• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Pan Qing, Xiao Zhiyong, 2024. Magnetic Property Study of Australasian Tektites from South China. Earth Science, 49(8): 2766-2788. doi: 10.3799/dqkx.2024.023
    Citation: Pan Qing, Xiao Zhiyong, 2024. Magnetic Property Study of Australasian Tektites from South China. Earth Science, 49(8): 2766-2788. doi: 10.3799/dqkx.2024.023

    Magnetic Property Study of Australasian Tektites from South China

    doi: 10.3799/dqkx.2024.023
    • Received Date: 2023-05-22
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Hypervelocity impact of extra-terrestrial materials is one of the key controlling factors in the evolution of the Earth system. Impact cratering produces wide spread vaporized, molten and shock metamorphic materials. Tektites, part of distal impact ejecta that are located at more than five radii of the source crater, are quenched from vaporized and molten materials during flight. Tektites are faithful recorders of extreme high-temperature and high-pressure environments, and their magnetic signatures are key information for decoding impact cratering process. The Australasian strewn field (AASF) is the largest (~1×108 km2) and youngest (788, 000 years ago) Cenozoic strewn field of tektites and microtektites on Earth, but its source crater is undiscovered yet. AASF tektites formed in an oblique impact from north to south, and the majority of AASF tektites are distributed in the downrange area, i.e., the Indochina Peninsula-Australia-Antarctica and their adjacent areas. South China is part of the uprange area of this strewn field and tektites from this area are insufficiently studied compared to those from the rest of the strewn field. Here, we present rock magnetism study of AASF tektites from Guangdong, Guangxi, and Hainan Provinces. The results show that AASF tektites from South China are dominated by significant paramagnetic signals, and weak ferromagnetic signals are detected. In the entire strewn field, splash-form tektites from South China exhibit the lowest natural remanent magnetization, and saturation isothermal remanent magnetization, and Muong Nong-type tektites from South China exhibit the lowest magnetic susceptibility. Crystallographic investigation of mineral inclusions reveals the presence of nanoscale magnetite particles in Muong Nong-type AASF tektites from South China, consistent with the detected signals of pseudo-single domain magnetite. This study suggests that observed heterogeneous magnetic properties are mainly caused by the different contents and sizes of magnetic particles, which can be explained by the different shock level and/or cooling history of the tektite-forming melts. Although magnetic properties of AASF tektites in different regions show large variations, individual specimens of AASF tektites from South China have relatively homogeneous magnetic properties, indicating that impact melt that formed each tektite specimen had similar compositions and experienced similar thermal history. This study demonstrates the feasibility of rock magnetic studies in untangling formation processes of AASF tektites, and it is an important reference to the search of the potential source crater.

       

    • loading
    • Albin, E. F., Norman, M. D., Roden, M., 2000. Major and Trace Element Compositions of Georgiaites: Clues to the Source of North American tektites. Meteoritics & Planetary Science, 35(4): 795-806. https://doi.org/10.1111/j.1945-5100.2000.tb01463.x
      Artemieva, N. A., 2008. Tektites: Model Versus Reality. Lunar and Planetary Science XXXIX, 1651.
      Artemieva, N. A., 2013. Numerical Modeling of the Australasian Strewn Field. The 44th Lunar and Planetary Science Conference, 1410.
      Ackerman, L., Skala, R., Krizova, S., et al., 2019. The Quest for An Extraterrestrial Component in Muong Nong-Type and Splash: Form Australasian Tektites from Laos using Highly Siderophile Elements and Re-Os Isotope Systematics. Geochimica et Cosmochimica Acta, 252: 179-189. https://doi.org/10.1016/j.gca.2019.03.009
      Ackerman, L., Zak, K., Skala, R., et al., 2020. Sr-Nd-Pb Isotope Systematics of Australasian Tektites: Implications for the Nature and Composition of Target Materials and Possible Volatile Loss of Pb. Geochimicaet Cosmochimica Acta, 276: 135-150. https://doi.org/10.1016/j.gca. 2020.02.025 doi: 10.1016/j.gca.2020.02.025
      Baldwin, K. A., Butler, S. L., Hill, R. J., 2015. Artificial Tektites: An Experimental Technique for Capturing the Shapes of Spinning Drops. Scientific Reports, 5: 7660. https://doi.org/10.1038/srep07660
      Barnes, V. E., 1958. Origin of Tektites. Nature, 181: 1457-1458. https://doi.org/10.1038/1811457a0
      Barnes, V. E., Pitakpaivan, K., 1962. Origin of Indochinite Tektites. Proceedings of the National Academy of Sciences, 48: 947-955. https://doi.org/10.1073/pnas. 48. 6.947 doi: 10.1073/pnas.48.6.947
      Barnes, V. E., 1963. Detrital Mineral Grains in Tektites. Science, 142: 1651-1652. https://doi.org/10.1126/science.142.3600.1651
      Barnes, V. E., 1969. Progress of Tektite Studies in China. Eos, 50(12): 704-709. https://doi.org/10.1029/eo050i012p00704
      Belkin, H. E., Horton, J. W. J., 2009. Silicate Glasses and Sulfide Melts in the ICDP-USGS Eyreville b Core, Chesapeake Bay Impact Structure, Virginia, USA. The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes. Geological Society of America Special Paper, 458: 447-468.
      Beran, A., Koeberl, C., 1997. Water in Tektites and Impact Glasses by Fourier-Transformed Infrared Spectrometry. Meteoritics & Planetary Science, 32(2): 211-216. https://doi.org/10.1111/j.1945-5100.1997.tb01260.x
      Blum, D. J., Papanastassiou, D. A., Koeberl, C., et al., 1992. Neodymium and Strontium Isotopic Study of Australasian Tektites: New Constraints on the Provenance and Age of Target Materials. Geochimica et Cosmochimica Acta, 56: 483-492. https://doi.org/10.1016/0016-7037(92)90146-a
      Braslau, D., 1970. Partitioning of Energy in Hypervelocity Impact Against Loose and Targets. Journal of Geophysical Research, 75(20): 3987-3999. https://doi.org/10.1029/JB075i020p03987
      Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Oxford, UK.
      Cavosie, A. J., Timms, N. E., Erickson, T. M., et al., 2018. New Clues from Earth's most Elusive Impact Crater: Evidence of Reidite in Australasian Tektites from Thailand. Geology, 46(3): 203-206. https://doi.org/10.1130/G39711.1
      Chalmer, R. O., Henders, E. P., Mason, B., 1976. Occurrence, Distribution, and Age of Australian Tektites. Smithsonian Contributions to the Earth Sciences, Smithsonian Institution Press. Washington. https://doi.org/10.5479/si.00810274.17.1
      Chao, E. C. T., Adler, I., Dwornik, E. J., et al., 1962. Metallic Spherules in Tektites from Isabela, Philippine Islands. Science, 135: 97-98. https://doi.org/10.1126/science.135.3498.97
      Chao, E. C. T., Dwornik, E. J., Littler, J., 1964. New Data on the Nickel-Iron Spherules from Southeast Asian Tektites and Their Implications. Geochimicaet Cosmochimica Acta, 28: 971-980. https://doi.org/10.1016/0016-7037(64)90044-4
      Chapman, D. R., Scheiber, L. C., 1969. Chemical Investigation of Australasian Tektites. Journal of Geophysical Research, 74(27): 6737-6776. https://doi.org/10.1029/JB074i027p06737
      Chapman, D. R., 1971. Australasian Tektite Geographic Pattern, Crater and Ray of Origin, and Theory of Tektite Events. Journal of Geophysical Research, 76(26): 6309-6338. https://doi.org/10.1029/JB076i026p06309
      Chaussidon, M., Koeberl, C., 1995. Boron Content and Isotopic Composition of Tektites and Impact Glasses: Constraints on Source Regions. Geochimicaet Cosmochimica Acta, 59(3): 613-624. https://doi.org/10.1016/0016-7037(94)00368-V
      Chen, H. T., 1981. The Significance of Glass Meteorites in The Study of Quaternary Landforms in the Leiqiong Area. Tropical Geography, 2: 56-60(in Chinese with English abstract).
      Chen, S. Y., 1997. The Discovery and Study on Tektites from Guangxi China. Journal of Central South University Technology, 28(2): 110-112(in Chinese with English abstract).
      Chernonozhkin, S. M., Gonzalez, D. V. C., Artemieva, N. A., et al., 2021. Isotopic Evolution of Planetary Crusts by Hypervelocity Impacts Evidenced by Fe in Microtektites. Nature Communications, 12: 5646. https://doi.org/10.1038/s41467-021-25819-6
      Costa, B. F. O., Klingelhöfer, G., Panthöfer, M., et al., 2014. Backscattering Mossbauer MIMOS II and XRF Studies on Tektites from Different Strewn Fields. Hyperfine Interact, 226: 613-619. https://doi.org/10.1007/s10751-013-0986-3
      Costa, B. F. O., Alves, E. I., Silva, P. A. O. C., et al., 2021. 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals, 11(6): 628. https://doi.org/10.3390/min11060628
      Crawford, D. A., Schultz, P. H., 1988. Laboratory Observations of Impact-Generated Magnetic Fields. Nature, 336(6194): 50-52. https://doi.org/10.1038/336050a0
      Crawford, D. A., Schultz, P. H., 1999. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris. International Journal of Impact Engineering, 23: 169-180. https://doi.org/10.1016/S0734-743X(99)00070-6
      Crawford, D. A., 2020. Simulations of Magnetic Fields Produced by Asteroid Impact: Possible Implications for Planetary Paleomagnetism. International Journal of Impact Engineering, 137: 103464. https://doi.org/10.1016/j.ijimpeng.2019.103464
      Cuda, J., Kohout, T., Tucek, J., et al., 2011. Low-Temperature Magnetic Transition in Troilite: A Simple Marker for Highly Stoichiometric FeS Systems. Journal of Geophysical Research, 116(B11): B11205. https://doi.org/10.1029/2011jb008232
      Cuttitta, F., Carron, M. K., Annell, C. S., 1972. New Data on Selected Ivory Coast Tektites. Geochimica et Cosmochimica Acta, 36(11): 1297-1309. https://doi.org/10.1016/0016-7037(72)90050-6
      de Gasparis, A. A., Fuller, M., Cassidy, W., 1975. Natural Remanent Magnetism of Tektites of the Muong-Nong Type and Its Bearing on Models of Their Origin. Geology, 3(10): 605-607. https://doi.org/10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2 doi: 10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2
      de Gasparis, A. A., 1973. Magnetic Properties of Tektites and Impact Glasses(Dissertation). University of Pittsburgh, Pittsburgh.
      Donofrio, R R., 1977. The Magnetic Environment of the Tektites(Dissertation). University of Oklahoma, Oklahoma.
      Dressler, B. O., Reimold, W. U., 2001. Terrestrial Impact Melt Rocks and Glasses. Earth-Science Reviews, 56: 205-284. https://doi.org/10.1016/S0012-8252(01)00064-2
      Dunlop, D. J., Özdemir, Ö., 1997. Rock Magnetism. Cambridge University Press, Cambridge.
      Dunlop, D. J., 2002. Theory and Application of the Day Plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical Curves and Tests Using Titanomagnetite Data. Journal of Geophysical Research, 107(B3): 1-22. https://doi.org/10.1029/2001JB000486
      Elkins-Tanton, L. T., Aussillous, P., Bico, J., et al., 2003. A Laboratory Model of Splash-Form Tektites. Meteoritics & Planetary Science, 38(9): 1331-1340. https://doi.org/10.1111/j.1945-5100.2003.tb00317.x
      Fiske, P. S., Schnetzler, C. C., Mchone, J., et al., 1999. Layered Tektites of Southeast Asia: Field Studies in Central Laos and Vietnam. Meteoritics & Planetary Science, 34(5): 757-761. https://doi.org/10.1111/j.1945-5100.1999.tb01388.x
      Folco, L., Rochette, P., Perchiazzi, N., et al., 2008. Microtektites from Victoria Land Transantarctic Mountains. Geology, 36(4): 291-294. https://doi.org/10.1130/G24528A.1
      Folco, L., Perchiazzi, N., D'Orazio, M., et al., 2010. Shocked Quartz and Other Mineral Inclusions in Australasian Microtektites. Geology, 38(3): 211-214. https://doi.org/10.1130/G30512.1
      Folco, L., Rochette, P., D'Orazio, M., et al., 2023. The Chondritic Impactor Origin of the Ni-Rich Component in Australasian Tektites and Microtektites. Geochimica et Cosmochimica Acta, 360: 231-240. https://doi.org/10.1016/j.gca.2023.09.018
      Friedman, I., Thorpe, A., Senftle, E., 1960. Comparison of the Chemical Composition and Magnetic Properties of Tektites and Glasses Formed by Fusion of Terrestrial Rocks. Nature, 187: 1089-1092. https://doi.org/10.1038/1871089a0
      Futrell, D. S., Wasson, J. T., 1993. A 10.8kg Layered (Muong-Nong-type) Tektite from Wenchang, Hainan, China. Meteoritics, 28: 136-137. https://doi.org/10.1111/j.1945-5100.1993.tb00259.x
      Gattacceca, J., Rochette, P., 2004. Toward A Robust Normalized Magnetic Paleointensity Method Applied to Meteorites. Earth and Planetary Science Letters, 227: 377-393. https://doi.org/10.1016/j.epsl.2004.09.013
      Gattacceca, J., Rochette, P., Quesnel, Y., et al., 2022. Revisiting the Paleomagnetism of Muong Nong Layered Tektites: Implications for Their Formation Process. Meteoritics & Planetary Science, 57(2): 558-571. https://doi.org/10.1111/maps.13703
      Glass, B., 1967. Microtektites in Deep-Sea Sediments. Nature, 214: 372-374. https://doi.org/10.1038/214372b0
      Glass, B., Heezen, B. C., 1967. Tektites and Geomagnetic Reversal. Nature, 214: 372. https://doi.org/10.1038/scientificamerican0767-32
      Glass, B. P., Barlow, R. A., 1979. Mineral Inclusions in Muong Nong-Type Indochinites: Implications Concerning Parent Material and Process of Formation. Meteoritics, 14(1): 55-67. https://doi.org/10.1111/j.1945-5100.1979.tb00479.x
      Glass, B. P., 1984. Tektites. Journal of Non-Crystalline Solids, 67: 333-344. https://doi.org/10.1016/0022-3093(84)90158-3
      Glass, B. P., Pizzuto, J. E., 1994. Geographic Variation in Australasian Microtektite Concentrations: Implications Concerning the Location and Size of the Source Crater. Journal of Geophysical Research, 99(E9): 19075-19081. https://doi.org/10.1029/94JE01866
      Glass, B. P., Simonson, B. M., 2013. Distal Impact Ejecta Layers. Springer Press, New York. https://doi.org/10.1007/978-3-540-88262-6
      Glass, B. P., 1970. Zircon and Chromite Crystals in a Muong Nong-type Tektite. Science, 169(3947): 766-769. https://doi.org/10.1126/science.169.3947.766
      Glass, B. P., 1990. Tektites and Microtektites: Key Facts and Inferences. Tectonophysics, 171: 393-404. https://doi.org/10.1016/0040-1951(90)90112-L
      Goderis, S., Tagle, R., Fritz, J., et al., 2017. On the Nature of the Ni-Rich Component in Splash-Form Australasian Tektites. Geochimica et Cosmochimica Acta, 217: 28-50. https://doi.org/10.1016/j.gca.2017.08.013
      Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160(in Chinese with English abstract).
      He, X. W., Zhang, L., 2023. Analysis of The Author and Age of Leigongmo's Name. China Mining Magazine, 32(S2): 128-131. https://doi.org/10.12075/j.issn.1004-4051. 20230671 doi: 10.12075/j.issn.1004-4051.20230671
      Ho, K., Chen, J., 1996. Geochemistry and Origin of Tektites from the Penglei Area, Hainan Province, Southern China. Journal of Southeast Asian Earth Sciences, 13(1): 61-72. https://doi.org/10.1016/0743-9547(96)00005-0
      Hood, L. L., Artemieva, N. A., 2008. Antipodal Effects of Lunar Basin-Forming Impacts: Initial 3D Simulations and Comparisons with Observations. Icarus, 193(2): 485-502. https://doi.org/10.1016/j.icarus.2007.08.023
      Hou, Y. M., Potts, R., Yuan, B. Y., et al., 2000. Mid-Pleistocene Acheulean-like Stone Technology of the Bose Basin, South China. Science, 287: 1622-1626. https://doi.org/10.1126/science.287.5458.1622
      Huang, Z. T., 1995. Preliminary Study of Glass Meteorite, Guangxi Province. Geology and Geochemistry, 4: 50-58(in Chinese with English abstract).
      Johnson, H. P., Lowrie, W., Kent, D. V., 1975. Stability of Anhysteretic Remanent Magnetization in Fine and Coarse Magnetite and Maghemite Particles. Geophysical Journal of the Royal Astronomical Society, 41: 1-10. https://doi.org/10.1111/j.1365-246X.1975.tb05480.x
      Johnson, T. E., Kirkland, C. L., Lu, Y., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y
      Jonášová, Š., Ackerman, L., Žák, K., et al., 2016. Geochemistry of Impact Glasses and Target Rocks from the Zhamanshin Impact Structure, Kazakhstan: Implications for Mixing of Target and Impactor Matter. Geochimica et Cosmochimica Acta, 190: 239-264. https://doi.org/10.1016/j.gca.2016.06.031
      Jourdan, F., Nomade, S., Wingate, M. T. D., et al., 2019. Ultraprecise Age and Formation Temperature of the Australasian Tektites Constrained by 40Ar/39Ar Analyses. Meteoritics & Planetary Science, 54(10): 2573-2591. https://doi.org/10.1111/maps.13305
      Karimi, K., Kletetschka, G., Mizera, J., et al., 2023. Formation of Australasian Tektites from Gravity and Magnetic Indicators. Scientific Reports, 13: 12868. https://doi.org/10.1038/s41598-023-40177-7
      Kinnunen, K. A., 1990. Lechatelierite Inclusions in Indochinites and the Origin of Tektites. Meteoritics, 25: 181-184. https://doi.org/10.1111/j.1945-5100.1990.tb00994.x
      Klein, L. C., Yinnon, H., Uhlmann, D. R., 1980. Viscous Flow and Crystallization Behavior of Tektite Glass. Journal of Geophysical Research, 85(B10): 5485-5489. https://doi.org/10.1029/JB085iB10p05485
      Kleinmann, B., 1969. Magnetite Bearing Spherules in Tektites. Geochimicaet Cosmochimica Acta, 33: 1113-1120. https://doi.org/10.1016/0016-7037(69)90067-2
      Koeberl, C., 1986. Geochemistry of Tektites and Impact Glasses. Annual Review of Earth and Planetary Sciences, 14: 323-350. https://doi.org/10.1146/annurev.ea.14. 050186.001543 doi: 10.1146/annurev.ea.14.050186.001543
      Koeberl, C., 1990. The Geochemistry of Tektites: An Overview. Tectonophysics, 171: 405-422. https://doi.org/10.1016/0040-1951(90)90113-M
      Koeberl, C., 1992. Geochemistry and Origin of Muong Nong-Type Tektites. Geochimica et Cosmochimica Acta, 56: 1033-1064. https://doi.org/10.1016/0016-7037(92)90046-L
      Koeberl, C., Bottomley, R., Glass, B. P., et al., 1997. Geochemistry and Age of Ivory Coast Tektites and Microtektites. Geochimica et Cosmochimica Acta, 61(8): 1745-1772. https://doi.org/10.1016/S0016-7037(97)00026-4
      Koeberl, C., Glass, B. P., Schulz, T., et al., 2022. Tektite Glasses from Belize, Central America: Petrography, Geochemistry, and Search for a Possible Meteoritic Component. Geochimica et Cosmochimica Acta, 325: 232-257. https://doi.org/10.1016/j.gca.2022.02.021
      Kuiper, G. P., 1954. On the Origin of the Lunar Surface Features. Proceedings of the National Academy of Sciences, 40(12): 1096-1112. https://doi.org/10.1073/pnas. 40. 12.1096 doi: 10.1073/pnas.40.12.1096
      Lacroix, A., 1935. Les Tectites Sans Formes Figtirees de I'lndochine. Comptes Rendus de l'Académie des Sciences (Paris), 200: 2129-2132.
      Lee, Y., Chen, J., Ho, K., 2004. Geochemical Studies of Tektites from East Asia. Geochemical Journal, 1: 1-17. https://doi.org/10.2343/geochemj.38.1
      Li, C. N., 1984. A Discussion on Lei Gong Mo from Hainan Island and Its Origin. Acta Petrologicaet Mineralogica, 2: 207-216 (in Chinese with English abstract).
      Li, D. M., 1963. A Preliminary Survey and Study of The Tektites: Lei-Gong-Mo: from Leichow Peninsula and Hainan Island, China. Scientia Geologica Sinica, 1: 42-49 (in Chinese with English abstract).
      Lin, S., Guan, Y. B., Hsu, W., 2011. Geochemistry and Origin of Tektites from Guilin of Guangxi, Guangdong and Hainan. Science China Earth Sciences, 54(3): 349-358. https://doi.org/10.1007/s11430-010-4146-1
      Ma, P., Aggrey, K., Tonzola, C., et al., 2004. Beryllium-10 in Australasian Tektites: Constraints on the Location of the Source Crater. Geochimicaet Cosmochimica Acta, 68(19): 3883-3896. https://doi.org/10.1016/j.gca.2004.03.026
      Macris, C. A., Asimow, P. D., Badro, J., et al., 2018. Seconds after Impact: Insights into the Thermal History of Impact Ejecta from Diffusion between Lechatelierite and Host Glass in Tektites and Experiments. Geochimica et Cosmochimica Acta, 241: 69-94. https://doi.org/10.1016/j.gca.2018.08.031
      Magna, T., Jiang, Y., Skála, R., et al., 2021. Potassium Elemental and Isotope Constraints on the Formation of Tektites and Element Loss during Impacts. Geochimica et Cosmochimica Acta, 312: 321-342. https://doi.org/10.1016/j.gca.2021.07.022
      Maher, B. A., 1988. Magnetic Properties of Some Synthetic Sub-Micron Magnetites. Geophysical Journal, 94: 83-96. https://doi.org/10.1111/j.1365-246X.1988.tb03429.x
      Masotta, M., Peres, S., Folco, L., et al., 2020. 3D X-Ray Tomographic Analysis Reveals How Coesite is Preserved in Muong Nong-Type Tektites. Scientific Reports, 10: 20608. https://doi.org/10.1038/s41598-020-76727-6
      Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York.
      Melosh, H J., 2020. The Australasian Tektite Source Crater: Found at Last. Proceedings of the National Academy of Sciences, 117(3): 1252-1253. https://doi.org/10.1073/pnas.1920576117
      Michel, V., Feng, X., Shen, G., et al., 2021. First 40Ar/39Ar Analyses of Australasian Tektites in Close Association with Bifacially Worked Artifacts at Nalai Site in Bose Basin, South China: The Question of the Early Chinese Acheulean. Journal of Human Evolution, 153: 102953. https://doi.org/10.1016/j.jhevol.2021.102953
      Mizera, J., Řanda, Z., Kameník, J., 2016. On a Possible Parent Crater for Australasian Tektites: Geochemical, Isotopic, Geographical and Other Constraints. Earth-Science Reviews, 154: 123-137. doi: 10.1016/j.earscirev.2015.12.004
      Mizera, J., 2022. Quest for the Australasian Impact Crater: Failings of the Candidate Location at the Bolaven Plateau, Southern Laos. Meteoritics & Planetary Science, 57(11): 1973-1986. http://doi.org/10.1016/j.earscirev. 2015. 12.004 doi: 10.1016/j.earscirev.2015.12.004
      Morgan, J. V., Bralower, T. J., Brugger, J., et al., 2022. The Chicxulub Impact and Its Environmental Consequences. Nature Reviews Earth & Environment, 3: 338-354. https://doi.org/10.1038/s43017-022-00283-y
      Nininger, H. H., Huss, G. I., 1967. Tektites That Were Partially Plastic after Completion of Surface Sculpturing. Science, 157: 61-62. https://doi.org/10.1126/science. 157.3784.61 doi: 10.1126/science.157.3784.61
      O'Keefe, J. A., 1958. Origin of Tektites. Nature, 181: 172-173. https://doi.org/10.1038/181172a0
      O'Keefe, J. A., 1975. Tektites and Their Origin. NASA Coddard Space Flight Center.
      Ouyang, Z. Y., Zhong, P. H., Yi, W. X., 1976. Trace Element in Tektite from Hainan Island, China. Geochimica, 2: 144-147 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1976.02.008
      Pan, Q., Xiao, Z. Y., Wu, Y. H., et al., 2023a. Magnetic Properties of Australasian Tektites from South China. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025269. https://doi.org/10.1029/2022JB025269
      Pan, Q., Xiao, Z. Y., Wu, Y. X., et al., 2023b. Magnetite in Muong Nong-Type Australasian Tektites from South China. Geochemistry, Geophysics, Geosystems, 24(10): e2023GC011103. https://doi.org/10.1029/2023GC011103
      Philpotts, J. A. Pinson, W. H., 1966. New Data on the Chemical Composition and Origin of Moldavites. Geochimica et Cosmochimica Acta, 30(3): 253-266. https://doi.org/10.1016/0016-7037(66)90001-9
      Poag, C. W., Powars, D. S., Poppe, L. J., et al., 1994. Meteoroid Mayhem in Ole Virginny Source of the North American Tektite Strewn Field. Geology, 22(8): 691-694. https://doi.org/10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2 doi: 10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2
      Ray, D., Misra, S., 2014. Contrasting Aerodynamic Morphology and Geochemistry of Impact Spherules from Lonar Crater, India: Some Insights into Their Cooling History. Earth Moon Planets, 114: 59-86. https://doi.org/10.1007/s11038-014-9451-9
      Rochette, P., Gattacceca, J., Devouard, B., et al., 2015. Magnetic Properties of Tektites and Other Related Impact Glasses. Earth and Planetary Science Letters, 432: 381-390. https://doi.org/10.1016/j.epsl.2015.10.030
      Rochette, P., Braucher, R., Folco, L., et al., 2018. 10Be in Australasian Microtektites Compared to Tektites: Size and Geographic Controls. Geology, 46(9): 803-806. https://doi.org/10.1130/G45038.1
      Rochette, P., Bezaeva, N. S., Kosterov, A., et al., 2019. Magnetic Properties and Redox State of Impact Glasses: AReview and New Case Studies from Siberia. Geosciences, 9(5): 225. https://doi.org/10.3390/geosciences9050225
      Rochette, P., Beck, P., Bizzarro, M., et al., 2021. Impact Glasses from Belize Represent Tektites from the Pleistocene PantasmaImpact Crater in Nicaragua. Communications Earth & Environment, 2: 94. https://doi.org/10.1038/s43247-021-00155-1
      Rochette, P., Bezaeva, N. S., Beck, P., et al., 2022. Obsidian and Mafic Volcanic Glasses from the Philippines and Vietnam Found in the Paris Museum Australasian Tektite Collection. Meteoritics & Planetary Science, 57(7): 1460-1471. https://doi.org/10.1111/maps.13825
      Schmidt, G., Zhou, L., Wasson, J. T., 1993. Iridium Anomaly Associated with the Australasian Tektite-Producing Impact; Masses of the Impactor and of the Australasian Tektites. Geochimica et Cosmochimica Acta, 57: 4851-4859. https://doi.org/10.1016/0016-7037(93)90204-A
      Schnetzler, C. C., Walter, L. S., Marsh, J. G., 1988. Source of the Australasian Tektite Strewn Field: A Possible Offshore Impact Site. Geophysical Research Letters, 15(4): 357-360. https://doi.org/10.1029/gl015i004p00357
      Senftle, F. E., Thorpe, A., 1959. Magnetic Susceptibility of Tektites and Some Other Glasses. Geochimica et Cosmochimica Acta, 17: 234-247. https://doi.org/10.1016/0016-7037(59)90098-5
      Short, A. M., 1966. Shock Processes in Geology. Journal of Geological Education, 14(4): 149-166. https://doi.org/10.5408/0022-1368-XIV.4.149
      Sieh, K., Herrin, J., Jicha, B., et al., 2020. Australasian Impact Crater Buried under the BolavenVolcanic Field, Southern Laos. Proceedings of the National Academy of Sciences, 117(3): 1346-1353. https://doi.org/10.1073/pnas.1904368116
      Soens, B., van Ginneken, M., Chernonozhkin, S., et al., 2021. Australasian Microtektites Across the Antarctic Continent: Evidence from the Sør Rondane Mountain Range (East Antarctica). Geoscience Frontiers, 12(4). https://doi.org/101153.10.1016/j.gsf.2021.101153 doi: 10.1153.10.1016/j.gsf.2021.101153
      Soro, P., Rochette, P., Baratoux, D., et al., 2023. Revisiting the Côte d'ivoireTektite Strewn Field. Journal of African Earth Sciences, 205: 104990. https://doi.org/10.1016/j.jafrearsci.2023.104990
      Spaepen, F., Turnbull, D., 1984. Metallic Glasses. Annual Review of Physical Chemistry, 35: 241-263. https://doi.org/10.1146/annurev.pc.35.100184.001325
      Spencer, L. J., 1933. Origin of Tektites. Nature, 131: 117-118. https://doi.org/10.1038/131117a0
      Stähle, V., 1972. Impact Glasses from the Suevite of the NördlingerRies. Earth and Planetary Science Letters, 17: 275-293. https://doi.org/10.1016/0012-821X(72)90287-7
      Starunov, V. A., Kosterov, A., Sergienko, E. S., et al., 2019. Magnetic Properties of Tektite-like Impact Glasses from Zhamanshin Astrobleme, Kazakhstan. Cham: Springer International Publishing, 445-465. https://doi.org/10.1007/978-3-319-90437-5_30
      Strangway, D. W., Larson, E. E., Pearce, G. W., 1970. Magnetic Properties of Lunar Samples. Science, 167: 691-693. https://doi.org/10.1126/science.167.3918.691
      Tarduno, J. A., Cottrell, R. D., Lawrence K., et al., 2021. Absence of A Long-Lived Lunar Paleomagnetosphere. Science Advances, 7(32): eabi7647. https://doi.org/10.1126/sciadv.abi7647
      Taylor, S. R., 1962a. The Chemical Composition of Australites. Geochimica et Cosmochimica Acta, 26: 685-722. https://doi.org/10.1016/0016-7037(62)90034-0
      Taylor, S. R., 1962b. Fusion of Soil during Meteorite Impact, and The Chemical Composition of Tektites. Nature, 195(4836): 32-33. https://doi.org/10.1038/195032a0
      Taylor, S. R., Kaye, M., 1969. Genetic Significance of The Chemical Composition of Tektites: AReview. Geochimica et Casmochimica Acta, 33: 1083-1100. https://doi.org/10.1016/0016-7037(69)90064-7
      Thorpe, A. N., Senftle, F. E., Cuttitta, F., 1963. Magnetic and Chemical Investigations of Iron in Tektites. Nature, 197: 836-840. https://doi.org/10.1038/197836a0
      Verrier, V., Rochette, P., 2002. Estimating Peak Currents at Ground Lightning Impacts Using Remanent Magnetization. Geophysical Research Letters, 29(18): 1867. https://doi.org/10.1029/2002GL015207
      Verwey, E. J. W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327-328. https://doi.org/10.1038/144327b0
      von Engelhardt, W., Berthold, C., Wenzel, T., et al., 2005. Chemistry, Small-Scale Inhomogeneity, and Formation of Moldavites as Condensates from Sands Vaporized by the Ries Impact. Geochimica et Cosmochimica Acta, 69(23): 5611-5626. https://doi.org/10.1016/j.gca.2005.07.004
      Walter, L. S., 1965. Coesite Discovered in Tektites. Science, 147(3661): 1029-1032. https://doi.org/10.1126/science.147.3661.1029
      Wasilewski, P. J., Kletetschka, G., 1999. Lodestone: Nature's Only Permanent Magnet-What It Is and How It Gets Charged. Geophysical Research Letters, 26(15): 2275-2278. https://doi.org/10.1029/1999GL900496
      Wasilewski, P. J., Dickinson, T., 2000. Aspects of The Validation of Magnetic Remanence in Meteorites. Meteoritics & Planetary Science, 35(3): 537-544. https://doi.org/10.1111/j.1945-5100.2000.tb01434.x
      Weiss, B. P., Pedersen, S., Garrick-Bethell, I., et al., 2010. Paleomagnetism of Impact Spherules from Lonar Crater, India and A Test for Impact-Generated Fields. Earth and Planetary Science Letters, 298: 66-76. https://doi.org/10.1016/j.epsl.2010.07.028
      Werner, T., Borradaile, G. J., 1998. Homogeneous Magnetic Susceptibilities of Tektites: Implications for Extreme Homogenization of Source Material. Physics of the Earth and Planetary Interiors, 108: 235-243. https://doi.org/10.1016/S0031-9201(98)00098-3
      Whymark, A., 2021. A Review of Evidence for A Gulf of Tonkin Location for the Australasian Tektite Source Crater. Thai Geoscience Journal, 2(2): 1-29. https://doi.org/10.14456/tgj.2021.2
      Wilding, M., Webb, S., Dingwell, D. B., 1996. Tektite Cooling Rates: Calorimetric Relaxation Geospeedometry Applied to A Natural Glass. Geochimica et Cosmochimica Acta, 60(6): 1099-1103. https://doi.org/10.1016/0016-7037(96)00010-5
      Xiao, Z. Y., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on The Moon. Science Bulletin, 67(4): 355-358. https://doi.org/10.1016/j.scib.2021.11.004
      Yan, P., Xiao, Z. Y., Xiao, G. Q., et al., 2022. Undetection of Australasian microtektites in the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110721. https://doi.org/10.1016/j.palaeo.2021.110721
      Yan, Z., Yuan, B. Y., Ye, L. F., 1979. Fission Track Ages of Lei Gong Mo from Hainan Island. Scientia Geologica Sinica, 1, 37-42 (in Chinese with English abstract).
      Yang, R. Y., Fan, Q. C., 1995. Geochemical Characteristics of Glass Meteorites from Hainan Island. Geology and Geochemistry, 4: 45-49 (in Chinese with English abstract).
      Yu, Y., Dunlop, D. J., Özdemir, Ö., 2002. Partial Anhysteretic Remanent Magnetization in Magnetite 1. Additivity. Journal of Geophysical Research, 107(B10): 2244. https://doi.org/10.1029/2001JB001249
      Yuan, B. Y., Ye, L. F., 1979. Stratigraphic Chronology of Lei Gong Mo. Chinese Science Bulletin, 6(4): 271-273(in Chinese with English abstract).
      Yuan, B. Y., 1981. Preliminary Discussion on The Origin of Lei-Gong-Mo (Tektites). Scientia Geologica Sinica, 16(4): 329-336. (in Chinese with English abstract).
      Zhang, H. N., Chen, W. G., Li, Z. Q., et al., 1991. Discovery of Tektite in West Guangdong and Its Sense for Determination of The Age. Marine Geology & Quaternary Geology, 11(4): 101-108 (in Chinese with English abstract).
      Zhang, W. J., Gai, C. C., Liu, J. B., et al., 2022. Paleomagnetism: From the Earth to Mars. Earth Science, 47(10): 3736-3764 (in Chinese with English abstract).
      Zheng, H. H., Huang, B. L., Gao, S. M., 1990. Geochemical Component and Thermoluminescence Characters of Glass Meteorites from Leiqiong Area. Science Bulletin, 4: 282-284 (in Chinese with English abstract).
      Zák, K., Skála, R., Řanda, Z., et al., 2016. Chemistry of Tertiary Sediments in The Surroundings of The Ries Impact Structure and Moldavite Formation Revisited. Geochimica et Cosmochimica Acta, 179: 287-311. https://doi.org/10.1016/j.gca.2016.01.025
      Zhu, Z. Y., Zhang, G. M., Wang, J. D., et al., 1993. Swarm Geological Events Around B/M Boundary Along the Coast of South China. Marine Geology & Quaternary Geology, 13(3), 35-42 (in Chinese with English abstract).
      Zhu, Z. Y., Zhou, H. Y., Qiao, Y. L., et al., 2001. Initial Strata Occurrence of the South China Tektite in Strata and Its Implication for Event-Stratigraphy. Journal of Geomechanics, 7(4): 296-302 (in Chinese with English abstract).
      陈华堂, 1981. 玻璃陨石在琼雷地区地貌第四纪研究中的意义. 热带地理, 2: 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD198102008.htm
      陈世益, 1997. 广西贵港靖西玻璃陨石的发现与研究. 中南工业大学学报, 28(2): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD702.002.htm
      顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
      何贤伟, 张林, 2023. 雷公墨称谓创立作者及其年代辨析. 中国矿业, 32(2): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2023S2023.htm
      黄志涛, 1995. 广西玻璃陨石初步研究. 地质地球化学, 4: 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504010.htm
      李昌年, 1984. 海南岛雷公墨及成因探讨. 岩石矿物学杂志, 3: 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198403001.htm
      李达明, 1963. 雷州半岛与海南岛玻璃陨石——雷公墨的调查与初步研究. 地质科学, 1: 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196301004.htm
      欧阳自远, 宗普和, 易惟熙, 1976. 海南岛玻璃陨石中某些微量元素组成. 地球化学, 2: 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX197602007.htm
      严正, 袁宝印, 叶莲芳, 1979. 海南岛玻璃陨石(雷公墨)裂变径迹年龄的测定. 地质科学, 1: 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197901003.htm
      杨瑞瑛, 樊琪诚, 1995. 海南岛玻璃陨石的地球化学特征. 地质地球化学, 4: 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504009.htm
      袁宝印, 叶莲芳, 1979. 雷公墨的地层年代学研究. 科学通报, 24(6): 271-273. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197906008.htm
      袁宝印, 1981. 海南岛雷公墨(玻璃陨石)起源问题的初步探讨. 地质科学, 4: 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198104003.htm
      张虎男, 陈伟光, 李子权, 等, 1991. 粤西玻璃陨石的发现及其断代意义. 海洋地质与第四纪地质, 4: 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199104013.htm
      张伟杰, 盖聪聪, 柳加波, 等, 2022. 古地磁: 从地球到火星. 地球科学, 47(10): 3736-3764. doi: 10.3799/dqkx.2022.288
      郑洪汉, 黄宝林, 高三玫, 1990. 琼雷地区玻璃陨石的化学组成和热释光特性初步研究. 科学通报, 4: 282-284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199004013.htm
      朱照宇, 张国梅, 王骏达, 等, 1993. 华南沿海B/M界线附近的群发地质事件. 海洋地质与第四纪地质, 13(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199303003.htm
      朱照宇, 周厚云, 乔玉楼, 等, 2001. 华南玻璃陨石的原生层位及其事件地层学意义. 地质力学学报, 7(4): 296-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200104001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (572) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return