• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 2
    Mar.  2012
    Turn off MathJax
    Article Contents
    XIE Xian-jun, WANG Yan-xin, LI Jun-xia, Su Chun-li, WU Ya, YU Qian, Li Meng-di, 2012. Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin. Earth Science, 37(2): 381-390. doi: 10.3799/dqkx.2012.046
    Citation: XIE Xian-jun, WANG Yan-xin, LI Jun-xia, Su Chun-li, WU Ya, YU Qian, Li Meng-di, 2012. Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin. Earth Science, 37(2): 381-390. doi: 10.3799/dqkx.2012.046

    Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin

    doi: 10.3799/dqkx.2012.046
    • Received Date: 2010-08-12
    • Publish Date: 2012-03-15
    • In order to better understand the occurrence of high arsenic groundwater, rare earth elements (REEs) analyses were conducted for groundwater from the Datong basin. The results indicate that high arsenic groundwater usually has low ∑REE concentration and enriches in HREEs relative to LREEs. The low concentration of ∑REE in groundwater samples could be due to the scavenging of REEs onto the surface of solid phase Fe-Mn oxides/hydroxides within aquifer sediment. The enrichment of HREEs can be attributed to the combined result of complexation, and desorption and readsorption. The average up crust normalized REEs patterns clearly exhibit significant positive Ce and Eu anomalies in high arsenic groundwater. The observed good correlation between Ce/Ce* values and Eu and Fe+Mn could be related to the reductive dissolution of Fe and Mn oxides/hydroxides. The relationship between As and Ce/Ce* value and Eu suggests that Ce/Ce* value and Eu concentration are useful indicators of arsenic mobilization in groundwater system.

       

    • loading
    • Appelo, C.A.J., Weiden, M.J.J.V.D., Tournassat, C., et al., 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of Arsenic. Environmental Science & Technology, 36(14): 3096-3103. doi: 10.1021/es010130n
      Banks, D., Hall, G., Reimann, C., et al., 1999. Distribution of rare earth elements in crystalline bedrock groundwaters: oslo and Bergen regions, Norway. Applied Geochemistry, 14(1): 27-39. doi: 10.1016/S0883-2927(98)00037-7
      Bau, M., 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9
      Bau, M., Usui, A., Pracejus, B., et al., 1998. Geochemistry of low-temperature water-rock interaaction: evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaido, Japan. Chemical Geology, 151(1-4): 293-307. doi: 10.1016/S0009-2541(98)00086-2
      Braun, J.J., Viers, J., Dupré, B., et al., 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 62(1): 273-299. doi: 10.1016/S0016-7037(97)00344X
      Dia, A., Gruau, G., Olivié-Lauquet, G., et al., 2000. The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochimica et Cosmochimica Acta, 64(24): 4131-4151. doi: 10.1016/S0016-7037(00)004944-1
      Dulski, P., 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4-5): 194-203. doi: 10.1007/BF00322470
      Gorby, Y.A., Lovley, D.R., 1992. Enzymatic uranium precipitation. Environmental Science & Technology, 26(1): 205-207. doi: 10.1021/es00025a026
      Gui, H.R., Sun, L.H., 2011. Rare earth element geochemical characteristics of the deep underground water from Renlou coal mine, northern Anhui Province. Journal of China Coal Society, 36(2): 210-216 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000002/art00006
      Guo, H.M., Yang, S.Z., Tang, X.H., et al., 2008. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao basin, Inner Mongolia. Science of the Total Environment, 393(1): 131-144. doi: 10.1016/j.scitotenv.2007.12.025
      Guo, H.M., Zhang, B., Li, Y., et al., 2010. Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao plain, Inner Mongolia. Earth Science Frontiers, 17(6): 59-66 (in Chinese with English abstract). http://www.ingentaconnect.com/content/el/18725791/2010/00000017/00000006/art00008
      Guo, H.M., Zhang, B., Wang, G.C., et al., 2010. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao basin, Inner Mongolia. Chemical Geology, 270(1-4): 117-125. doi: 10.1016/j.chemgeo.2009.11.010
      Hsi, C.K.D., Langmuir, D., 1985. Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation sitebinding model. Geochimica et Cosmochimica Acta, 49(9): 1931-1941. doi: 10.1016/0016-7037(85)90088-2
      Jiang, S.Y., Zhao, H.X., Chen, Y.Q., et al., 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010
      Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimica et Cosmochimica Acta, 61(1): 3605-3618. doi: 10.1016/S0016-7037(97)00177-4
      Johannesson, K.H., Zhou, X.P., Guo, C.X., et al., 2000. Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164(3-4): 239-257. doi: 10.1016/S0009-2541(99)00152-7
      Lee, S.G., Lee, D.H., Kim, Y., et al., 2003. Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture-filling calcite. Applied Geochemistry, 18(1): 135-143. doi: 10.1016/S0883.2927(02)00071-9
      Lowers, H.A., Breit, G.N., Foster, A.L., et al., 2007. Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71(11): 2699-2717. doi: 10.1016/j.gca.2007.03.022
      Luo, Y.L., Jiang, P.A., Yu, Y.H., et al., 2006. Investigation and assessment on arsenic pollution of soil and groungwater in Kuitun No. 123 State Farm. Arid Land Geography, 29(5): 705-709 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GHDL200605017.htm
      Nath, B., Jean, J.S., Lee, M.K., et al., 2008. Geochemistry of high arsenic groundwater in Chia-Nan plain, southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96. doi: 10.1016/j.jconhyd.2008.04.005
      Nickson, R.T., McArthur, J.M., Ravenscroft, P., et al., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. doi: 10.1016/S0883-2927(99)00086-4
      Nordstrom, D.K., 2002. Worldwide occurrences of arsenic in ground water. Science, 296(5576): 2143-2145. doi: 10.1126/science.1072375
      Ohta, A., Kawabe, I., 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2. Geochimica et Cosmochimica Acta, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0
      Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
      Polya, D.A., Gault, A.G., Diebe, N., et al., 2005. Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine, 69(5): 807-823. doi: 10.1180/0026461056950290
      Postma, D., Larsen, F., Minh Hue, N.T., et al., 2007. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71(21): 5054-5071. doi: 10.1016/j.gca.2007.08.020
      Romero, L., Alonso, H., Campano, P., et al., 2003. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry, 18(9): 1399-1416. doi: 10.1016/S0883-2927(03)00059-3
      Sholkovitz, E.R., Landing, W.M., Lewis, B.L., 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2
      Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
      Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., et al., 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17(3): 259-284. doi: 10.1016/S0883-2927(01)00082-8
      Tang, J., Johannesson, K.H., 2006. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA. Chemical Geology, 225(1-2): 156-171. doi: 10.1016/j.chemgeo.2005.09.007
      Tossell, J.A., 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69(12): 2981-2993. doi: 10.1016/j.gca.2005.01.016
      Tweed, S.O., Weaver, T.R., Cartwright, I., et al., 2006. Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: an example from the Dandenong Ranges, Southeast Australia. Chemical Geology, 234(3-4): 291-307. doi: 10.1016/j.chemgeo.2006.05.006
      Verplanck, P.L., Mueller, S.H., Goldfarb, R.J., et al., 2008. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255(1-2): 160-172. doi: 10.1016/j.chemgeo.2008.06.020
      Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Applied Geochemistry, 24(4): 641-649. doi: 10.1016/j.apgeochem.2008.12.015
      Wood, S.A., 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q
      Xie, X.J., Wang, Y.X., Su, C.L., et al., 2008. Arsenic mobilization in shallow aquifers of Datong basin: hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98(3): 107-115. doi: 10.1016/j.gexplo.2008.01.002
      桂和荣, 孙林华, 2011. 皖北任楼煤矿深层地下水稀土元素地球化学特征. 煤炭学报, 36(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201102009.htm
      郭华明, 张波, 李媛, 等, 2010. 内蒙古河套平原高砷地下水中稀土元素含量及分异特征. 地学前缘, 17(6): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm
      罗艳丽, 蒋平安, 余艳华, 等, 2006. 土壤及地下水砷污染现状调查与评价——以新疆奎屯123团为例. 干旱区地理, 29(5): 705-709. doi: 10.3321/j.issn:1000-6060.2006.05.015
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (3994) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return