Citation: | Pan Qing, Xiao Zhiyong, 2024. Magnetic Property Study of Australasian Tektites from South China. Earth Science, 49(8): 2766-2788. doi: 10.3799/dqkx.2024.023 |
Albin, E. F., Norman, M. D., Roden, M., 2000. Major and Trace Element Compositions of Georgiaites: Clues to the Source of North American tektites. Meteoritics & Planetary Science, 35(4): 795-806. https://doi.org/10.1111/j.1945-5100.2000.tb01463.x
|
Artemieva, N. A., 2008. Tektites: Model Versus Reality. Lunar and Planetary Science XXXIX, 1651.
|
Artemieva, N. A., 2013. Numerical Modeling of the Australasian Strewn Field. The 44th Lunar and Planetary Science Conference, 1410.
|
Ackerman, L., Skala, R., Krizova, S., et al., 2019. The Quest for An Extraterrestrial Component in Muong Nong-Type and Splash: Form Australasian Tektites from Laos using Highly Siderophile Elements and Re-Os Isotope Systematics. Geochimica et Cosmochimica Acta, 252: 179-189. https://doi.org/10.1016/j.gca.2019.03.009
|
Ackerman, L., Zak, K., Skala, R., et al., 2020. Sr-Nd-Pb Isotope Systematics of Australasian Tektites: Implications for the Nature and Composition of Target Materials and Possible Volatile Loss of Pb. Geochimicaet Cosmochimica Acta, 276: 135-150. https://doi.org/10.1016/j.gca. 2020.02.025 doi: 10.1016/j.gca.2020.02.025
|
Baldwin, K. A., Butler, S. L., Hill, R. J., 2015. Artificial Tektites: An Experimental Technique for Capturing the Shapes of Spinning Drops. Scientific Reports, 5: 7660. https://doi.org/10.1038/srep07660
|
Barnes, V. E., 1958. Origin of Tektites. Nature, 181: 1457-1458. https://doi.org/10.1038/1811457a0
|
Barnes, V. E., Pitakpaivan, K., 1962. Origin of Indochinite Tektites. Proceedings of the National Academy of Sciences, 48: 947-955. https://doi.org/10.1073/pnas. 48. 6.947 doi: 10.1073/pnas.48.6.947
|
Barnes, V. E., 1963. Detrital Mineral Grains in Tektites. Science, 142: 1651-1652. https://doi.org/10.1126/science.142.3600.1651
|
Barnes, V. E., 1969. Progress of Tektite Studies in China. Eos, 50(12): 704-709. https://doi.org/10.1029/eo050i012p00704
|
Belkin, H. E., Horton, J. W. J., 2009. Silicate Glasses and Sulfide Melts in the ICDP-USGS Eyreville b Core, Chesapeake Bay Impact Structure, Virginia, USA. The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes. Geological Society of America Special Paper, 458: 447-468.
|
Beran, A., Koeberl, C., 1997. Water in Tektites and Impact Glasses by Fourier-Transformed Infrared Spectrometry. Meteoritics & Planetary Science, 32(2): 211-216. https://doi.org/10.1111/j.1945-5100.1997.tb01260.x
|
Blum, D. J., Papanastassiou, D. A., Koeberl, C., et al., 1992. Neodymium and Strontium Isotopic Study of Australasian Tektites: New Constraints on the Provenance and Age of Target Materials. Geochimica et Cosmochimica Acta, 56: 483-492. https://doi.org/10.1016/0016-7037(92)90146-a
|
Braslau, D., 1970. Partitioning of Energy in Hypervelocity Impact Against Loose and Targets. Journal of Geophysical Research, 75(20): 3987-3999. https://doi.org/10.1029/JB075i020p03987
|
Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Oxford, UK.
|
Cavosie, A. J., Timms, N. E., Erickson, T. M., et al., 2018. New Clues from Earth's most Elusive Impact Crater: Evidence of Reidite in Australasian Tektites from Thailand. Geology, 46(3): 203-206. https://doi.org/10.1130/G39711.1
|
Chalmer, R. O., Henders, E. P., Mason, B., 1976. Occurrence, Distribution, and Age of Australian Tektites. Smithsonian Contributions to the Earth Sciences, Smithsonian Institution Press. Washington. https://doi.org/10.5479/si.00810274.17.1
|
Chao, E. C. T., Adler, I., Dwornik, E. J., et al., 1962. Metallic Spherules in Tektites from Isabela, Philippine Islands. Science, 135: 97-98. https://doi.org/10.1126/science.135.3498.97
|
Chao, E. C. T., Dwornik, E. J., Littler, J., 1964. New Data on the Nickel-Iron Spherules from Southeast Asian Tektites and Their Implications. Geochimicaet Cosmochimica Acta, 28: 971-980. https://doi.org/10.1016/0016-7037(64)90044-4
|
Chapman, D. R., Scheiber, L. C., 1969. Chemical Investigation of Australasian Tektites. Journal of Geophysical Research, 74(27): 6737-6776. https://doi.org/10.1029/JB074i027p06737
|
Chapman, D. R., 1971. Australasian Tektite Geographic Pattern, Crater and Ray of Origin, and Theory of Tektite Events. Journal of Geophysical Research, 76(26): 6309-6338. https://doi.org/10.1029/JB076i026p06309
|
Chaussidon, M., Koeberl, C., 1995. Boron Content and Isotopic Composition of Tektites and Impact Glasses: Constraints on Source Regions. Geochimicaet Cosmochimica Acta, 59(3): 613-624. https://doi.org/10.1016/0016-7037(94)00368-V
|
Chen, H. T., 1981. The Significance of Glass Meteorites in The Study of Quaternary Landforms in the Leiqiong Area. Tropical Geography, 2: 56-60(in Chinese with English abstract).
|
Chen, S. Y., 1997. The Discovery and Study on Tektites from Guangxi China. Journal of Central South University Technology, 28(2): 110-112(in Chinese with English abstract).
|
Chernonozhkin, S. M., Gonzalez, D. V. C., Artemieva, N. A., et al., 2021. Isotopic Evolution of Planetary Crusts by Hypervelocity Impacts Evidenced by Fe in Microtektites. Nature Communications, 12: 5646. https://doi.org/10.1038/s41467-021-25819-6
|
Costa, B. F. O., Klingelhöfer, G., Panthöfer, M., et al., 2014. Backscattering Mossbauer MIMOS II and XRF Studies on Tektites from Different Strewn Fields. Hyperfine Interact, 226: 613-619. https://doi.org/10.1007/s10751-013-0986-3
|
Costa, B. F. O., Alves, E. I., Silva, P. A. O. C., et al., 2021. 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals, 11(6): 628. https://doi.org/10.3390/min11060628
|
Crawford, D. A., Schultz, P. H., 1988. Laboratory Observations of Impact-Generated Magnetic Fields. Nature, 336(6194): 50-52. https://doi.org/10.1038/336050a0
|
Crawford, D. A., Schultz, P. H., 1999. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris. International Journal of Impact Engineering, 23: 169-180. https://doi.org/10.1016/S0734-743X(99)00070-6
|
Crawford, D. A., 2020. Simulations of Magnetic Fields Produced by Asteroid Impact: Possible Implications for Planetary Paleomagnetism. International Journal of Impact Engineering, 137: 103464. https://doi.org/10.1016/j.ijimpeng.2019.103464
|
Cuda, J., Kohout, T., Tucek, J., et al., 2011. Low-Temperature Magnetic Transition in Troilite: A Simple Marker for Highly Stoichiometric FeS Systems. Journal of Geophysical Research, 116(B11): B11205. https://doi.org/10.1029/2011jb008232
|
Cuttitta, F., Carron, M. K., Annell, C. S., 1972. New Data on Selected Ivory Coast Tektites. Geochimica et Cosmochimica Acta, 36(11): 1297-1309. https://doi.org/10.1016/0016-7037(72)90050-6
|
de Gasparis, A. A., Fuller, M., Cassidy, W., 1975. Natural Remanent Magnetism of Tektites of the Muong-Nong Type and Its Bearing on Models of Their Origin. Geology, 3(10): 605-607. https://doi.org/10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2 doi: 10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2
|
de Gasparis, A. A., 1973. Magnetic Properties of Tektites and Impact Glasses(Dissertation). University of Pittsburgh, Pittsburgh.
|
Donofrio, R R., 1977. The Magnetic Environment of the Tektites(Dissertation). University of Oklahoma, Oklahoma.
|
Dressler, B. O., Reimold, W. U., 2001. Terrestrial Impact Melt Rocks and Glasses. Earth-Science Reviews, 56: 205-284. https://doi.org/10.1016/S0012-8252(01)00064-2
|
Dunlop, D. J., Özdemir, Ö., 1997. Rock Magnetism. Cambridge University Press, Cambridge.
|
Dunlop, D. J., 2002. Theory and Application of the Day Plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical Curves and Tests Using Titanomagnetite Data. Journal of Geophysical Research, 107(B3): 1-22. https://doi.org/10.1029/2001JB000486
|
Elkins-Tanton, L. T., Aussillous, P., Bico, J., et al., 2003. A Laboratory Model of Splash-Form Tektites. Meteoritics & Planetary Science, 38(9): 1331-1340. https://doi.org/10.1111/j.1945-5100.2003.tb00317.x
|
Fiske, P. S., Schnetzler, C. C., Mchone, J., et al., 1999. Layered Tektites of Southeast Asia: Field Studies in Central Laos and Vietnam. Meteoritics & Planetary Science, 34(5): 757-761. https://doi.org/10.1111/j.1945-5100.1999.tb01388.x
|
Folco, L., Rochette, P., Perchiazzi, N., et al., 2008. Microtektites from Victoria Land Transantarctic Mountains. Geology, 36(4): 291-294. https://doi.org/10.1130/G24528A.1
|
Folco, L., Perchiazzi, N., D'Orazio, M., et al., 2010. Shocked Quartz and Other Mineral Inclusions in Australasian Microtektites. Geology, 38(3): 211-214. https://doi.org/10.1130/G30512.1
|
Folco, L., Rochette, P., D'Orazio, M., et al., 2023. The Chondritic Impactor Origin of the Ni-Rich Component in Australasian Tektites and Microtektites. Geochimica et Cosmochimica Acta, 360: 231-240. https://doi.org/10.1016/j.gca.2023.09.018
|
Friedman, I., Thorpe, A., Senftle, E., 1960. Comparison of the Chemical Composition and Magnetic Properties of Tektites and Glasses Formed by Fusion of Terrestrial Rocks. Nature, 187: 1089-1092. https://doi.org/10.1038/1871089a0
|
Futrell, D. S., Wasson, J. T., 1993. A 10.8kg Layered (Muong-Nong-type) Tektite from Wenchang, Hainan, China. Meteoritics, 28: 136-137. https://doi.org/10.1111/j.1945-5100.1993.tb00259.x
|
Gattacceca, J., Rochette, P., 2004. Toward A Robust Normalized Magnetic Paleointensity Method Applied to Meteorites. Earth and Planetary Science Letters, 227: 377-393. https://doi.org/10.1016/j.epsl.2004.09.013
|
Gattacceca, J., Rochette, P., Quesnel, Y., et al., 2022. Revisiting the Paleomagnetism of Muong Nong Layered Tektites: Implications for Their Formation Process. Meteoritics & Planetary Science, 57(2): 558-571. https://doi.org/10.1111/maps.13703
|
Glass, B., 1967. Microtektites in Deep-Sea Sediments. Nature, 214: 372-374. https://doi.org/10.1038/214372b0
|
Glass, B., Heezen, B. C., 1967. Tektites and Geomagnetic Reversal. Nature, 214: 372. https://doi.org/10.1038/scientificamerican0767-32
|
Glass, B. P., Barlow, R. A., 1979. Mineral Inclusions in Muong Nong-Type Indochinites: Implications Concerning Parent Material and Process of Formation. Meteoritics, 14(1): 55-67. https://doi.org/10.1111/j.1945-5100.1979.tb00479.x
|
Glass, B. P., 1984. Tektites. Journal of Non-Crystalline Solids, 67: 333-344. https://doi.org/10.1016/0022-3093(84)90158-3
|
Glass, B. P., Pizzuto, J. E., 1994. Geographic Variation in Australasian Microtektite Concentrations: Implications Concerning the Location and Size of the Source Crater. Journal of Geophysical Research, 99(E9): 19075-19081. https://doi.org/10.1029/94JE01866
|
Glass, B. P., Simonson, B. M., 2013. Distal Impact Ejecta Layers. Springer Press, New York. https://doi.org/10.1007/978-3-540-88262-6
|
Glass, B. P., 1970. Zircon and Chromite Crystals in a Muong Nong-type Tektite. Science, 169(3947): 766-769. https://doi.org/10.1126/science.169.3947.766
|
Glass, B. P., 1990. Tektites and Microtektites: Key Facts and Inferences. Tectonophysics, 171: 393-404. https://doi.org/10.1016/0040-1951(90)90112-L
|
Goderis, S., Tagle, R., Fritz, J., et al., 2017. On the Nature of the Ni-Rich Component in Splash-Form Australasian Tektites. Geochimica et Cosmochimica Acta, 217: 28-50. https://doi.org/10.1016/j.gca.2017.08.013
|
Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160(in Chinese with English abstract).
|
He, X. W., Zhang, L., 2023. Analysis of The Author and Age of Leigongmo's Name. China Mining Magazine, 32(S2): 128-131. https://doi.org/10.12075/j.issn.1004-4051. 20230671 doi: 10.12075/j.issn.1004-4051.20230671
|
Ho, K., Chen, J., 1996. Geochemistry and Origin of Tektites from the Penglei Area, Hainan Province, Southern China. Journal of Southeast Asian Earth Sciences, 13(1): 61-72. https://doi.org/10.1016/0743-9547(96)00005-0
|
Hood, L. L., Artemieva, N. A., 2008. Antipodal Effects of Lunar Basin-Forming Impacts: Initial 3D Simulations and Comparisons with Observations. Icarus, 193(2): 485-502. https://doi.org/10.1016/j.icarus.2007.08.023
|
Hou, Y. M., Potts, R., Yuan, B. Y., et al., 2000. Mid-Pleistocene Acheulean-like Stone Technology of the Bose Basin, South China. Science, 287: 1622-1626. https://doi.org/10.1126/science.287.5458.1622
|
Huang, Z. T., 1995. Preliminary Study of Glass Meteorite, Guangxi Province. Geology and Geochemistry, 4: 50-58(in Chinese with English abstract).
|
Johnson, H. P., Lowrie, W., Kent, D. V., 1975. Stability of Anhysteretic Remanent Magnetization in Fine and Coarse Magnetite and Maghemite Particles. Geophysical Journal of the Royal Astronomical Society, 41: 1-10. https://doi.org/10.1111/j.1365-246X.1975.tb05480.x
|
Johnson, T. E., Kirkland, C. L., Lu, Y., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y
|
Jonášová, Š., Ackerman, L., Žák, K., et al., 2016. Geochemistry of Impact Glasses and Target Rocks from the Zhamanshin Impact Structure, Kazakhstan: Implications for Mixing of Target and Impactor Matter. Geochimica et Cosmochimica Acta, 190: 239-264. https://doi.org/10.1016/j.gca.2016.06.031
|
Jourdan, F., Nomade, S., Wingate, M. T. D., et al., 2019. Ultraprecise Age and Formation Temperature of the Australasian Tektites Constrained by 40Ar/39Ar Analyses. Meteoritics & Planetary Science, 54(10): 2573-2591. https://doi.org/10.1111/maps.13305
|
Karimi, K., Kletetschka, G., Mizera, J., et al., 2023. Formation of Australasian Tektites from Gravity and Magnetic Indicators. Scientific Reports, 13: 12868. https://doi.org/10.1038/s41598-023-40177-7
|
Kinnunen, K. A., 1990. Lechatelierite Inclusions in Indochinites and the Origin of Tektites. Meteoritics, 25: 181-184. https://doi.org/10.1111/j.1945-5100.1990.tb00994.x
|
Klein, L. C., Yinnon, H., Uhlmann, D. R., 1980. Viscous Flow and Crystallization Behavior of Tektite Glass. Journal of Geophysical Research, 85(B10): 5485-5489. https://doi.org/10.1029/JB085iB10p05485
|
Kleinmann, B., 1969. Magnetite Bearing Spherules in Tektites. Geochimicaet Cosmochimica Acta, 33: 1113-1120. https://doi.org/10.1016/0016-7037(69)90067-2
|
Koeberl, C., 1986. Geochemistry of Tektites and Impact Glasses. Annual Review of Earth and Planetary Sciences, 14: 323-350. https://doi.org/10.1146/annurev.ea.14. 050186.001543 doi: 10.1146/annurev.ea.14.050186.001543
|
Koeberl, C., 1990. The Geochemistry of Tektites: An Overview. Tectonophysics, 171: 405-422. https://doi.org/10.1016/0040-1951(90)90113-M
|
Koeberl, C., 1992. Geochemistry and Origin of Muong Nong-Type Tektites. Geochimica et Cosmochimica Acta, 56: 1033-1064. https://doi.org/10.1016/0016-7037(92)90046-L
|
Koeberl, C., Bottomley, R., Glass, B. P., et al., 1997. Geochemistry and Age of Ivory Coast Tektites and Microtektites. Geochimica et Cosmochimica Acta, 61(8): 1745-1772. https://doi.org/10.1016/S0016-7037(97)00026-4
|
Koeberl, C., Glass, B. P., Schulz, T., et al., 2022. Tektite Glasses from Belize, Central America: Petrography, Geochemistry, and Search for a Possible Meteoritic Component. Geochimica et Cosmochimica Acta, 325: 232-257. https://doi.org/10.1016/j.gca.2022.02.021
|
Kuiper, G. P., 1954. On the Origin of the Lunar Surface Features. Proceedings of the National Academy of Sciences, 40(12): 1096-1112. https://doi.org/10.1073/pnas. 40. 12.1096 doi: 10.1073/pnas.40.12.1096
|
Lacroix, A., 1935. Les Tectites Sans Formes Figtirees de I'lndochine. Comptes Rendus de l'Académie des Sciences (Paris), 200: 2129-2132.
|
Lee, Y., Chen, J., Ho, K., 2004. Geochemical Studies of Tektites from East Asia. Geochemical Journal, 1: 1-17. https://doi.org/10.2343/geochemj.38.1
|
Li, C. N., 1984. A Discussion on Lei Gong Mo from Hainan Island and Its Origin. Acta Petrologicaet Mineralogica, 2: 207-216 (in Chinese with English abstract).
|
Li, D. M., 1963. A Preliminary Survey and Study of The Tektites: Lei-Gong-Mo: from Leichow Peninsula and Hainan Island, China. Scientia Geologica Sinica, 1: 42-49 (in Chinese with English abstract).
|
Lin, S., Guan, Y. B., Hsu, W., 2011. Geochemistry and Origin of Tektites from Guilin of Guangxi, Guangdong and Hainan. Science China Earth Sciences, 54(3): 349-358. https://doi.org/10.1007/s11430-010-4146-1
|
Ma, P., Aggrey, K., Tonzola, C., et al., 2004. Beryllium-10 in Australasian Tektites: Constraints on the Location of the Source Crater. Geochimicaet Cosmochimica Acta, 68(19): 3883-3896. https://doi.org/10.1016/j.gca.2004.03.026
|
Macris, C. A., Asimow, P. D., Badro, J., et al., 2018. Seconds after Impact: Insights into the Thermal History of Impact Ejecta from Diffusion between Lechatelierite and Host Glass in Tektites and Experiments. Geochimica et Cosmochimica Acta, 241: 69-94. https://doi.org/10.1016/j.gca.2018.08.031
|
Magna, T., Jiang, Y., Skála, R., et al., 2021. Potassium Elemental and Isotope Constraints on the Formation of Tektites and Element Loss during Impacts. Geochimica et Cosmochimica Acta, 312: 321-342. https://doi.org/10.1016/j.gca.2021.07.022
|
Maher, B. A., 1988. Magnetic Properties of Some Synthetic Sub-Micron Magnetites. Geophysical Journal, 94: 83-96. https://doi.org/10.1111/j.1365-246X.1988.tb03429.x
|
Masotta, M., Peres, S., Folco, L., et al., 2020. 3D X-Ray Tomographic Analysis Reveals How Coesite is Preserved in Muong Nong-Type Tektites. Scientific Reports, 10: 20608. https://doi.org/10.1038/s41598-020-76727-6
|
Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York.
|
Melosh, H J., 2020. The Australasian Tektite Source Crater: Found at Last. Proceedings of the National Academy of Sciences, 117(3): 1252-1253. https://doi.org/10.1073/pnas.1920576117
|
Michel, V., Feng, X., Shen, G., et al., 2021. First 40Ar/39Ar Analyses of Australasian Tektites in Close Association with Bifacially Worked Artifacts at Nalai Site in Bose Basin, South China: The Question of the Early Chinese Acheulean. Journal of Human Evolution, 153: 102953. https://doi.org/10.1016/j.jhevol.2021.102953
|
Mizera, J., Řanda, Z., Kameník, J., 2016. On a Possible Parent Crater for Australasian Tektites: Geochemical, Isotopic, Geographical and Other Constraints. Earth-Science Reviews, 154: 123-137. doi: 10.1016/j.earscirev.2015.12.004
|
Mizera, J., 2022. Quest for the Australasian Impact Crater: Failings of the Candidate Location at the Bolaven Plateau, Southern Laos. Meteoritics & Planetary Science, 57(11): 1973-1986. http://doi.org/10.1016/j.earscirev. 2015. 12.004 doi: 10.1016/j.earscirev.2015.12.004
|
Morgan, J. V., Bralower, T. J., Brugger, J., et al., 2022. The Chicxulub Impact and Its Environmental Consequences. Nature Reviews Earth & Environment, 3: 338-354. https://doi.org/10.1038/s43017-022-00283-y
|
Nininger, H. H., Huss, G. I., 1967. Tektites That Were Partially Plastic after Completion of Surface Sculpturing. Science, 157: 61-62. https://doi.org/10.1126/science. 157.3784.61 doi: 10.1126/science.157.3784.61
|
O'Keefe, J. A., 1958. Origin of Tektites. Nature, 181: 172-173. https://doi.org/10.1038/181172a0
|
O'Keefe, J. A., 1975. Tektites and Their Origin. NASA Coddard Space Flight Center.
|
Ouyang, Z. Y., Zhong, P. H., Yi, W. X., 1976. Trace Element in Tektite from Hainan Island, China. Geochimica, 2: 144-147 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1976.02.008
|
Pan, Q., Xiao, Z. Y., Wu, Y. H., et al., 2023a. Magnetic Properties of Australasian Tektites from South China. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025269. https://doi.org/10.1029/2022JB025269
|
Pan, Q., Xiao, Z. Y., Wu, Y. X., et al., 2023b. Magnetite in Muong Nong-Type Australasian Tektites from South China. Geochemistry, Geophysics, Geosystems, 24(10): e2023GC011103. https://doi.org/10.1029/2023GC011103
|
Philpotts, J. A. Pinson, W. H., 1966. New Data on the Chemical Composition and Origin of Moldavites. Geochimica et Cosmochimica Acta, 30(3): 253-266. https://doi.org/10.1016/0016-7037(66)90001-9
|
Poag, C. W., Powars, D. S., Poppe, L. J., et al., 1994. Meteoroid Mayhem in Ole Virginny Source of the North American Tektite Strewn Field. Geology, 22(8): 691-694. https://doi.org/10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2 doi: 10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2
|
Ray, D., Misra, S., 2014. Contrasting Aerodynamic Morphology and Geochemistry of Impact Spherules from Lonar Crater, India: Some Insights into Their Cooling History. Earth Moon Planets, 114: 59-86. https://doi.org/10.1007/s11038-014-9451-9
|
Rochette, P., Gattacceca, J., Devouard, B., et al., 2015. Magnetic Properties of Tektites and Other Related Impact Glasses. Earth and Planetary Science Letters, 432: 381-390. https://doi.org/10.1016/j.epsl.2015.10.030
|
Rochette, P., Braucher, R., Folco, L., et al., 2018. 10Be in Australasian Microtektites Compared to Tektites: Size and Geographic Controls. Geology, 46(9): 803-806. https://doi.org/10.1130/G45038.1
|
Rochette, P., Bezaeva, N. S., Kosterov, A., et al., 2019. Magnetic Properties and Redox State of Impact Glasses: AReview and New Case Studies from Siberia. Geosciences, 9(5): 225. https://doi.org/10.3390/geosciences9050225
|
Rochette, P., Beck, P., Bizzarro, M., et al., 2021. Impact Glasses from Belize Represent Tektites from the Pleistocene PantasmaImpact Crater in Nicaragua. Communications Earth & Environment, 2: 94. https://doi.org/10.1038/s43247-021-00155-1
|
Rochette, P., Bezaeva, N. S., Beck, P., et al., 2022. Obsidian and Mafic Volcanic Glasses from the Philippines and Vietnam Found in the Paris Museum Australasian Tektite Collection. Meteoritics & Planetary Science, 57(7): 1460-1471. https://doi.org/10.1111/maps.13825
|
Schmidt, G., Zhou, L., Wasson, J. T., 1993. Iridium Anomaly Associated with the Australasian Tektite-Producing Impact; Masses of the Impactor and of the Australasian Tektites. Geochimica et Cosmochimica Acta, 57: 4851-4859. https://doi.org/10.1016/0016-7037(93)90204-A
|
Schnetzler, C. C., Walter, L. S., Marsh, J. G., 1988. Source of the Australasian Tektite Strewn Field: A Possible Offshore Impact Site. Geophysical Research Letters, 15(4): 357-360. https://doi.org/10.1029/gl015i004p00357
|
Senftle, F. E., Thorpe, A., 1959. Magnetic Susceptibility of Tektites and Some Other Glasses. Geochimica et Cosmochimica Acta, 17: 234-247. https://doi.org/10.1016/0016-7037(59)90098-5
|
Short, A. M., 1966. Shock Processes in Geology. Journal of Geological Education, 14(4): 149-166. https://doi.org/10.5408/0022-1368-XIV.4.149
|
Sieh, K., Herrin, J., Jicha, B., et al., 2020. Australasian Impact Crater Buried under the BolavenVolcanic Field, Southern Laos. Proceedings of the National Academy of Sciences, 117(3): 1346-1353. https://doi.org/10.1073/pnas.1904368116
|
Soens, B., van Ginneken, M., Chernonozhkin, S., et al., 2021. Australasian Microtektites Across the Antarctic Continent: Evidence from the Sør Rondane Mountain Range (East Antarctica). Geoscience Frontiers, 12(4). https://doi.org/101153.10.1016/j.gsf.2021.101153 doi: 10.1153.10.1016/j.gsf.2021.101153
|
Soro, P., Rochette, P., Baratoux, D., et al., 2023. Revisiting the Côte d'ivoireTektite Strewn Field. Journal of African Earth Sciences, 205: 104990. https://doi.org/10.1016/j.jafrearsci.2023.104990
|
Spaepen, F., Turnbull, D., 1984. Metallic Glasses. Annual Review of Physical Chemistry, 35: 241-263. https://doi.org/10.1146/annurev.pc.35.100184.001325
|
Spencer, L. J., 1933. Origin of Tektites. Nature, 131: 117-118. https://doi.org/10.1038/131117a0
|
Stähle, V., 1972. Impact Glasses from the Suevite of the NördlingerRies. Earth and Planetary Science Letters, 17: 275-293. https://doi.org/10.1016/0012-821X(72)90287-7
|
Starunov, V. A., Kosterov, A., Sergienko, E. S., et al., 2019. Magnetic Properties of Tektite-like Impact Glasses from Zhamanshin Astrobleme, Kazakhstan. Cham: Springer International Publishing, 445-465. https://doi.org/10.1007/978-3-319-90437-5_30
|
Strangway, D. W., Larson, E. E., Pearce, G. W., 1970. Magnetic Properties of Lunar Samples. Science, 167: 691-693. https://doi.org/10.1126/science.167.3918.691
|
Tarduno, J. A., Cottrell, R. D., Lawrence K., et al., 2021. Absence of A Long-Lived Lunar Paleomagnetosphere. Science Advances, 7(32): eabi7647. https://doi.org/10.1126/sciadv.abi7647
|
Taylor, S. R., 1962a. The Chemical Composition of Australites. Geochimica et Cosmochimica Acta, 26: 685-722. https://doi.org/10.1016/0016-7037(62)90034-0
|
Taylor, S. R., 1962b. Fusion of Soil during Meteorite Impact, and The Chemical Composition of Tektites. Nature, 195(4836): 32-33. https://doi.org/10.1038/195032a0
|
Taylor, S. R., Kaye, M., 1969. Genetic Significance of The Chemical Composition of Tektites: AReview. Geochimica et Casmochimica Acta, 33: 1083-1100. https://doi.org/10.1016/0016-7037(69)90064-7
|
Thorpe, A. N., Senftle, F. E., Cuttitta, F., 1963. Magnetic and Chemical Investigations of Iron in Tektites. Nature, 197: 836-840. https://doi.org/10.1038/197836a0
|
Verrier, V., Rochette, P., 2002. Estimating Peak Currents at Ground Lightning Impacts Using Remanent Magnetization. Geophysical Research Letters, 29(18): 1867. https://doi.org/10.1029/2002GL015207
|
Verwey, E. J. W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327-328. https://doi.org/10.1038/144327b0
|
von Engelhardt, W., Berthold, C., Wenzel, T., et al., 2005. Chemistry, Small-Scale Inhomogeneity, and Formation of Moldavites as Condensates from Sands Vaporized by the Ries Impact. Geochimica et Cosmochimica Acta, 69(23): 5611-5626. https://doi.org/10.1016/j.gca.2005.07.004
|
Walter, L. S., 1965. Coesite Discovered in Tektites. Science, 147(3661): 1029-1032. https://doi.org/10.1126/science.147.3661.1029
|
Wasilewski, P. J., Kletetschka, G., 1999. Lodestone: Nature's Only Permanent Magnet-What It Is and How It Gets Charged. Geophysical Research Letters, 26(15): 2275-2278. https://doi.org/10.1029/1999GL900496
|
Wasilewski, P. J., Dickinson, T., 2000. Aspects of The Validation of Magnetic Remanence in Meteorites. Meteoritics & Planetary Science, 35(3): 537-544. https://doi.org/10.1111/j.1945-5100.2000.tb01434.x
|
Weiss, B. P., Pedersen, S., Garrick-Bethell, I., et al., 2010. Paleomagnetism of Impact Spherules from Lonar Crater, India and A Test for Impact-Generated Fields. Earth and Planetary Science Letters, 298: 66-76. https://doi.org/10.1016/j.epsl.2010.07.028
|
Werner, T., Borradaile, G. J., 1998. Homogeneous Magnetic Susceptibilities of Tektites: Implications for Extreme Homogenization of Source Material. Physics of the Earth and Planetary Interiors, 108: 235-243. https://doi.org/10.1016/S0031-9201(98)00098-3
|
Whymark, A., 2021. A Review of Evidence for A Gulf of Tonkin Location for the Australasian Tektite Source Crater. Thai Geoscience Journal, 2(2): 1-29. https://doi.org/10.14456/tgj.2021.2
|
Wilding, M., Webb, S., Dingwell, D. B., 1996. Tektite Cooling Rates: Calorimetric Relaxation Geospeedometry Applied to A Natural Glass. Geochimica et Cosmochimica Acta, 60(6): 1099-1103. https://doi.org/10.1016/0016-7037(96)00010-5
|
Xiao, Z. Y., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on The Moon. Science Bulletin, 67(4): 355-358. https://doi.org/10.1016/j.scib.2021.11.004
|
Yan, P., Xiao, Z. Y., Xiao, G. Q., et al., 2022. Undetection of Australasian microtektites in the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110721. https://doi.org/10.1016/j.palaeo.2021.110721
|
Yan, Z., Yuan, B. Y., Ye, L. F., 1979. Fission Track Ages of Lei Gong Mo from Hainan Island. Scientia Geologica Sinica, 1, 37-42 (in Chinese with English abstract).
|
Yang, R. Y., Fan, Q. C., 1995. Geochemical Characteristics of Glass Meteorites from Hainan Island. Geology and Geochemistry, 4: 45-49 (in Chinese with English abstract).
|
Yu, Y., Dunlop, D. J., Özdemir, Ö., 2002. Partial Anhysteretic Remanent Magnetization in Magnetite 1. Additivity. Journal of Geophysical Research, 107(B10): 2244. https://doi.org/10.1029/2001JB001249
|
Yuan, B. Y., Ye, L. F., 1979. Stratigraphic Chronology of Lei Gong Mo. Chinese Science Bulletin, 6(4): 271-273(in Chinese with English abstract).
|
Yuan, B. Y., 1981. Preliminary Discussion on The Origin of Lei-Gong-Mo (Tektites). Scientia Geologica Sinica, 16(4): 329-336. (in Chinese with English abstract).
|
Zhang, H. N., Chen, W. G., Li, Z. Q., et al., 1991. Discovery of Tektite in West Guangdong and Its Sense for Determination of The Age. Marine Geology & Quaternary Geology, 11(4): 101-108 (in Chinese with English abstract).
|
Zhang, W. J., Gai, C. C., Liu, J. B., et al., 2022. Paleomagnetism: From the Earth to Mars. Earth Science, 47(10): 3736-3764 (in Chinese with English abstract).
|
Zheng, H. H., Huang, B. L., Gao, S. M., 1990. Geochemical Component and Thermoluminescence Characters of Glass Meteorites from Leiqiong Area. Science Bulletin, 4: 282-284 (in Chinese with English abstract).
|
Zák, K., Skála, R., Řanda, Z., et al., 2016. Chemistry of Tertiary Sediments in The Surroundings of The Ries Impact Structure and Moldavite Formation Revisited. Geochimica et Cosmochimica Acta, 179: 287-311. https://doi.org/10.1016/j.gca.2016.01.025
|
Zhu, Z. Y., Zhang, G. M., Wang, J. D., et al., 1993. Swarm Geological Events Around B/M Boundary Along the Coast of South China. Marine Geology & Quaternary Geology, 13(3), 35-42 (in Chinese with English abstract).
|
Zhu, Z. Y., Zhou, H. Y., Qiao, Y. L., et al., 2001. Initial Strata Occurrence of the South China Tektite in Strata and Its Implication for Event-Stratigraphy. Journal of Geomechanics, 7(4): 296-302 (in Chinese with English abstract).
|
陈华堂, 1981. 玻璃陨石在琼雷地区地貌第四纪研究中的意义. 热带地理, 2: 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD198102008.htm
|
陈世益, 1997. 广西贵港靖西玻璃陨石的发现与研究. 中南工业大学学报, 28(2): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD702.002.htm
|
顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
|
何贤伟, 张林, 2023. 雷公墨称谓创立作者及其年代辨析. 中国矿业, 32(2): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2023S2023.htm
|
黄志涛, 1995. 广西玻璃陨石初步研究. 地质地球化学, 4: 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504010.htm
|
李昌年, 1984. 海南岛雷公墨及成因探讨. 岩石矿物学杂志, 3: 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198403001.htm
|
李达明, 1963. 雷州半岛与海南岛玻璃陨石——雷公墨的调查与初步研究. 地质科学, 1: 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196301004.htm
|
欧阳自远, 宗普和, 易惟熙, 1976. 海南岛玻璃陨石中某些微量元素组成. 地球化学, 2: 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX197602007.htm
|
严正, 袁宝印, 叶莲芳, 1979. 海南岛玻璃陨石(雷公墨)裂变径迹年龄的测定. 地质科学, 1: 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197901003.htm
|
杨瑞瑛, 樊琪诚, 1995. 海南岛玻璃陨石的地球化学特征. 地质地球化学, 4: 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504009.htm
|
袁宝印, 叶莲芳, 1979. 雷公墨的地层年代学研究. 科学通报, 24(6): 271-273. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197906008.htm
|
袁宝印, 1981. 海南岛雷公墨(玻璃陨石)起源问题的初步探讨. 地质科学, 4: 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198104003.htm
|
张虎男, 陈伟光, 李子权, 等, 1991. 粤西玻璃陨石的发现及其断代意义. 海洋地质与第四纪地质, 4: 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199104013.htm
|
张伟杰, 盖聪聪, 柳加波, 等, 2022. 古地磁: 从地球到火星. 地球科学, 47(10): 3736-3764. doi: 10.3799/dqkx.2022.288
|
郑洪汉, 黄宝林, 高三玫, 1990. 琼雷地区玻璃陨石的化学组成和热释光特性初步研究. 科学通报, 4: 282-284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199004013.htm
|
朱照宇, 张国梅, 王骏达, 等, 1993. 华南沿海B/M界线附近的群发地质事件. 海洋地质与第四纪地质, 13(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199303003.htm
|
朱照宇, 周厚云, 乔玉楼, 等, 2001. 华南玻璃陨石的原生层位及其事件地层学意义. 地质力学学报, 7(4): 296-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200104001.htm
|