https://doi.org/10.3799/dqkx.2019.058

康滇地轴中南段牟定1101铀矿区 沥青铀矿成矿时代及成因

武 勇1,2,秦明宽1*,郭冬发2,蔡煜琦1,王凤岗1,吴 玉1,郭国林3,刘章月1

1. 中核集团核工业北京地质研究院,中核集团铀资源勘查实验室,北京100029

2. 核工业北京地质研究院分析测试研究所,北京100029

3. 东华理工大学放射性地质与勘探技术国防重点学科实验室,江西南昌 330013

摘 要: 牟定1101铀矿区是康滇地轴中南段发现高品位、巨粒晶质铀矿代表性产地之一.为了解铀矿物的形成时代及成因,利 用微区、原位分析技术(EPMA、SEM、LA-ICP-MS)对该区3件沥青铀矿样品开展了主量化学成分、稀土元素分析及年龄测 定.沥青铀矿电子探针(EPMA)化学成分具有高PbO、ThO₂、Y₂O₃,低SiO₂,Na₂O,CaO,K₂O,ZrO₂含量特征,反映沥青铀矿形 成之后遭受后期的蚀变、改造作用较弱.沥青铀矿的稀土元素 ΣREE-(U/Th)、ΣREE-(ΣREE /ΣREE)_N图解表明其为岩浆作 用相关成因、形成于高温环境(*T*>450℃).3件沥青铀矿的U-Pb同位素年龄在(950±5 Ma、MSWD=0.025,953±9 Ma、 MSWD=0.051,954±8 Ma、MSWD=0.085)之间,表明它们具有相近的形成时代(新元古界晚期).对比国外不同类型铀矿 床,该区的铀成矿作用具有岩浆成因特征.新元古界晚期,Rodinia超大陆由聚合转化为裂解阶段,广泛引起了 Pt_ij 直林群发生 区域变质、混合岩化、铀成矿作用.牟定1101铀矿区的成矿作用与~960 Ma Rodinia超大陆裂解地质事件所对应的晋宁构造运 动有关.

关键词:康滇地轴;1101铀矿区;沥青铀矿LA-ICP-MSU-Pb定年;地球化学.
 中图分类号: P629;P597;P611
 文章编号: 1000-2383(2020)02-419-15
 收稿日期:2019-10-05

Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance

Wu Yong^{1,2}, Qin Mingkuan^{1*}, Guo Dongfa², Cai Yuqi¹, Wang Fengang¹, Wu Yu¹, Guo Guolin³, Liu Zhangyue¹

- 1. CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China
- 2. Analytical Laboratory, Beijing Research Institute of Uranium Geology, Beijing 100029, China
- 3. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China

Abstract: The 1101 uranium ore area is one of the representative uranium deposits, which has high- grade and larger uraninite. In order to know the genesis and metallogenic age of the pitchblende, the in-situ analytical technologies(EPMA_SEM_LA-ICP-MS) was applied to analyze the three pitchblende samples. The chemical composition of EPMA indicate that pitchblende exhibits high

引用格式:武勇,秦明宽,郭冬发,等,2020.康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因.地球科学,45(2):419-433.

基金项目:中核集团启明星项目(No. 2018(294));国防预研项目(No. 3210402);中国地质调查局项目(No. DD2016013628);中国核工业地质 局项目(Nos. 201713,201653).

作者简介:武勇(1986-),男,博士,主要从事铀矿地质勘查与二次离子质谱同位素地质年代学研究.ORCID:0000-0002-0978-2227. E-mail: cnncwuyong@outlook.com

^{*} 通讯作者:秦明宽, E-mail: qinmk9818@163. com

contents of PbO, ThO₂, Y₂O₃ and low SiO₂, Na₂O, CaO, K₂O, ZrO₂, which shows that it has suffered less alteration after crystallization. The REE diagram of (Σ REE-(U/Th), Σ REE-(Σ REE / Σ REE)_N) reflects that these pitchblend crystalized in the condition of magamatic process, related to a high temperature environment(T>450°C). The LA-ICP-MS of pitchblende U-Pb dating yields the age of (950±5 Ma, MSWD=0.025,953±9 Ma, MSWD=0.051,954±8 Ma, MSWD=0.085), providing the metallogenic age constraint on the 1101 uranium ore area (Late-Neoproterozoic). Compared with different types of uranium deposits abroad, the 1101 uranium ore was of magamatic origin that had undergone the process of migmatization. The Rondinia super continent was in the transition from convergence to split at the period of Late-Neoproterozoic, which led to the Pt₁*j* strata generated regional metamorphism, migmatization and uranium mineralization. The metallogenic age ca. 960 Ma of 1101 uranium deposit corresponds to the Jinningian tectonic movement, which belongs to the Rondinia supercontinenal splitting geological event. **Key words:** Kangdian Axis; 1101 uranium ore area; pitchblende LA-ICP-MS U-Pb dating; geochemistry.

0 引言

康滇地轴纵跨四川、云南两省,北达四川省康 定县,南抵云南省红河县,南北长约900 km,宽约 250 km,向北收敛,向南撒开的"帚状"形态(罗一月 等,1990;滕吉文等,1994;王正和等,2018),大地构 造位置处于杨子地台西缘(图1a),地质历史上经历 了长期的地质演化过程和成矿作用,同时不同规模 的铀矿床也广泛分布于带内,一直以来受到地学界 的关注(陈好寿和冉崇英,1993;刘家铎和张成江, 2007).20世纪90年代曾有学者对康滇地轴地区开 展过铀矿勘查工作,并取得了一定的找矿成果,相 继发现了牟定1101、攀枝花大田505、汉源7102、米 易海塔A10、太和231等一批高品位的铀矿(化)点, 提出主要存在砂岩型、碳硅泥岩型、花岗岩型及变 质岩型的铀矿化类型,认为康滇地轴铀成矿时代集 中在:晋宁期(1000~900 Ma)、澄江期(750~600 Ma)、海西期(400~300 Ma)、印支期(260~200 Ma)、燕山期(<160 Ma),其中晋宁期和澄江期两 期的铀矿化作用主要受Rodinia超大陆的聚合、裂解 构造地质事件影响(陈友良,1992;胥德恩等,1992; 王鼎云等,1993;钱法荣等,1996;罗一月等,1998). 近年来,康滇地轴中南段米易海塔A101、攀枝花大 田 505 及牟定 1101 地区发现巨粒晶质铀矿(粒径可 达2 cm)、高品位的铀矿石滚石,在世界上非常罕 见,其成因类型、成矿背景及成矿时代是大家共同 关注的科学问题(王红军等,2009;张成江等,2015; 王凤岗等,2017).截至目前,研究重心主要集中在米 易海塔A101、攀枝花大田505两个研究区铀矿物的 成因、成矿时代(常丹等,2015;张成江等,2015;张 龙等,2015;王凤岗等,2017;徐争启等,2017).有关 牟定1101铀矿区的研究非常薄弱:巫声扬等(1992) 对铀矿区的晶质铀矿传统TIMS同位素年龄指示成 矿时代为新元古代早期(1000~960 Ma);钱法荣等 (1996)认为铀矿化的类型为碱交代型;解波等 (2015)对其的铀矿成矿环境作了初步探讨,认为铀 源来自类似A型花岗岩的活动.由于主要的工作都 集中在上个世纪末,限于当时的研究手段和技术设 备,未能对铀矿的成矿时代及成因进行详细的研 究,制约了该区铀成矿规律的认识.为此,本文以牟 定1101地区富铀矿石沥青铀矿为研究对象,在详细 的野外地质调查和显微镜观察的基础上,开展对沥 青铀矿的电子探针(EPMA)、扫描电镜(BSE)、LA-ICP-MS U-Pb原位、微区同位素定年和稀土元素的 研究,探讨沥青铀矿的成因及形成时代,揭示铀成 矿作用,对牟定地区铀矿的成因及成矿年代学的研 究具有重要的科学意义,为今后在该区开展铀矿找 矿工作提供科学支持.

1 地质概况

研究区位于康滇地轴中南段的泸定一米易台 拱、黄草坝背斜的北西翼,区内出露有侏罗纪地层 (J₂s、J₂z、J₁f、J₁j),寒武纪地层(Σ₄),主要分布为一套 古元古界苴林群(Pt₁j)地层,中深变质岩系,岩性主 要为斜长角闪岩、二云母石英片岩、花岗片麻岩等, 它与康定群、河口群等构成康滇地轴的结晶基底 (王鼎云等,1993),岩浆岩作用主要为晋宁期混合 花岗岩,岩性为二长花岗岩、花岗糜棱岩,岩体的西 部可见片麻状花岗岩、黑云母花岗岩,分布,其中混 合岩化中的花岗糜棱岩、细粒花岗岩、钾长花岗岩 锆石年龄集中于~1050 Ma(张成江等,2015).主要 以NNE向断裂构造发育,如元谋一绿汁江断裂,还 有衍生的次级北东向断裂:牛街一上村断裂,呈北 北西向展布,牟定1101铀矿点产于该次级构造裂隙 带内(图1b).

图 1 牟定 1101 铀矿区地质简图 Fig.1 Geological sketch of Mouding uranium area

1. 第四系; 2. 上侏罗统蛇店组; 3. 上侏罗统张家河组; 4. 下侏罗统冯家河组; 5. 下侏罗统干海子组; 6. 古元古界苴林群; 7. 寒武纪地层; 8. 晋宁期 花岗岩; 9. 正断层; 10. 逆断层; 11. 推测断层; 12. 铀矿点

2 采样点

牟定 1101 铀矿点由 111、110、165、116 这 4 个矿 化段组成,分布于黄草坝背斜的北西翼,受元谋一 绿汁江主干断裂的次级断裂牛街一上村断裂带 (F23)控制,断裂呈北东东(NNE)走向,倾向南东, 倾角为 60°~85°,矿区延伸约 30 km,宽约数 10 m,构 成角砾岩或挤压破碎带.铀矿体主要呈似脉状或透 镜状产于新太古一古元古界苴林群(Pt_i)变质岩 系,含矿围岩为斜长角闪岩、二云母石英片岩、花岗 片麻岩等,矿化出露宽度 1.5~2.5 m,地表出露长约 20 m,矿体延伸方向 30°,倾角 87°,倾向南东,铀矿体 受次级断裂构造裂隙控制,矿体延伸方向基本与斜 长角闪片麻岩片理方向一致,矿石成分较为简单, 矿石矿物主要以沥青铀矿为主,另有少量的晶质铀 矿、次生铀矿物.围岩蚀变主要有硅化、赤铁矿化、 绿泥石化、碳酸盐化等.

3 样品采集与处理

为了探究牟定1101铀矿区铀矿化作用时间、铀 矿物成因问题,采集了探槽内3件铀矿石样品进行 研究,矿点的露头伽马放射值(γ)可达21311Ur(图 2a),样品原生铀矿物主要以沥青铀矿为主、含少量 晶质铀矿,晶质铀矿呈浸染状、单颗粒状,新鲜面呈 黑色,弱金属光泽,粒径大多0.4 cm左右,最大的可 达1.5 cm以上,沥青铀矿表面呈灰黑色,表面不干 净、裂纹发育,呈脉状、团块状、角砾状分布(图2b), 此外一些铀矿物经过氧化形成次生铀矿,次生铀矿 物主要为铀酰氢氧化物和硅酸盐,表现为钙铀云 母、硅钙铀矿,次生铀矿物在矿物边缘氧化成黄色, 具有铀酰次生矿物的特征颜色,伴生有硅化、赤铁 矿化、碳酸盐化等后期蚀变(图2c,2d).共生矿物: 辉钼矿、赤铁矿、方铅矿、黄铁矿、黄铜矿、锌锰矿、 白铁矿、重晶石等.

本次研究将样品分别制成激光探针片、矿石片 及分选出高纯度的铀矿物3种不同类型的靶进行原 位LA-ICP-MSU-Pb测试.样品处理步骤:(1)激光 探针片(长×宽)尺寸按照标准的探针片磨制,厚度 为0.1 mm,要厚于普通探针片(普通探针片0.03 mm);(2)矿石靶制成直径<2 cm,厚度<5 mm尺 寸,对其注入环氧树脂,然后将其抛光至露出矿物 的平整表面;(3)将~5 g铀矿石样品,经常规粉碎至 200目,用去离子水反复淘洗至大多数比重杂质除 去,然后再用酒精淘洗,烘干后在双目镜下挑纯至 99%的单矿物,挑选新鲜样品为黑色、黑褐色,具有 沥青光泽或半金属光泽铀矿物制成环氧树脂靶.样 品经反光显微镜观察之后,再送至核工业北京地质 研究院测试分析中心开展BSE图像分析(图3).

图 2 1101铀矿区露头及手标本照片 Fig.2 Outcrop and H and specimen of the 1101 uranium ore area a.铀矿点γ放射值;b.铀矿点露头铀矿物特征;c,d.为沥青铀矿测年、沥青铀矿单矿物分选样品;Ur.伽马(γ)放射值;Pit.沥青铀矿;Ur.晶质 铀矿;Ua.钙铀云母;Qtz-Vein.石英脉;Ca.碳酸盐化;He.赤铁矿化

4 分析方法

铀矿物的主量元素的电子探针分析是在核工 业北京地质研究院分析测试研究所完成,仪器型号 为JEOL JXA 8100,仪器参数加速电压 20 kv,束斑 电流为 50 nA,电子束直径为 5 µm,出射角 40°,修正 方式为 ZAF.

沥青铀矿 U-Pb 同位素定年在武汉上谱分析科 技公司利用 LA-ICP-MS 同时分析完,U-Pb 同位素 定年与微量元素含量分析采用同时分析和独立分 析两种测试方法.激光剥蚀系统为 GeolasProCOM-PexPro 102 ArF 193 nm 准分子激光器和 MicroLas 光学系统组成,ICP-MS 型号为 Agilent 7700e,激光 剥蚀过程中采用氦气作载气、氩气为补偿气以调节 灵敏度,二者在进入 ICP之前通过一个 T型接头混 合,激光剥蚀系统配置有信号平滑装置(Hu *et al.*, 2015).激光束斑和频率分别为 16 µm 和 1 Hz,U-Pb 同位素定年处理中采用铀矿标准物质 GBW04420 作外标进行同位素分馏校正,每分析 5个样品点,分 析两次 GBW04420,每个时间分辨分析数据包括大 约 20~30 s空白信号和 50 s样品信号.沥青铀矿单 矿物微量元素含量采用玻璃标准物质BHVO-2G, BCR-2G和BIR-1G进行多外标无内标校正(Liu et al., 2008).每个时间分辨分析数据包括大约20~ 30 s空白信号和50 s样品信号.对分析数据的离线 处理(包括对样品和空白信号的选择、仪器灵敏度 漂移校正以及元素含量计算)采用软件ICPMS-DataCal (Liu et al., 2008)完成,沥青铀矿样品的U-Pb年龄谐和图绘制和年龄平均计算采用Isoplot/ Ex-ver3(Ludwig, 2003)完成.

5 测试结果

5.1 电子探针数据

对牟定沥青铀矿进行电子探针分析,19个测点 的沥青铀矿的化学成分(表1),由表1可知沥青铀矿 的 UO_2 含量为78.96%~82.04%(Mean=80.15%), PbO含量为6.41%~8.39%(Mean=7.46%),Th O_2 含量4.15%~5.26%(Mean=4.69%%),Y₂O₃含量 为0.60%~1.71%(Mean=1.02%),Al₂O₃、MgO、 V₂O₃、MnO含量普遍低于检测限(detection limit= 0.01%),沥青铀矿化学成分含量基本一致,都显示

位素测试点区域;黄色圈为EPMA测试区域

 UO_2 、PbO、ThO₂、Y₂O₃含量高,而SiO₂、Na₂O、CaO、 K₂O、ZrO₂含量低(各化学含量之和<0.63%). 对测 试数据进行元素相关性、线性拟合分析,UO₂与各化 学成分的相关系数和线性关系(表 2、图 4),UO₂与 SiO₂、K₂O、ThO₂、Na₂O 呈弱的正相关(相关系数分 別为0.4、0.2、0.2、0.2),与CaO、PbO、Y₂O₃呈弱的 负相关(相关系数分别为-0.17、-0.08、-0.33),10 个测试点的ZrO₂含量(<0.3%),与UO₂呈弱的负 相关(相关系数为-0.12).沥青铀矿传统的化学式 为UO₂,理论上分子式(U⁴⁺1-x-y-z)Ux⁶⁺REEy³⁺Mz²⁺) $O_{2+x-(0.5y)-z}$ (Evron *et al.*, 1994),属于立方体结构, 在其结晶过程中,只要其它元素离子半径接近U⁴⁺ (离子半径为1.00Å)就能够进入矿物晶格,基于这 种离子置换原理,实际情况中往往会含有一定量的 Th⁴⁺(Th⁴+半径为1.05Å)、Y³⁺(1.019Å)、Ca²⁺ (0.998Å),而这种离子置换主要受温度控制(Shannon *et al.*,1976).Cuney *et al.*(2012)研究指出Zr的 含量一定程度指示有交代流体的成因,牟定地区沥 青铀矿中ThO₂、PbO、Y₂O₃高含量的特征与其形成 的环境有关.

5.2 激光原位 LA-ICP-MS U-Pb 同位素年龄

牟定1101矿区沥青铀矿U-Pb同位素测试结果见(表3),样品MD01、MD02、MD31年龄谐和年龄及加权平均值(图5),本次获得3件样品谐和年龄分布在950±5Ma、953±9Ma、954±8Ma之间.样品

MD01包含19个测试点,所有测试点的数据偏离谐 和线上方(图5,5b),表明了该样品U-Pb同位素体 系受到干扰,后期有U的丢失,与谐和线的交点年 龄为(961±65 Ma),交点年龄误差较大,不能够真 实代表铀矿化年龄,而²⁰⁶Pb/²³⁸U年龄介于949~960

Fig.5 Concordia diagram of pitchblende from 1101 uranium ore area a,b. MD01沥青铀矿同位素激光年龄图;c,d. MD02沥青铀矿激光同位素年龄图;e,f. MD31沥青铀矿激光同位素年龄图

Ma,²⁰⁶Pb/²³⁸U 加 权 平 均 年 龄 为 (953±9 Ma) (MSWD=0.025),其²⁰⁶Pb/²³⁸U 加 权 平 均 年 龄 可 以 用来指示铀矿化的时间;样品 MD02 包含 27 个测试 点,²⁰⁶Pb/²³⁸U 年 龄 介于 944~957 Ma,²⁰⁶Pb/²³⁸U 加 权 平均年 龄 为 (950±5 Ma)(MSWD=0.051),与谐和 线 的 交 点 年 龄 为 (950±5 Ma)(图 5c,5d);样 品 MD31 包含 23 个测试点,一部分数据偏离谐和线之 上,存在U的丢失,一部分数据与谐和线有很好的 交点,²⁰⁶Pb/²³⁸U 年龄介于943~961 Ma 之间, ²⁰⁶Pb/²³⁸U加权平均年龄为(954±8 Ma)(MSWD= 0.085),与谐和线的交点年龄为(959±29 Ma)(图 5e,5f);总体来说,3件沥青铀矿LA-ICP-MS 同位 素年龄在U-Pb谐和图上呈现很好的谐和性,并且 显示出一致铀矿物的年龄,这3个年龄能够代表

图 6 1101 铀 矿 区 MD01、MD02、MD31 沥 青 铀 矿 样 品 LA-ICP-MS REE 模式图

Fig 6 Chondrite normalized REE patterns of pitchblende of the 1101 uranium ore area

1101铀矿区铀矿化形成的地质时间.

5.3 稀土元素配分特征

84个测点的稀土元素组成见(表4),取每件样 品测试点稀土元素的平均值代表该样品的稀土元 素特征,将3件样品稀土元素球粒化标准配分模式 图(图6),本次获得的沥青铀矿的REE配分模式图 较为相似,除了REE元素含量相对稍有差异.MD01 为一组,该组具有最高的ΣREE值,含量平均值为 15 153×10⁻⁶,轻重稀土元素比值(LREE/HREE) 为0.97,(La/Yb)_N为0.13,轻、重稀土元素分异不明 显, ôEu为0.3, 具有Eu的负异常; MD02为第2组, 该组稀土 ΣREE 值最低,含量平均值为8 665× 10⁻⁶,轻重稀土元素比(LREE/HREE)为0.79,(La/ Yb) N为 0.07, ôEu 为 0.25; MD31 为 第 3 组, 稀 土 ΣREE 值为 10 666×10⁻⁶,介于 8 665×10⁻⁶~15 153×10⁻⁶,轻重稀土元素比值(LREE/HREE)为 0.9, (La/Yb)_N为0.11, ôEu为0.31. 整体来看, 3组沥 青铀矿的稀土元素分布形式特征相似, LREE 与 HREE之间分馏程度比较小,LREE元素呈现弱亏 损、HREE具有弱的富集,含量稍有差别,具有 ôEu 负异常和 ôCe 正异常特征. Eglinger et al. (2013)认 为轻、重稀土元素分异程度不明显而兼具Eu的负异 常反映了结晶过程弱氧化、高温的物理化学环境, McLennan et al.(1979)研究认为在成矿热液中,稀 土元素是以络合物的形式迁移,其迁移的稳定性随 着原子序数的增加而增强,在富集CO2的热液中, HREE的离子络合物比LREE更容易溶解和迁移, 随着热液流体物理一化学条件发生改变,以络合物 形式存在的LREE、HREE会沉淀.Michard(1987) 和 Cantrell(1987) 指出以络合物形式存在的稀土元 素,在相似的化学条件下,HREE的碳酸络合物离子 比LREE的更容易发生沉淀,从而造成沥青铀矿中 HREE 相对富集.Ce是一个变价的稀土元素,常以 Ce³⁺存在还原条件环境的热液流体,当热液在氧化 条件下,Ce易氧化成难溶的Ce⁴⁺,若从结晶出沥青 铀矿则矿物Ce呈正异常(ôCe>1)(黄国龙等, 2010).牟定地区沥青铀矿轻、重稀土元素分布特征 反映了U以碳酸络合离子形式迁移,形成于高温 环境.

6 讨论

6.1 沥青铀矿成因

6.1.1 沥青铀矿的成因类型 部分学者通过研究和 对比世界各地不同成因类型铀矿床的天然铀矿物 (沥青铀矿、晶质铀矿),指出不同产出环境、成因类 型、物理-化学条件下的铀矿床,铀矿物的主量元 素、稀土元素含量可以用来表征铀矿床的成因(Fryer et al., 1987; Mercadier et al., 2011; Frimmel et al., 2014; Alexandre et al., 2015; Spano et al., 2017).因此,为了研究牟定地区沥青铀矿的成因类 型,取所有测试点电子探针(EPMA)、LA-ICP-MS 测试数据的平均值,与国外典型的不同成因铀矿床 进行对比(表5、表6),牟定铀矿样品主量元素UO2 (Mean=80.15%), ThO₂ (Mean=4.69%), PbO (Mean=7.46%), Y_2O_3 (Mean=1.02%), SiO_2 (Mean=0.07%)、CaO(Mean=0.19%),氧化物的 平均含量与挪威Roode、Hidra岩浆成因铀矿床非常 接近,各氧化物含量分布形式图一致,但明显区别 于砂岩型、不整合面型、脉岩型成因的铀矿床(图 7a),同样,在与不同成因铀矿床的稀土配分模式对 比, 三件样品稀土平均含量(ΣREE=20 185、 LREE/HREE=0.81、 dEu=0.31、 dCe=1.5) 与美 国 Mitchel 岩浆型铀矿床稀土含量($\Sigma REE = 27810$ 、 LREE/HREE=0.42、&u=0.15、&Ce=1.11)接近, 两类矿床的稀土配分形式高度相似(图7b),都具有 LREE元素亏损、HREE元素略富集和Eu的负异常 特征,指示了牟定铀矿区沥青铀矿与Mitchel岩浆型 铀矿床的成因具有相似的环境.

6.1.2 沥青铀矿形成的温度条件 Frimmel *et al.* (2014)和 Cuney *et al.*(2010)研究沥青铀矿形成过 程指出,当 Th⁴⁺离子活动性弱于 U⁴⁺离子的活动性, 两者能够稳定存在于高温环境,当温度下降时,

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 图 7 图 a 为 1101 铀矿区沥青铀矿主量元素(EPMA);图 b 为 REE 配分模式图与世界典型不同成因类型铀矿 床对比图(数据据 Alexandre, 2015)

Fig.7 The chemical composition and REE normalized patterns of different types uranium deposits

U⁴⁺、Th⁴⁺会发生解耦,Th⁴⁺优先进入矿物晶胞,从 而高温形成的铀矿物会富集 Th⁴⁺,当U /Th 比值> 1000 时指示铀矿物结晶温度较低(T<350℃),U/ Th比值<1000时,反映铀矿物结晶温度较高(T> 450±50℃),当U/Th<100时,代表与岩浆作用高 温环境形成. Eglinger et al. (2013)认为铀矿物 ΣHREE和Y元素的含量可以指示铀矿物结晶一重 结晶的温度.Pagel et al.(1987)研究指出稀土元素 的分馏程度可以反映矿物的成因类型,与岩浆作用 形成相关的铀矿物,其轻、重稀土元素分异不明显, 分馏程度与温度的高低成负相关性,由(表4)可知 沥青铀矿的 Σ LREE/ Σ HREE<1(平均值为0.86), 轻、重稀土元素分馏不明显.Mercadier et al.(2011) 利用铀矿物的 ΣREE& (ΣLREE/ΣHREE)_N比值图 解指示其形成的温度和盐度,高温条件(T>350℃) 形成铀矿物((∑LREE/∑HREE)_N≈0.7~5.0,∑REE >1%).将本次沥青铀矿物数据计算分析,所有稀土 元素数据点分布在 Σ REE/(U/Th)图解的高温岩浆 区域(图 8a),在 Σ REE&(Σ LREE/ Σ HREE)_N图解上 数据则一致分布在高温区域(T>350 ℃)(图 8b). Janeczek and Ewing(1992)认为具有岩浆成因类型 的铀矿物 CaO 的含量(~0.5%),牟定铀矿区 15 个 电子探针(EPMA)测试数据CaO 含量介于0.05%~ 0.35%(Mean=0.15%),与岩浆成因相关的铀矿物 CaO 的的含量较为接近,这与在高温条件下沥青铀 矿中 Ca²⁺能够以类质同像形式占据U⁴⁺的离子晶格 位置相关(Forster *et al.*,1999).综上所述,结合铀矿 物的稀土元素(Σ LREE/ Σ HREE)比值特征及稀土 元素判别图解,牟定铀矿区沥青铀矿形成受到与 "类岩浆"作用相关,其形成的结晶温度为高温环境 (T>450℃).

6.1.3 沥青铀矿形成与混合岩化 由于区域变质作

用的加强,地壳内部热流上升或者存在深部的岩浆 活动会导致已经变质的岩石发生熔融、伴生有交代 作用,形成新的岩石类型、伴随着区域构造活动和 成矿作用的发生(程裕淇,1987).刘作谆等(1979)和 罗一月等(1998)在研究我国混合岩型铀矿床指出, 岩石在发生混合岩化过程产生的温度、流体、挥发 份等条件,会增加元素的活动性,引起成矿物质的 运移和聚集,有利于含矿物质的富集.牟定铀矿区 富铀矿石多以团块状、角砾状产于斜长角闪岩内, 赋矿围岩见有花岗岩质脉体、伟晶岩脉以及后期石 英脉的穿插,指示研究区经历过广泛地混合岩化作 用.为了研究赋矿围岩、混合岩与铀矿化的关系,收 集了前人采集铀矿化点附近的斜长角闪岩、赋矿斜 长角闪岩、混合岩、花岗岩的稀土元素数据,结合本 次沥青铀矿的稀土元素数据加以探讨(表7),样品 分为4组:铀矿石类、矿化斜长角闪岩类、变质岩类、 混合岩类,(图9)为各样品的的稀土元素球粒陨石 标准配分模式图,大致可以归纳2种类型配分曲线: ①变质岩类、矿化斜长角闪岩类、混合岩类其稀土 配分曲线基本一致,LREE 富集、HREE 亏损,具有 明显的Eu负异常,为轻稀土富集右倾稀土配分模 式;②铀矿石样品轻重稀土分馏不明显,以LREE轻 稀土元素略亏损、REE 重稀土元素富集,具有 Eu负 异常.各类样品稀土含量特征:铀矿石类:ΣREE平 均含量为31961×10⁻⁶, LREE/HREE为0.82, ôEu 为0.33、δCe为1.5;矿化斜长角闪岩类:ΣREE平均 含量为183×10⁻⁶, LREE/HREE为6.58, ôEu为 0.76、δCe为 0.97;变质岩类:ΣREE 含量为 147× 10⁻⁶~168×10⁻⁶,平均含量为156×10⁻⁶,LREE/ HREE 为 4.02~10.82, ôEu 为 0.47~0.56、ôCe 为 0.78~0.96;混合岩类:ΣREE含量为102×10⁻⁶~ 322×10⁻⁶,平均含量为196×10⁻⁶,LREE/HREE为 4.02~10.82, δEu为0.19~0.43、δCe为0.63~1.50. 从变质岩类→矿化斜长角闪岩类→混合岩类→铀 矿石类,ΣREE平均含量依次增高(156×10⁻⁶→ 183×10⁻⁶→196×10⁻⁶→31961×10⁻⁶),可以得知 变质岩类及混合岩类的稀土总量具有一定的继承 性,并且混合岩化作用使ΣREE在铀矿石进一步富 集.成矿热液中REE、U与Th活化、迁移具有同步 性和同时性(钟福军等,2017),由此看来,牟定铀矿 区成矿受区变质作用动力学背景影响,随着混合岩 化作用的加强,富矿围岩地层(古元古界苴林群)遭 受不同程度的变质改造,发生深融作用析出浅色体 (类岩浆作用),在这一构造背景,含U成矿流体与 REE能够同时被活化富集.

6.2 牟定1101铀矿矿区成矿时代

牟定 1101 铀矿区是康滇地轴典型的产高品位 富铀矿体之一,上世纪 90 年代以核工业部为首对其 开展了铀矿调研工作,但未取得较大的找矿进展, 近年来,随着新一轮铀矿深部找矿工作的开展,特 别在康滇地轴的米易海塔、大田、牟定铀矿区相继 发现巨粒的晶质铀矿(粒径可达2 cm),引起了国内 铀矿科研者高度关注(解波等,2015;徐争启等, 2015;张成江等,2015).巫声扬等(1992)对牟定 1101 铀矿区的晶质铀矿传统 TIMS 同位素年龄反 映其矿化阶段新元古代早期(1 000~960 Ma).截至 目前,再未见该地区铀矿化的年龄数据报道,由此, 需要进一步开展铀矿成矿年代学的研究工作.本次 报道的 1101 铀矿区 3 件沥青铀矿样品 LA-ICP-MS U-Pb 同位素年龄限定了铀矿区的成矿时代(MD01

样品²⁰⁶Pb/²³⁸U加权平均年龄为953±9 Ma; MD02 样品²⁰⁶Pb/²³⁸U加权平均年龄为950±5 Ma; MD31 样品²⁰⁶Pb/²³⁸U加权平均年龄为954±8 Ma),在U-Pb谐和图上3个样品同位素年龄呈现较好的谐和 性,其年龄代表了研究区的铀矿化作用的时间.相 比传统的 TIMS U-Pb 测试方法, LA-ICP-MS U-Pb 原位、微区测试方法的优势:(1)避免了繁琐的化学 前处理工作,(2)通过前期对样品进行 EPMA、BSE 测试,能够优洗出受热液改造、蚀变程度较轻的测 试区域,(3)是一种高效、快速的测试方法(Chipley et al., 2007; 邹东风等, 2010; 宗克清等, 2015; 唐傲 等,2017). Cuney et al. (2010)利用 SIMS 对铀矿物 定年指出,容易受后期热液、风化作用改造的元素 (CaO、SiO₂、Na₂O、K₂O),当其含量小于3%时可以 认为样品受后期的改造影响弱,铀矿物的U-Pb体 系的封闭性未被破坏.本次研究3件沥青铀矿样品 的主量元素($CaO_SiO_2_Na_2O_K_2O$)平均含量之和 为0.42%(<3%),UO₂、PbO含量变化范围小、UO₂ 的变化 PbO 含量趋于一致, Pb 丢失较弱, Pb 可以稳 定地存在矿物的晶胞单元的边界(Janeczek et al., 1992),而所有测试点的稀土元素配分形式高度一 致,ΣREE含量略有差别,由此可以认为测试样品受 后期改造作用弱、Pb丢失不严重,所获得沥青铀矿 同位素年龄可以用来表征研究区的铀矿的形成地 质时间,指示牟定1101铀矿区铀矿化形成于新元古 界晚期.

6.3 牟定1101铀矿区铀成矿的动力学制约

新元古代是罗迪尼亚(Rodinia)超大陆形成与

演化的重要时期(徐备等,2001;李志红等,2008), Peng et al.(2012)在扬子克拉通内黄陵背斜南部报 道了1120~1000 Ma 庙湾蛇绿岩,并获得940~ 930 Ma的地质事件,因此提出了Rodinia超大陆在 扬子克拉通汇聚的时间为新元古代早期.Li et al. (2003)研究桂北基性岩脉提出约825 Ma前在华南 存在地幔柱的活动,引发了华南新元古代大陆裂谷 和岩浆活动,随后,李献华等(2001)研究川西苏雄 组双峰式火山岩地球化学、同位素年代学特征指出 扬子板块西缘约800 Ma前存在地幔柱活动,认为 860~750 Ma期间的大规模岩浆活动与Rodinia的 裂解有关,上述两人研究认为,Rondinia大陆的裂解 受地幔柱作用影响.但是,一部分研究者根据分布 在扬子西缘新元古代(860~700 Ma)SN向带状分 布的岩浆岩代表了板块俯冲性质的岛弧环境,该期 的岩浆活动为Rodinia大陆裂解事件的表现(赵俊香 等,2006;李志红等,2008;赖绍聪和朱韧之,2017). 由此看来,Rodinia大陆在扬子板块的汇聚时间不晚 于1000 Ma,裂解的时间大致可以限定在900~700 Ma时期,而1000~900 Ma地质阶段为Rodinia大陆 完成拼合到开始裂解的转换阶段,牟定1101研究区 对应为晋宁构造运动(胥德恩等,1992;徐备,2001). 因此,晋宁运动是我国范围内 Rodinia 超大陆聚合、 裂解的重要表现,也是康滇地轴地壳演化、岩浆、构 造活动的转变时期,与之在该时期所处的构造环境 及成矿作用都是对晋宁构造运动的响应.

陈友良等(1992)和胥德恩等(1992)总结康滇 地轴铀矿物的同位素年龄数据,认为康滇地轴存在 5个时期的铀矿化作用,即晋宁期(1000~900 Ma)、 澄江期(750~600 Ma)、海西期(400~300 Ma)、印 支期(260~200 Ma)、燕山期(<160 Ma).徐争启等 (2017)对大田地区晶质铀矿电子探针定年U-Th-Pb法结果为775~785 Ma,显示该期的矿化作用对 应区域的澄江构造运动,为Rodinia超大陆的裂解事 件.牟定1101铀矿区晶质铀矿TIMS同位素表观年 龄显示其铀矿化集中在(1015~960 Ma)区间(巫声 扬等,1992),相当于晋宁构造运动的晚期,张成江 等(2015,内部资料)对牟定铀矿区苴林群混合岩化 中的花岗糜棱岩、细粒花岗岩、钾长花岗岩锆石 LA-ICP-MS 同位素年龄(1 052±10、1 057±17、1 056±27 Ma),指示混合岩化发生在晋宁期.本次工 作沥青铀矿的LA-ICP-MS U-Pb激光原位测年 (950±5 Ma、953±9 Ma、954±8 Ma)铀矿化年龄为 新元古代早期,与该区域晋宁构造运动的时间一致. 结合康滇地轴区域的构造、岩浆、成矿地质事件,牟 定铀矿区铀矿化形成的动力学过程可以概括为: Rodinia超大陆在1000 Ma已经完成聚合,区域上整 体表现为挤压造山运动,而在1000~900 Ma期间, Rodinia超大陆由聚合逐渐转化为裂解,区域上发生 了强烈的构造岩浆活动,中下元古界 Pt, i 苴琳群地 层区域变质,围岩地层发生深熔、混合岩化作用形 成浅色体(岩浆作用),围岩地层铀元素被活化、迁 移,同时,岩浆在侵入地层过程,发生变质、变形作 用,地层岩性发生破碎,为后期含矿热液富集提供 了有利的空间.

7 结论

(1)牟定1101铀矿区沥青铀矿的成因类型与岩浆作用成因类型的铀矿床相关,形成于高温(T> 450 ℃)、相对还原的物理一化学条件,区域的混合 岩化作用使U、REE元素能够被活化富集,为U元 素的富集成矿提供了有利条件.

(2)3件沥青铀矿样品的LA-ICP-MSU-Pb原 位、微区同位素年龄(950±5、953±9、954±8Ma) 一致地指示了1101铀矿区的成矿地质时代为新元 古界早期.

(3)综合沥青铀矿的成因、铀成矿年代学的研究, 牟定1101铀矿的形成是在区域变质动力学背景下, 受混合岩化作用影响, 是 Rodinia 超大陆聚合一裂解转换阶段构造运动响应的成矿事件.

致谢:本文研究过程中,吴玉博士、郭春影博

士、杨亚楠博士给予了有益的建议和帮助,感谢李 秀珍老师对铀矿物单矿物的挑选工作、夏毓亮老师 悉心探讨,核工业北京地质研究院分析测试研究所 和武汉上谱科技分析技术公司铀矿物年龄测试、数 据处理等方面提供了帮助,匿名审稿专家提出了宝 贵的修改建议,在此一并表示诚挚的感谢!

表格文件参见本刊官网:www.earth-science.net

References

- Alexandre, P., Kyser, K., Layton Matthews, D., et al., 2015. Chemical Compositions of Natural Uraninite. *The Canadian Mineralogist*, 53(4): 595-622. https://doi. org/10.3749/canmin.1500017
- Cantrell, K. J., Byrne, R. H., 1987. Rare Earth Element Complexation by Carbonate and Oxalate Ions. *Geochimica et Cosmochimica Acta*, 51(3): 597-605. https://doi. org/10.1016/0016-7037(87)90072-x
- Chang, D., Chen, Y. L., Yuan, W., et al. 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 272-273(in Chinese).
- Chen, H.S., Ran, C.Y., 1993. Isotope Geochemistry of Copper Deposits in Kangdian Axis. Geology Press, Beijing(in Chinese).
- Cheng, Y.L., 1992. A Preliminary Study of Uranium Mineralization Epochs on the Kanddian Axis. *Acta Geological Sichuan*. 12(1): 42–46(in Chinese with English abstract).
- Cheng, Y.Q., 1987. On Migmatites and Migmatization-Half a Century's Recollection of Certain Related Problems. Bulletin of The Chinese Academy of Geological Sciences. 16: 5-19(in Chinese with English abstract)
- Chipley, D., Polito, P. A., Kyser, T. K., 2007. Measurement of U-Pb Ages of Uraninite and Davidite by Laser Ablation-HR-ICP-MS. American Mineralogist, 92(11/12): 1925-1935. https://doi.org/10.2138/am.2007.2226
- Cuney, M., Emetz, A., Mercadier, J., et al., 2012. Uranium Deposits Associated with Na-Metasomatism from Central Ukraine: A Review of some of the Major Deposits and Genetic Constraints. Ore Geology Reviews, 44: 82–106. https://doi.org/10.1016/j.oregeorev.2011.09.007
- Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. *Economic Geology*, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553
- Eglinger, A., André-Mayer, A. S., Vanderhaeghe, O., et al., 2013. Geochemical Signatures of Uranium Oxides in the Lufilian Belt: From Unconformity-Related to Syn-Meta-

morphic Uranium Deposits during the Pan-African Orogenic Cycle. Ore Geology Reviews, 54: 197–213. https: //doi.org/10.1016/j.oregeorev.2013.04.003

- Evron, R., Kimmel, G., Eyal, Y., 1994. Thermal Recovery of Self-Radiation Damage in Uraninite and Thorianite. *Journal of Nuclear Materials*, 217(1/2): 54-66. https: //doi.org/10.1016/0022-3115(94)90304-2
- Forster, H. J., 1999. The Chemical Composition of Uraninite in Variscan Granites of the Erzgebirge, Germany. *Mineralogical Magazine*, 63(2): 239-252. https://doi.org/ 10.1180/002646199548466
- Frimmel, H. E., Schedel, S., 2014. Uraninite Chemistry as Forensic Tool for Provenance Analysis. Applied Geochemistry, 48: 104-121. https://doi.org/10.1016/j.apgeochem.2014.07.013
- Fryer, B. J., Taylor, R. P., 1987. Rare-Earth Element Distributions in Uraninites: Implications for Ore Genesis. *Chemical Geology*, 63(1/2): 101-108. https://doi.org/ 10.1016/0009-2541(87)90077-5
- Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. *Analytical Chemistry*, 87(2): 1152-1157.
- Huang, G.L., Yin, Z.P., Ling, H.F., et al., 2010. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from NO. 302 Uranium Deposit in Northern Guangdong. *Mineral Deposits*, 29(2): 352-360(in Chinese with English abstract).
- Janeczek, J., Ewing, R. C., 1992. Structural Formula of Uraninite. Journal of Nuclear Materials, 190: 128-132. https://doi.org/10.1016/0022-3115(92)90082-v
- Lai, S.C., Zhu, R.Z., 2017. Geochemical Characteristics and Its Continental Dynamic Implication of Neproterozoic Volcanic Rocks in Luding Areas of Sichuan, China. Journal of Earth Sciences and Environment, 39(4):460-475 (in Chinese with English abstract).
- Li, X.H., Zhou, H.W., Li, Z.X., et al., 2001. Zircon U-Pb Age and Petrochemical Characteristics of the Neoproterozoic Bimodal Volcanic from Western Yangtze Block. *Geochemical*, 30(4):315-322(in Chinese with English abstract).
- Li, Z.H., Luo, Z.H., Chen, Y.L., et al., 2008. Geology and Geochemistry of the Kangding-Luding Metamorphosed Intrusions and Implication for Tectonic Setting. *Geosci*ence, 22(2):181-189(in Chinese with English abstract).
- Li,Z.X., Li,X.H., Kinny,P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Conti-

nents: Evidence for a Mantle Superplume that Broke up Rodinia. *Precambrian Research*, 122(1/2/3/4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5

- Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. in Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA - ICP - MS without Applying an internal Standard. *Chemical Geology*, 257(1/2): 34-43. https://doi.org/ 10.1016/j.chemgeo.2008.08.004
- Liu, J. Y., Zhang, C.J., 2007. Metallization System of Panxi Area. Geology Press, Beijing(in Chinese with English abstract).
- Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.
- Luo, Y.Y., 1990. A Preliminary Discussion on the Environment of Uranium Metallogeniesis in Kangdian Axis. Uranium Geology, (4): 226-231(in Chinese with English abstract).
- Luo, Y.Y., Wei, M.J., Ma, G.Z., et al., 1998. Preliminary Analysis on Tectonic Movement and Uranium Metallogeny in Kangdian the Earth's Axis. Uranium Geology, 2: 72-81(in Chinese with English abstract).
- McLennan, S. M., Taylor, S. R., 1979. Rare Earth Element Mobility Associated with Uranium Mineralisation. Nature, 282(5736): 247-250. https://doi.org/10.1038/ 282247a0
- Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by their Rare Earth Element Signature. *Terra Nova*, 23(4): 264-269. https://doi. org/10.1111/j.1365-3121.2011.01008.x
- Michard, A., Beaucaire, C., Michard, G., 1987. Uranium and Rare Earth Elements in CO₂ - Rich Waters from Vals-Les-Bains (France). Geochimica et Cosmochimica Acta, 51(4): 901-909. https://doi.org/10.1016/0016-7037(87)90103-7
- Pagel, M., Pinte, G., Rotach, T.N., et al., 1987. The Rare-Earth Element in Natural Uranium Oxides. *Mineralium Deposita*, 27:81-85.
- Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. *Gondwana Research*, 21(2/3): 577-594. https: //doi.org/10.1016/j.gr.2011.07.010
- Qian, F. R., 1996. Uranium Mineralization Types and Their Characteristics in Proterozoic of the Central-South Section of Kham-Dian(West Sichuan-Yunman) Axis. Uranium Geology. 12(4): 214-219(in Chinese with English

abstract).

- Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
- Spano, T. L., Simonetti, A., Wheeler, T., et al., 2017. A Novel Nuclear Forensic Tool Involving Deposit Type Normalized Rare Earth Element Signatures. *Terra No*va, 29(5): 294-305.
- Teng,, J. W., 1994. Kangdian Physics and dynamics of the lithosphere tectonic belt. Science press: 264.(in Chinese)
- Wang, D. Y., Liu, F. Y., 1993. Geological Characteristics of Uranium Mineralization of Pre-Cambrian at The Southern Part of Xikang-Yunnan Axis. *Geology of Yunnan*. 12 (1): 82-91(in Chinese with English abstract).
- Tang, A., Li, G.L., Su, Y., et al., 2017. EPMA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. *Earth Science*. 42(3): 378-388(in Chinese with English abstract).
- Wang, F.G., Sun, Y., Yao, J., et al., 2017. Study on Characteristics of Gaint Grain Uraninite in Haita Area of Miyi County, Sichuan. World Nuclear Geoscience. 34(4): 187-193, 216 (in Chinese with English abstract)
- Wang, H.J., Li, J.C., Xue, J.Y., et al., 2009. Neoproterozoic Metallogenesis in Xikang-Yunnan Axis and Its Relationship to Rodinia Supercontinent. World Nuclear Geoscience.26(2): 81-86.
- Wang, Z.H., Deng, M., Cheng, J.X., et al., 2018. influence of Fault and Magmatism on Oil and Gas Preservation Condition, to the West of Kangdian Ancient Continent: Taking Yanyuan Basin as an Example. *Earth Science*, 43(10):3616-3624(in Chinese with English abstract).
- Xie, B., Wang, H.J., Zhao, J.B., 2015. Study on Metallogenic Environment of Mouding 1101 Area in the Middle of Kangdian Axis. *Progress Report on China Nuclear Science and Techology*, 4: 58-63(in Chinese with English abstract).
- Xu, B., 2001. Recent Study of the Rodinia Supercontinent Evolution and Its Main Goal. Geological Science and Technology Information, 20(1):15-19(in Chinese with English abstract).
- Xu, D. E., 1992. Discussion on the Crustal Evolution and Uranium Mineralization of the Xikang - Yunnan Axis. Uranium Geology.8(6):348-353(inChinesewithEnglishabstract).
- Xu, Z. Q., Ouyang, X. D., Zhang, C. J., 2017. The Application and Significance of Electron Microprobe Dating on Datian Uraninite in Panzhihua. *Rock and Mineral Analy*sis. 36(6):659-667 (in Chinese with English abstract).

- Xu, Z.Q., Zhang, C.J., Chen, Y.L., et al., 2015. Characteristics and Significance of Uranium Bearing Rock Fill in Panzhihua Field. Acta Mineralogica Sinica, (S1357(in Chinese with English abstract).
- Zhang, C.J., Chen, Y.L., Li, J.C., et al., 2015. The Discovery of Coase-Grained Uraninite in kangdian Axis and Its Geological Significance. *Geological Bulletin of China*, 2219-2226(in Chinese with English abstract).
- Zhang, L., Chen, Y. L., Chang, D., et al., 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 365-366.(in Chinese)
- Zhao, J.X., Chen, Y.L., Li, Z.H., et al., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. *Geoscience*, 20(3):378-385(in Chinese with English abstract).
- Zhong, F. J., Pan, J. Y., Xia, F., et al. 2017. Geochemical Characteristics of Rare Earth Elements in Mineralization Process in the Changjiang Uranium Ore Field, Northern Guidong, China. *Journal of Mineralogy and Petrology*, 2: 63-73(in Chinese with English abstract).
- Zong, K. Q., Chen, J. Y., Hu, Z. C., et al., 2015. In-Situ U-Pb Dating of Uraninite by Fs-LA-ICP-MS. *Science China Earth Sciences*, 58(10): 1731-1740(in Chinese with English abstract).
- Zou, D.F., Li, F.L., Zhang, S., et al., 2011. Timing of No.335
 Ore Deposit in Xiazhuang Uranium Ore Field, Northern Guangdong Province : Evidence from LA-ICP-MS U-Pb Dating of Pitchblende. *Mineral Deposits*. 30(05): 912-923(in Chinese with English abstract).

附中文参考文献

- 常丹,陈友良,袁为,等,2015.四川米易海塔地区混合岩型铀 矿微量元素地球化学特征.矿物学报,(S1):272-273.
- 陈好寿,冉崇英,1993.康滇地轴铜矿床同位素地球化学.北 京:地质出版社.
- 陈友良,1992.康滇地轴铀矿化时代初探.四川地质学报,12 (1):42-46.
- 程裕淇,1987.有关混合岩和混合岩化作用的一些问题对半 个世纪以来某些基本认识的回顾.中国地质科学院院 报,16:5-19.
- 黄国龙,尹征平,凌洪飞,等,2010. 粤北地区 302 矿床沥青铀 矿的形成时代、地球化学特征及其成因研究. 矿床地 质,29(02): 352-360.
- 解波,王红军,赵剑波,等,2015.探讨康滇地轴中段牟定 1101地区铀成矿环境.中国核科学技术进展报告,4: 58-63.
- 赖绍聪,朱韧之,2017.四川泸定地区新元古代火山岩地球化

学特征及其大陆动力学意义,地球科学与环境学报,39 (4):460-474.

- 李献华,周汉文,李正详,等,2001.扬子块体西缘新元古代双 峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化 学,30(4):315-322.
- 李志红,罗照华,陈岳龙,等,2008.康定一泸定地区变质侵入 岩的地质地球化学特征及其构造环境.现代地质,22 (2):181-189.
- 刘家铎,张成江,2007.攀西地区金属成矿系统.北京:地质 出版社.
- 刘作谆,1979.三O七五矿区混合岩化作用及其对铀的成矿 意义.铀矿地质,2:33-38
- 罗一月,魏明基,马光中,1998. 浅析康滇地轴构造运动与铀 成矿的关系.铀矿地质,2:72-81.
- 罗一月,1990.对"康滇地轴"轴成矿环境的初步探讨.铀矿地 质,4:226-231.
- 钱法荣,1996.康滇地轴中南段元古代地层中铀矿化类型及 其特征.铀矿地质,12(4):214-219.
- 唐傲,李光来,苏晔,等,2017.赣中紫云山花岗岩晶质铀矿 的电子探针 U-Th-Pb 化学定年.地球科学,42(3): 378-388
- 滕吉文,1994.康滇构造带岩石圈物理与动力学.北京:科学 出版社,264.
- 王鼎云,刘凤祥,1993.康滇地轴南段前寒武系铀成矿地质 特征.云南地质,12(1):82-91.
- 王凤岗,孙悦,姚建,等,2017.四川省米易县海塔地区石英脉 中巨粒晶质铀矿特征研究.世界核地质科学,34(4): 187-193.
- 王红军,李巨初,薛钧月,2009.康滇地轴新元古代成矿作用

与罗迪尼亚超大陆.世界核地质科学,26(2):81-86.

- 王正和,邓敏,程锦翔,等,2018.康滇古陆西侧断裂及岩浆活 动对油气保存条件的影响:以盐源盆地为例.地球科 学,43(10):3616-3624.
- 巫声扬,刘兴源,王德生,等,1992.康滇地轴中南段元古宙主 要矿化特征及找矿方向.康滇地轴铀矿远景评价研讨 会论文摘要汇编,1992:53-55.
- 徐备,2001. Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报,20(1):15-19
- 胥德恩,1992.康滇地轴地壳演化与铀成矿作用探讨.铀矿 地质,8(6):348-353.
- 徐争启,欧阳鑫东,张成江,等,2017. 电子探针化学测年在攀 枝花大田晶质铀矿中的应用及其意义. 岩矿测试, 36 (6):659-667
- 徐争启,张成江,陈友良,等,2015.攀枝花大田含铀滚石特征 及其意义.矿物学报,(S1357.
- 张成江,陈友良,李巨初,等,2015.康滇地轴巨粒晶质铀矿的 发现及其地质意义.地质通报,2219-2226.
- 张龙,陈友良,常丹,等,2015.四川米易海塔地区混合岩型铀 矿稀土元素地球化学特征.矿物学报.(S1:365-366.
- 赵俊香,陈岳龙,李志红,等,2006.康定杂岩SHRIMP U-Pb 定年及其地质意义.现代地质,20(3):378-385
- 钟福军,潘家永,夏菲,等,2017.粤北长江铀矿田成矿过程中 稀土元素地球化学特征.矿物岩石.2:63-73.
- 宗克清,陈金勇,胡兆初,等,2015.铀矿FS-LA-ICP-MS原位 微区U-Pb定年.中国科学:地球科学,45:1304-1315
- 邹东风,李方林,张爽,等,2010. 粤北下庄 335 矿床成矿时代的厘定:来自LA-ICP-MS沥青铀矿 U-Pb年龄的制约. 矿床地质.30(5):912-923.

								=	-								
点号	Y ₂ O ₃	SiO ₂	P ₂ O ₅	UO ₂	Na ₂ O	MgO	V_2O_3	CaO	Al ₂ O ₃	TiO ₂	PbO	FeO	K ₂ O	ThO ₂	MnO	ZrO ₂	总量
1	1.05	0.03	-	81.1	0.08	0.03	-	0.07	-	0.22	7.36	-	0.11	4.55	4.55	0.19	99.31
2	0.6	-	-	79.39	0.12	-	-	0.27	0.02	-	7.29	-	0.11	4.57	4.57	-	96.55
3	0.63	0.07	-	80.91	0.12	0.04	-	0.35	-	-	7.19	-	0.12	5.13	-	-	94.56
4	0.71	0.03	0.03	79.92	0.12	0.04	-	0.12	-	-	8.16	-	012	5.13	-	0.1	94.54
5	-	0.26	1.57	82.04	0.04	0.03	-	0.16	-	-	8.08	-	0.09	4.53	-	-	95.77
6	0.7	-	0.03	81.27	0.13	-	-	0.12	-	-	7.14	-	0.1	4.93	0.08	-	94.69
7	0.94	0.03	-	80.2	0.1	-	-	0.28	-	-	7.62	-	0.11	4.8	-	0.19	94.27
8	1.27	0.1	-	80.45	0.15	0.02	0.13	0.06	-	-	7.64	0.14	0.13	4.79	-	0.11	94.99
9	1.71	-	-	79.24	0.07	0.03	-	-	-	-	7.7	-	0.1	4.29	-	-	93.14
10	0.95	-	0.03	78.74	-	-	0.16	-	-	-	8.39	-	0.13	4.15	-	-	92.55
11	1.55	0.05	-	78.51	0.07	-	-	0.21	-	-	6.82	0.12	0.08	4.8	-	0.28	92.49
12	1.23	0.04	-	79.72	0.1	0.08	-	0.1	-	0.21	6.41	-	0.08	5.26	-	-	93.35
13	1.23	0.04	-	80.5	0.13	0.02	-	0.08	-	-	6.88	-	0.11	4.75	-	0.28	94.02
14	1.57	0.03	-	79.72	-	-	-	-	-	-	6.99	-	0.09	4.41	-	0.2	93.01
15	0.86	0.07	-	80.3	0.14	-	0.13	0.07	0.02	-	7.75	0.09	0.08	4.9	-	0.16	94.57
16	0.81	0.08	-	80.21	0.+04	-	-	0.08	-	-	7.46	0.09	0.08	5.03	-	-	93.88
17	1.19	0.05	-	80.49	0.08	-	-	0.05	0.03	-	7.54	-	0.11	4.33	-	0.14	94.01
18	0.68	0.06	-	81.12	0.12	-	-	-	-	-	7.4	0.11	0.14	4.6	-	0.18	94.78
19	0.73	-	-	78.96	0.1	0.04	-	0.08	-	-	7.89	-	0.11	4.25	-	-	92.16

表 1 1101 铀矿区沥青铀矿电子探针测试数据

Table 1 The EPMA Chemical composition of pitchblende of 1101 uranium ore area

表 2 1101 铀矿区沥青铀矿 SPSS 软件相关系数

Table 2 The SPSS correlation of pitchblende of 1101 uranium ora area

化学成分	SiO_2	CaO	РЬО	ZrO_2	K ₂ O	ThO_2	Y_2O_3	Na ₂ O
相关系数	0.415	-0.165	-0.082	-0.128	0.192	0.229	-0.335	0.201
数量	20	15	19	10	19	19	18	17

点号			U-Pb 同位	立素比值					U-Pb 同位	素年龄		
	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ
						MD01						
1	0.064 5	0.012 1	1.218 7	0.0453	0.159 4	0.011 4	759	403	809	21	953	63
2	0.099 9	0.040 8	1.316 9	0.0261	0.160 7	0.004 0	1 633	832	853	11	960	22
3	0.105 6	0.050 6	1.329 3	0.0338	0.160 1	0.004 2	1 725	1002	859	15	958	23
4	0.109 7	0.053 2	1.279 9	0.0287	0.159 1	0.004 2	1 794	1007	837	13	952	23
5	0.064 9	0.001 1	1.407 6	0.0367	0.1591	0.004 1	772	31	892	16	952	23
7	0.051 9	0.003 1	1.317 9	0.0324	0.1604	0.004 3	280	106	854	14	959	24
8	0.184 0	0.154 0	1.267 2	0.0264	0.1594	0.004 0	2689	965	831	12	953	22
10	0.051 0	0.004 8	1.293 0	0.021 5	0.1598	0.003 5	243	223	843	10	956	19
11	0.054 4	0.004 0	1.342 1	0.095 5	0.1601	0.008 6	391	167	864	41	957	48
13	0.060 2	0.003 5	1.353 1	0.062 9	0.1600	0.005 5	609	126	869	27	957	30
15	0.046 9	0.011 8	1.213 4	0.037 1	0.1586	0.006 9	55.7	511	807	17	949	38
16	0.056 6	0.000 4	1.242 7	0.024 7	0.1589	0.003 1	476	18	820	11	951	17
17	0.108 4	0.050 7	1.325 0	0.031 4	0.1590	0.004 0	1 773	963	857	14	951	22
18	0.057 3	0.000 5	1.261 3	0.027 4	0.1599	0.003 5	506	19	828	12	956	20
20	0.057 2	0.000 4	1.263 1	0.024 3	0.1601	0.003 0	498	19	829	11	957	17
21	0.056 2	0.000 5	1.235 0	0.025 2	0.1591	0.003 0	461	20	817	11	952	17
23	0.056 4	0.000 5	1.234 9	0.025 2	0.1587	0.003 2	478	19	817	11	950	18
24	0.057 3	0.000 5	1.255 2	0.024 3	0.1591	0.003 1	502	20	826	11	952	17
25	0.055 5	0.000 6	1.212 3	0.027 3	0.1587	0.003 6	432	24	806	13	950	20
						MD02						
1	0.0743	0.0014	1.6342	0.0322	0.1590	0.002 4	1 050	37	983	12	951	13
2	0.0724	0.0008	1.5894	0.0285	0.1588	0.002 9	998	23	966	11	950	16
3	0.0730	0.0008	1.6099	0.0263	0.1595	0.002 7	1 014	21	974	10	954	15

表 3 1101 铀矿区沥青铀矿 LA-ICP-MS 同位素年龄

4	0.0717	0.0008	1.5780	0.0250	0.1591	0.002 6	989	22	962	10	952	14
5	0.0720	0.0008	1.5954	0.0271	0.1598	0.002 7	987	23	968	11	956	15
6	0.0727	0.0009	1.5985	0.0313	0.1591	0.003 1	1006	20	970	12	952	17
7	0.0708	0.0009	1.5455	0.0257	0.1584	0.003 0	954	31	949	10	948	17
8	0.0694	0.0008	1.5169	0.0235	0.1578	0.002 3	911	56	937	9	945	13
9	0.0691	0.0008	1.5153	0.0225	0.1587	0.002 5	902	24	937	9	949	14
10	0.0697	0.0009	1.5286	0.0244	0.1588	0.002 6	920	25	942	10	950	15
11	0.0742	0.0008	1.6347	0.0280	0.1590	0.002 7	1056	50	984	11	951	15
12	0.0716	0.0009	1.5731	0.0282	0.1590	0.002 9	976	24	960	11	951	16
13	0.0707	0.0008	1.5436	0.0225	0.1578	0.002 3	950	24	948	9	944	13
14	0.0737	0.0010	1.6126	0.0245	0.1588	0.002 5	1032	28	975	10	950	14
15	0.0683	0.0008	1.4973	0.0251	0.1581	0.002 5	877	24	929	10	946	14
17	0.0724	0.0008	1.5980	0.0259	0.1590	0.003 2	998	22	969	10	951	18
19	0.0715	0.0009	1.5907	0.0259	0.1586	0.003 6	972	26	967	10	949	20
20	0.0721	0.0011	1.6173	0.0350	0.1591	0.004 2	987	33	977	14	952	23
21	0.0709	0.0008	1.5590	0.0235	0.1595	0.002 4	954	22	954	9	954	13
22	0.0708	0.0007	1.5620	0.0199	0.1600	0.002 1	952	20	955	8	957	12
23	0.0758	0.0068	1.5710	0.0405	0.1591	0.002 5	1100	181	959	16	952	14
24	0.0671	0.0018	1.5767	0.0284	0.1584	0.003 2	843	56	961	11	948	18
25	0.0705	0.0013	1.5235	0.0182	0.1584	0.002 1	943	43	940	7	948	12
26	0.0683	0.0005	1.5057	0.0183	0.1585	0.001 9	880	17	933	7	949	11
27	0.0702	0.0012	1.5510	0.0231	0.1589	0.002 2	1000	35	951	9	951	12
28	0.0702	0.0007	1.5443	0.0183	0.1591	0.001 7	1000	17	948	7	952	10
29	0.0691	0.0008	1.5165	0.0200	0.1593	0.002 3	902	23	937	8	953	13
						MD31						
1	0.0556	0.0004	1.2195	0.0263	0.1596	0.003 5	435	17	810	12	955	20
2	0.0561	0.0005	1.2335	0.0258	0.1598	0.003 3	454	20	816	12	955	18
3	0.0576	0.0007	1.2549	0.0253	0.1596	0.003 5	522	19	826	11	954	19
4	0.0614	0.0033	1.3156	0.0328	0.1602	0.004 2	654	81	853	14	958	23

5	0.0615	0.0022	1.2942	0.0304	0.1590	0.003 8	655	77	843	13	951	21
7	0.0767	0.0258	1.2706	0.0294	0.1588	0.004 1	1115	717	833	13	950	23
8	0.0501	0.0021	1.2660	0.0274	0.1595	0.004 4	211	96	831	12	954	25
9	0.0546	0.0015	1.2821	0.0290	0.1599	0.003 5	398	55	838	13	956	19
10	0.0417	0.0776	1.2890	0.0315	0.1592	0.004 6	error		841	14	952	25
11	0.0584	0.0016	1.2980	0.0340	0.1592	0.005 1	546	61	845	15	952	28
12	0.0701	0.0017	1.5775	0.0585	0.1649	0.005 1	931	55	961	23	984	28
13	0.0758	0.0015	1.6256	0.0492	0.1589	0.005 0	1100	40	980	19	951	28
14	0.0677	0.0012	1.4542	0.0409	0.1593	0.005 0	861	32	912	17	953	28
15	0.0697	0.0012	1.5020	0.0398	0.1597	0.005 0	920	34	931	16	955	28
16	0.0584	0.0005	1.2876	0.0244	0.1602	0.003 2	546	17	840	11	958	18
17	0.0585	0.0004	1.2818	0.0223	0.1593	0.002 9	546	17	838	10	953	16
18	0.0587	0.0013	1.2868	0.0262	0.1575	0.003 5	567	51	840	12	943	19
19	0.0574	0.0010	1.2688	0.0226	0.1592	0.003 2	506	34	832	10	952	18
20	0.0701	0.0115	1.2852	0.0292	0.1583	0.003 7	933	341	839	13	947	21
22	0.0657	0.0075	1.3043	0.0224	0.1599	0.003 2	794	209	848	10	956	18
23	0.0555	0.0015	1.2638	0.0269	0.1608	0.004 5	432	66	830	12	961	25
24	0.0603	0.0022	1.3128	0.0361	0.1597	0.004 5	617	47	851	16	955	25
25	0.0577	0.0004	1.2669	0.0211	0.1592	0.002 6	517	49	831	9	952	15

表 4 1101 铀矿区沥青铀矿 LA-ICP-MS 稀土元素分析结果及 U/Th 比值

Table 4 The REE of LA-ICP-MS and U/Th ratios of the 1101 uranium ore area

点号	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	ΣREE	LREE/HREE	U/Th
								Ν	/ID01								
1	188	1921	316	2137	941	92.9	1137	208	1572	367	1087	171	1356	158	11650	0.92	14.27
2	80.1	1029	190	1375	619	47.8	776	148	1078	238	761	109	721	85.4	7257	0.85	15.55
3	86.6	1277	238	1628	883	75.4	1093	213	1532	367	1073	160	1094	140	9859	0.74	17.47
4	66.6	889	151	1114	570	47.9	729	136	999	249	713	104	628	77.3	6472	0.78	16.03
5	67.9	888	144	965	490	43.1	598	116	846	226	634	92.4	568	67.4	5745	0.83	19.53

6	102	1237	221	1632	785	61.9	1067	210	1494	359	1148	167	1122	140	9744	0.71	18.64
7	44.5	814	161	1339	774	73.9	954	177	1303	316	974	130	888	104	8052	0.66	13.74
8	63.0	829	155	1145	702	76.9	840	172	1146	279	901	127	800	90.9	7326	0.68	11.36
9	39.2	864	163	1362	763	69.3	972	185	1331	323	992	144	977	117	8301	0.65	15.28
10	50.2	781	159	1329	697	70.8	942	185	1262	306	956	139	834	116	7826	0.65	14.50
11	70.4	989	202	1321	667	41.9	874	148	1088	244	692	94.5	559	69.1	7059	0.87	15.26
12	80.2	1157	213	1554	851	88.6	986	195	1352	313	924	139	880	102	8835	0.81	15.10
13	64.5	871	173	1382	795	67.6	1069	209	1528	357	1038	144	882	103	8681	0.63	15.34
14	214	2349	378	2492	1087	94.0	1256	228	1808	438	1264	214	1453	190	13462	0.97	17.17
15	45.1	932	178	1335	777	69.8	997	183	1281	316	973	136	886	114	8223	0.68	16.76
17	57.8	952	167	1268	735	59.7	923	178	1245	316	856	121	779	86.3	7743	0.72	14.66
19	56.1	782	151	1203	702	44.2	882	180	1275	290	806	138	833	92.9	7434	0.65	15.94
20	73.0	1063	201	1421	669	70.7	754	138	998	236	679	106	671	84.2	7163	0.95	15.47
Average	80.47	1090.15	197.87	1444.54	750.28	66.47	936.02	178.23	1285.39	307.78	914.98	135.33	885.02	107.68	-	-	-
								Ν	/ID02								
1	333	2888	496	3208	1136	130	1331	298	2211	493	1594	244	1944	258	16564	0.98	14.40
2	324	2595	467	2824	1091	105	1220	269	2027	480	1465	234	1758	209	15067	0.97	14.94
3	318	2798	474	2922	1043	118	1391	270	2194	490	1697	261	1868	245	16089	0.91	14.43
4	330	2999	486	3154	1150	112	1431	306	2122	541	1534	242	1895	248	16550	0.99	17.47
5	392	2739	471	3293	1311	127	1302	278	2117	485	1498	339	1752	246	16348	1.04	16.08
7	218	1986	324	2305	816	101	1002	217	1522	373	1183	228	1291	172	11738	0.96	16.16
8	325	2518	447	2801	1037	108	1119	249	1770	423	1248	215	1447	181	13888	1.09	16.27
10	304	2546	450	2877	1080	113	1248	268	2011	474	1483	249	1726	219	15047	0.96	19.75
11	296	2692	460	3023	1071	130	1342	280	2191	523	1658	252	1888	237	16043	0.92	17.01
13	297	2627	450	2815	1105	107	1240	268	1971	487	1490	247	1766	216	15085	0.96	13.78
15	354	2697	459	2843	1072	109	1155	279	1988	479	1370	249	1638	206	14897	1.02	14.14
16	316	2597	418	2801	1038	108	1169	262	2048	466	1465	245	1728	226	14887	0.96	15.40
17	277	2579	421	2666	1052	107	1159	259	2019	492	1455	232	1628	213	14557	0.95	13.62
18	340	2732	480	2902	1182	121	1330	289	2250	538	1559	228	2029	240	16220	0.92	16.31
20	273	2383	429	2861	1004	110	1168	279	1878	465	1389	234	1544	207	14224	0.99	13.86
21	309	2674	474	2874	1116	109	1277	280	2027	502	1474	242	1667	218	15241	0.98	14.71
23	291	2503	440	2845	1117	103	1305	271	1908	482	1434	244	1574	208	14724	0.98	16.41
24	308	2719	451	2968	1012	113	1186	249	1983	462	1461	240	1714	219	15084	1.01	15.12
25	319	2659	462	2976	1099	116	1389	281	2047	510	1578	249	1731	233	15648	0.95	16.86
26	123	1292	233	1594	742	67.5	953	172	1298	299	931	137	948	117	8905	0.83	11.09
27	77.0	957	167	1203	547	47.7	684	128	922	220	666	94.6	638	77.8	6428	0.87	15.49

28	86.9	1309	220	1627	796	73.9	1017	204	1447	363	1055	167	1163	144	9673	0.74	15.16
29	83.2	1116	197	1450	743	67.2	947	180	1291	321	925	155	973	130	8578	0.74	13.48
30	227	2669	400	2670	1121	102	1310	246	1862	450	1401	221	1650	206	14535	0.98	14.50
21	202	2317	369	2398	993	94.7	1229	244	1670	403	1250	202	1486	197	13053	0.95	17.57
32	42.1	751	139	1045	613	58.9	747	151	1064	270	746	111	737	80.5	6554	0.68	12.93
33	62.7	962	192	1311	685	83.4	873	174	1232	284	846	128	792	95.5	7719	0.75	14.20
34	66.4	969	179	1332	702	69.1	876	160	1182	279	831	133	806	96.9	7680	0.76	17.57
Average	246.3	2224.0	380.5	2485.2	981.2	100.4	1157.1	243.2	1794.7	430.4	1310.2	215.1	1492.1	191.0	-	-	-
								Ν	MD31								
1	267	2543	444	2763	1061	123	1231	261	1922	450	1489	249	1600	212	14613	0.97	16.22
2	269	2366	441	2623	1008	107	1182	245	1854	426	1351	223	1486	188	13768	0.98	16.48
3	214	1873	319	2098	820	91.9	984	212	1506	335	1138	170	1206	148	11113	0.95	15.65
4	182	1780	304	1908	799	89.3	966	214	1519	379	1155	178	1248	155	10875	0.87	15.73
5	277	2493	428	2677	1056	106	1217	263	1820	459	1376	240	1628	205	14245	0.98	16.45
7	43.5	769	141	1131	540	65.8	659	151	1134	268	773	113	755	85.3	6628	0.68	14.77
8	192	1884	336	2113	851	84.8	981	210	1508	380	1115	176	1180	149	11159	0.96	15.20
9	258	2343	400	2510	1077	106	1175	260	1803	428	1348	217	1485	185	13594	0.97	15.26
10	59.3	877	159	1168	573	65.3	715	152	1168	279	787	123	745	91.1	6960	0.71	15.76
11	158	1598	289	1912	875	84.7	998	206	1894	411	1231	191	1319	153	11319	0.77	18.30
12	156	1806	325	2141	891	88.0	995	208	1481	351	1187	184	1232	178	11221	0.93	16.75
13	384	3345	610	4466	1206	189	1484	331	2241	575	1812	261	1866	263	19029	1.15	20.66
14	294	2695	516	2697	1115	115	1383	302	2179	546	1535	239	1985	230	15832	0.88	19.75
15	222	1750	278	1996	803	95.4	972	240	1807	476	1185	211	1250	180	11464	0.81	19.99
16	180	1659	314	1927	806	79.2	920	206	1425	340	1105	172	1166	146	10446	0.91	14.43
17	93.4	976	176	1259	575	51.2	748	147	1133	271	846	124	839	91.2	7330	0.75	14.70
18	118	1119	205	1323	564	56.6	665	157	1166	280	831	119	823	103	7530	0.82	14.02
19	153	1386	249	1582	610	54.9	715	152	1188	279	879	128	902	116	8392	0.93	14.22
20	83.5	867	157	1050	431	35.4	482	114	865	202	627	93.8	607	70.8	5685	0.86	14.27
22	119	1129	205	1366	556	51.0	642	147	1093	267	829	118	795	96.5	7412	0.86	13.94
23	97.8	1166	222	1444	672	86.4	841	172	1245	314	885	139	839	99.9	8224	0.81	15.81
24	170	1766	330	2038	835	107	916	201	1504	336	1091	157	1176	149	10775	0.95	17.40
25	78.5	1038	182	1328	626	68.7	749	166	1256	282	892	127	814	90.0	7698	0.76	15.60
Average	176.9	1705.5	305.6	1979.1	797.8	87.0	940.0	205.1	1509.1	362.5	1107.2	171.7	1171.5	147.1	-	-	-

	Table 5 The El	PMA chemica	I composition	of different ty	pes uranium d	eposits at aboi	rad (After by	Alexandre, 201	<mark>)</mark>)	
名称	类型	数量	ThO ₂	UO ₂	РЬО	SiO ₂	FeO	CaO	Y ₂ O ₃	Total
Ike Mine	板状体	14	0.04	84.1	1.05	1.75	0.22	5.04	0.28	92.42
Centennial	不整合面型	63	0.01	84.67	1.66	0.3	0.92	1.56	0.04	89.61
Mengqiguer	砂岩型	5	0.02	84.79	0.04	2.52	0.79	2.12	0.01	90.26
McArthur River	不整合面型	64	0.01	81.31	13.35	0.16	0.23	0.96	0.03	94.9
Erzgebirge	热液脉型	150	5.91	86.04	3.98	0.02	0.22	2.84	1.78	98.5
Aricheng	变质交代型	20	6.16	70.66	11.13	1.42	0.31	2.01	0.07	92.33
Roode	岩浆型	14	8.01	77.34	10.15	0.08	0.13	0.45	0.45	96.51
Hidra	岩浆型	40	6.32	73.83	9.18	0.14	0.18	0.19	2.23	92.07
研究区	待定	19	4.69	80.15	7.46	0.07	0.11	0.14	1.02	93.64

表 5 国外典型不同成因类型铀矿床沥青铀矿电子探针数据(据 Alexandre, 2015)

Table 5 The EPMA chemical composition of different types uranium deposits at aborad (After by Alexandre, 2015)

表 6 国外典型不同成因铀矿床稀土元素数据(据 Alexandre,<mark>2015</mark>)

Table 6 The REE date of different types uranium ore deposits at abroad (After by Alexandre, 2015)

类型	数	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	ΣREE	LREE/HRE	La _N /Yb	δEu	δCe
板状体型	9	30.5	36.6	3.3	11.1	1.9	0.4	1.1	0.2	1	0.2	0.6	0.1	0.7	0.1	87	20.95	31.25	0.7	0.7
砂岩型	26	178.6	307.6	53.2	315	248.6	99.7	781.5	322.9	2189.5	253	529.2	57.9	340.3	22.7	5699	0.27	0.38	0.6	0.7
不整合面	36	14.3	100.4	33.7	340.6	578.2	248.1	2008.5	607	3905	530.7	1180	126.2	720.1	79.9	10472	0.14	0.01	0.6	0.7
热液脉型	16	1690.	6720	892.3	4103	2145.5	859.1	3203.5	582.3	3611.5	599.8	1611	201.3	1310	165.6	27695	1.45	0.93	1.0	1.3
岩浆型	34	50.6	1175	307.8	2426	4060	233.9	5327	1460	8423	990.8	1943	210.5	1119	83.9	27810	0.42	0.03	0.1	1.1
研究区	15	300.3	3246.8	553.5	3427.4	1340.8	159.2	1885.4	361.0	3137.4	660.1	2116.6	399.0	2297.7	299.6	20185.4	0.81	0.09	0.3	1.5

表 7 1101 铀矿区沥青铀矿和围岩稀土元素数据

Table 7 The REE date of pitchblende and wall rock of the 1101 uranium ore area	
--	--

岩性 La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	ΣREE	LREE/HREE	La _N /Yb _N	δEu	δCe

研究区	516	5356	905	5397	1942	251	2851	547	5005	1015	3329	662	3696	489	25461	31961.14	0.82	0.10	0.33	1.50
KD-1	18.9	38.8	4.22	16.4	4.42	0.28	4.76	0.827	5.28	0.926	3.03	0.544	3.61	0.52	31.4	102.52	4.26	3.76	0.19	1.02
KD-2	27.9	47.3	7.58	32.5	7.48	1.38	7.29	1.32	7.24	1.49	5.19	0.937	6.34	1.06	52.7	155.01	4.02	3.16	0.56	0.78
kd9	26.4	59.6	5.61	21.8	5.14	0.722	5.03	0.998	5.65	0.967	3.38	0.586	3.49	0.567	30.6	139.94	5.77	5.43	0.43	1.14
kd10	64	85	16.3	59.3	14.8	0.649	14.4	3.52	22.3	4.68	15.7	2.67	16.1	2.65	124	322.07	2.93	2.85	0.13	0.63
kd5-4	33.5	94.6	9.07	39.9	8.83	0.702	7.78	1.69	9.55	1.86	5.21	0.842	5.44	0.776	49.5	219.75	5.63	4.42	0.25	1.31
kd4	38	67.6	8.29	32.6	5.95	0.978	4.81	0.799	3.66	0.666	1.85	0.281	1.82	0.295	18.1	167.599	10.82	14.98	0.54	0.89
斜长角闪岩	25.2	51	6.39	30.1	6.19	0.94	5.91	1.14	6.89	1.63	4.62	0.77	5.04	0.7	42.5	146.52	4.49	3.59	0.47	0.96
矿化斜长角闪岩	34	71	9.18	35.2	7.61	1.83	6.79	1.17	6.51	1.41	3.68	0.57	3.52	0.5	36.4	182.97	6.58	6.93	0.76	0.97