹.

References

- Brinck, E. L., Drever, J. I., Frost, C. D., 2008. The Geochemical Evolution of Water Coproduced with Coalbed Natural Gas in the Powder River Basin, Wyoming. *Environmental Geosciences*, 15(4): 153-171. https://doi. org/10.1306/eg.01290807017
- Dai, S. F., Ren, D. Y., Ma, S. M., 2004. The Cause of Endemic Fluorosis in Western Guizhou Province, Southwest China. *Fuel*, 83(14-15): 2095-2098. https://doi. org/10.1016/j.fuel.2004.03.016
- Erickson, B. E., Helz, G. R., 2000. Molybdenum (VI) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. *Geochimica et Cosmochimica Acta*, 64 (7): 1149-1158. https://doi. org/10.1016/s0016-7037 (99)00423-8
- Feng, X. B., Qiu, G. L., 2008. Mercury Pollution in Guizhou, Southwestern China — An Overview. Science of the Total Environment, 400(1-3): 227-237. https:// doi.org/10.1016/j.scitotenv.2008.05.040
- Finkelman, R. B., 1980. Modes of Occurrence of Trace Elements in Coal (Dissertation). University of Maryland, College Park.
- Giménez-Forcada, E., Vega-Alegre, M., 2015. Arsenic, Barium, Strontium and Uranium Geochemistry and Their Utility as Tracers to Characterize Groundwaters from

the Espadán-Calderona Triassic Domain, Spain. *Science* of the Total Environment, 512-513: 599-612. https://doi.org/10.1016/j.scitotenv.2014.12.010

- Goldberg, T., Archer, C., Vance, D., et al., 2009. Mo Isotope Fractionation during Adsorption to Fe (Oxyhydr) Oxides. *Geochimica et Cosmochimica Acta*, 73(21): 6502-6516. https://doi.org/10.1016/j.gca.2009.08.004
- Guo, C., Qin, Y., Xia, Y. C., et al., 2017. Geochemical Characteristics of Water Produced from CBM Wells and Implications for Commingling CBM Production: A Case Study of the Bide - Santang Basin, Western Guizhou, China. Journal of Petroleum Science and Engineering, 159: 666-678. https://doi. org/10.1016/j. petrol.2017.09.068
- Huang, G.X., Sun, J.C., Zhang, Y., et al., 2011.Content and Relationship of Heavy Metals in Groundwater of Sewage Irrigation Area in Pearl River Delta. *Journal of Jilin University (Earth Science Edition)*, 41(1): 228-234(in Chinese with English abstract).
- Jackson, R. E., Reddy, K. J., 2007. Trace Element Chemistry of Coal Bed Natural Gas Produced Water in the Powder River Basin, Wyoming. *Environmental Science & Technology*, 41(17): 5953-5959. https://doi. org/ 10.1021/es0625040
- Li, J., Yang, Y., Huan, H., et al., 2016. Method for Screening Prevention and Control Measures and Technologies Based on Groundwater Pollution Intensity Assessment. *Science of the Total Environment*, 551-552: 143-154. https://doi.org/10.1016/j.scitotenv.2015.12.152
- Li, M., Jiang, B., Lin, S. F., et al., 2013. Structural Controls on Coalbed Methane Reservoirs in Faer Coal Mine, Southwest China. *Journal of Earth Science*, 24(3): 437-448. https://doi. org/10.1007/ s12583-013-0340-3
- Li, Q. G., Chen, P., Chen, J., et al., 2018. Modes of Occurrence of Cr, Co, Ni, Cu, Cd, and Pb in the Main Coal Seams of Southwestern China's Nantong Coalfield. *Geochemistry International*, 56(12): 1220–1232. https:// doi.org/10.1134/s0016702918120091
- Li, S., Tang, D. Z., Pan, Z. J., et al., 2015. Evaluation of Coalbed Methane Potential of Different Reservoirs in Western Guizhou and Eastern Yunnan, China. *Fuel*, 139: 257-267. https://doi.org/10.1016/j.fuel.2014.08.054
- Li, W., Yang, J.L., Jiang, J.W., et al., 2009.Origin of Upper Triassic Formation Water in Middle Sichuan Basin and Its Natural Gas Significance. *Petroleum Exploration* and Development, 36(4):428-435(in Chinese with English abstract).

- Li, X. D., Fei, B., Feng, Q. Y., et al., 2018. Effects of Coalbed Methane Co-Produced Water for Irrigation in China' s Qinshui Basin: An Experimental Field Study. *Mine Water and the Environment*, 37(2): 263-271. https:// doi.org/10.1007/s10230-018-0536-y
- Lin, M. L., Gui, H. R., Peng, W. H., et al., 2014. Study on Content Characteristics and Water Quality Assessment of Heavy Metals in Deep Groundwater from Northern Anhui Mining Areas. *Journal of Safety and Environment*, 14(6):266-271(in Chinese with English abstract).
- Liu, N. J., Deng, Y. M., Wu, Y., 2017. Arsenic Iron and Organic Matter in Quaternary Aquifer Sediments from Western Hetao Basin, Inner Mongolia. *Journal of Earth Science*, 28(3): 473-483. https://doi. org/10.1007/ s12583-017-0727-7
- Majee, U., Chattopadhyay, G. N., Chaudhury, S., 2018. Qualitative Assessment of Coal Bed Methane Produced Water for Developing Safe Disposal Strategies. *Environmental Earth Sciences*, 77(15): 558-565. https://doi. org/10.1007/s12665-018-7736-4
- Marandi, A., Karro, E., Puura, E., 2004. Barium Anomaly in the Cambrian-Vendian Aquifer System in North Estonia. *Environmental Geology*, 47(1): 132-139. https://doi. org/10.1007/s00254-004-1140-y
- Mokrik, R., Karro, E., Savitskaja, L., et al., 2009. The Origin of Barium in the Cambrian-Vendian Aquifer System, North Estonia. *Estonian Journal of Earth Sciences*, 58 (3): 193–208. https://doi.org/10.3176/earth.2009.3.04
- Nghiem, L. D., Ren, T., Aziz, N., et al., 2011. Treatment of Coal Seam Gas Produced Water for Beneficial Use in Australia: A Review of Best Practices. *Desalination and Water Treatment*, 32(1-3): 316-323. https://doi.org/ 10.5004/dwt.2011.2716
- Qi, L., Gao, J. F., 2008. Revisiting Platinum Group Elements of Late Permian Coals from Western Guizhou Province, SW China. *International Journal of Coal Geology*, 75(3): 189-193. https://doi. org/10.1016/j. coal.2008.05.007
- Shaw, T. J., Moore, W. S., Kloepfer, J., et al., 1998. The Flux of Barium to the Coastal Waters of the Southeastern USA: The Importance of Submarine Groundwater Discharge. *Geochimica et Cosmochimica Acta*, 62(18): 3047-3054. https://doi.org/10.1016/ s0016-7037(98)00218-x
- Sun, Y., Feng, Q. Y., Li, X. D., et al., 2010. Research Progress of Treatment and Resource in Produced Water Associated with CBM Operations. *Energy Environmental Protection*, 24(6): 1-4, 8(in Chinese with

English abstract).

- Tang, S. L., Tang, D. Z., Xu, H., et al., 2016. Geological Mechanisms of the Accumulation of Coalbed Methane Induced by Hydrothermal Fluids in the Western Guizhou and Eastern Yunnan Regions. *Journal of Natural Gas Science and Engineering*, 33: 644–656. https://doi. org/10.1016/j.jngse.2016.05.061
- Torres, M. E., Brumsack, H. J., Bohrmann, G., et al., 1996.
 Barite Fronts in Continental Margin Sediments: A New Look at Barium Remobilization in the Zone of Sulfate Reduction and Formation of Heavy Barites in Diagenetic Fronts. *Chemical Geology*, 127(1-3): 125-139. https://doi.org/10.1016/0009-2541(95)00090-9
- Underwood, E. C., Ferguson, G. A., Betcher, R., et al., 2009. Elevated Ba Concentrations in a Sandstone Aquifer. Journal of Hydrology, 376(1-2): 126-131. https://doi.org/10.1016/j.jhydrol.2009.07.019
- Wang, T.J., Zha, X.F., Xiong, W.N., et al., 2008. Primary Study of Health Risk Assessment of Heavy Metals in Karst Groundwater in Gaoping Area in Zunyi City, Guizhou Province. *Research of Environmental Sciences*, 21 (1):46-50 (in Chinese with English abstract).
- Wen, C.S., Yu, Z.S., Liu, X.C., et al., 2014. Progress in the Research on the Water Quality Characteristics and Treatment Technologies of Coal Bed Methane Produced Effluent. *Industrial Water Treatment*, 34(10):1-6 (in Chinese with English abstract).
- Wu, C. C., Yang, Z. B., Qin, Y., et al., 2018. Characteristics of Hydrogen and Oxygen Isotopes in Produced Water and Productivity Response of Coalbed Methane Wells in Western Guizhou. *Energy & Fuels*, 32 (11): 11203-11211. https://doi.org/10.1021/acs.energyfuels.8b02185
- Wu, W. H., Zou, H., Zhu, G. H., et al., 2018. Heavy Metal Pollution Characteristics and Health Risk Assessment of Groundwater of a Mine Area in Central Hunan. *Journal* of Ecology and Rural Environment, 34(11):1027-1033 (in Chinese with English abstract).
- Xu, L. G., Lehmann, B., 2011. Mo and Mo Stable Isotope Geochemistry: Isotope System, Analytical Technique and Applications to Geology. *Mineral Deposits*, 30(1): 103-124(in Chinese with English abstract).
- Yang, M., Fei, Y. H., Ju, Y. W., et al., 2012. Health Risk Assessment of Groundwater Pollution—A Case Study of Typical City in North China Plain. *Journal of Earth Science*, 23(3): 335—348. https://doi. org/10.1007/ s12583-012-0260-7

Yang, M., Ju, Y. W., Liu, G. J., et al., 2013. Geochemical

Characters of Water Coproduced with Coalbed Gas and Shallow Groundwater in Liulin Coalfield of China. *Acta Geologica Sinica (English Edition)*, 87(6): 1690-1700. https://doi.org/10.1111/1755-6724.12169

- Yi, T.S., Gao, W., Zhou, P.M., et al., 2018. CBM Resource Features and Exploitation Technology in Guizhou Province. *Coal Geology of China*, 30(6):35-40 (in Chinese with English abstract).
- Zeng, R.S., Zhao, J.H., Zhuang, X.G., et al., 1998. Quality of Late Permian Coal and Its Controlling Factors in Shuicheng Mining District of Liupanshui Area, Guizhou. Acta Petrologica Sinica, 14(4):549-558 (in Chinese with English abstract).
- Zhang, D.Y., Zhu, J., Zhao, X.L., et al., 2018. Dynamic Assessment of Coalbed Methane Resources and Availability in China. *Journal of China Coal Society*, 43(6): 1598-1604 (in Chinese with English abstract).
- Zhang, Q., 2007. Strategic Thinking on Coal Mine Methane Development in China. *China Coalbed Methane*, 4(4): 3-5,15 (in Chinese with English abstract).
- Zhang, Y. N., Li, Z. W., Chen, Z. L., et al., 2013. Assessment of Health Risk from Heavy Metals in Groundwater of the Dabaoshan Tailing Zone and Its Surrounding Areas, Guangdong Province, China. *Journal of Agro-Environment Science*, 32(3): 587-594 (in Chinese with English abstract).
- Zheng, T. L., Deng, Y. M., Lu, Z. J., et al., 2017. Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. *Earth Science*, 42(5): 693-706 (in Chinese with English abstract).
- Zhou, C. C., Liu, G. J., Wu, D., et al., 2014. Mobility Behavior and Environmental Implications of Trace Elements Associated with Coal Gangue: A Case Study at the Huainan Coalfield in China. *Chemo-sphere*, 95: 193–199. https://doi.org/10.1016/j.chemosphere.2013.08.065

附中文参考文献

- 黄冠星,孙继朝,张英,等,2011.珠江三角洲污灌区地下水重 金属含量及其相互关系.吉林大学学报(地球科学版), 41(1):228-234.
- 李伟,杨金利,姜均伟,等,2009.四川盆地中部上三叠统地层 水成因与天然气地质意义.石油勘探与开发,36(4): 428-435.
- 林曼利,桂和荣,彭位华,等,2014.安徽北部矿区深层地下水 重金属含量特征及水质评价.安全与环境学报,14(6): 266-271.
- 孙悦,冯启言,李向东,等,2010.煤层气产出水处理与资源化 技术研究进展.能源环境保护,24(6):1-4,8.
- 王铁军,查学芳,熊威娜,等,2008.贵州遵义高坪水源地岩溶 地下水重金属污染健康风险初步评价.环境科学研究, 21(1):46-50.
- 温彩哨,余志晟,刘新春,等,2014.煤层气产出水水质特征及 处理技术研究进展.工业水处理,34(10):1-6.
- 吴文晖, 邹辉, 朱岗辉, 等, 2018. 湘中某矿区地下水重金属污 染特征及健康风险评估. 生态与农村环境学报, 34(11): 1027-1033.
- 徐林刚, Lehmann, B., 2011. 钼及钼同位素地球化学——同 位素体系、测试技术及在地质中的应用. 矿床地质, 30 (1):103-124.
- 易同生,高为,周培明,等,2018.贵州省煤层气资源特征及开 发技术.中国煤炭地质,30(6):35-40.
- 曾荣树,赵杰辉,庄新国,等,1998.贵州六盘水地区水城矿区 晚二叠世煤的煤质特征及其控制因素.岩石学报,14 (4):549-558.
- 张道勇,朱杰,赵先良,等,2018.全国煤层气资源动态评价与 可利用性分析.煤炭学报,43(6):1598-1604.
- 张群,2007.关于我国煤矿区煤层气开发的战略性思考.中国 煤层气,4(4):3-5,15.
- 张越男,李忠武,陈志良,等,2013.大宝山尾矿库区及其周边 地区地下水重金属健康风险评价研究.农业环境科学 学报,32(3):587-594.
- 郑天亮,邓娅敏,鲁宗杰,等,2017. 江汉平原浅层含砷地下 水稀土元素特征及其指示意义.地球科学,42(5): 693-706.