Citation: | CHENG Qiu-ming, 2012. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Science, 37(6): 1109-1125. doi: 10.3799/dqkx.2012.118 |
Agterberg, F.P., 1989. Computer programs for mineral exploration. Science, 245(4913): 76-81. doi: 10.1126/science.245.4913.76
|
Bonham-Carter, G.F., 1994. Geographic information system for geosciences: modelling with GIS. Pergamon Press, Oxford.
|
Anand, R.R., Robertson, I.D.M., 2012. The role of mineralogy and geochemistry in forming anomalies on interfaces and in areas of deep basin cover: implications for exploration. Geochemistry: Exploration, Environment, Analysis, 12(1): 45-66. doi: 10.1144/1467-7873/10-RA-067
|
Cameron, E.M., Hamilton, S.M., Leybourne, M.I., et al., 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. doi: 10.1144/1467-7873/03-019
|
Cameron, E.M., Leybourne, M.I., Kelley, D.L., 2002. Exploring for deeply covered mineral deposits: formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters. Geology, 30(11): 1007-1010. doi: 10.1130/0091-7613(2002)030<1007:EFDCMD>2.0.CO;2
|
Cameron, E.M., Leybourne, M.I., Palacios, C., 2008. Economic geology models 1. geochemical exploration and metallogenic studies, northern Chile. Geoscience Canada, 35(3-4): 1-12. http://www.freepatentsonline.com/article/198169156.html
|
Carrigan, C.R., Heinle, R.A., Hudson, G.B., 1996. Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature, 382: 528-531. doi: 10.1038/382528a0
|
Chen, Y.L., 1999. Geochemistry of granitoids from the eastern Tianshan Mountains and northern Qinling Belt. Geological Publish House, Beijing (in Chinese).
|
Chen, Y.C., Wang, D.H., 2010. Prediction classification of major mineral deposits types. Geological Publish House, Beijing (in Chinese).
|
Cheng, Q.M., 1989. A method for estimation of resources from multiple populations. Journal of Changchun University of Earth Sciences, 19(5): 50-56(in Chinese with English abstract).
|
Cheng, Q.M., Agterberg F.P., 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35. doi: 10.1023/A:1021677510649
|
Cheng, Q.M., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961. doi: 10.1016/S0098-3004(99)00060-6
|
Cheng, Q.M., 2000. Geodata analysis system (GeoDAS) for mineral exploration: unpublished user's guide and exercise manual. Material for the training workshop on GeoDAS, Toronto, 204.
|
Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
|
Cheng, Q.M., 2008a. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532. doi: 10.1007/s11004-008-9172-6
|
Cheng, Q.M., 2008b. A combined power-law and exponential model for streamflow recessions. Journal of Hydrology, 352(1-2): 157-167. doi: 10.1016/j.hydrol.2008.01.017
|
Cheng, Q.M., 2008c. Singularity of mineralization and multi-fractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 298-305(in Chinese with English abstract). http://www.researchgate.net/publication/289701679_Singularity_of_mineralization_and_multifractal_distribution_of_mineral_deposits
|
Cheng, Q.M., 2011. Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources. Earth Science—Journal of China University of Geosciences, 36(2): 307-316 (in Chinese with English abstract).
|
Cheng, Q.M., 2012a. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007
|
Cheng, Q.M., 2012b. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes in Geophysics, 19: 57-68. doi: 10.5194/npg-19-57-2012
|
Cheng, Q.M., 2012c. Vertical distribution of elements in regoliths over mineral deposits and implicationon mapping geochemical weak anomalies caused by buried sources in covered areas. Geochemistry: Environment, Exploration and Analysis(in press).
|
Cheng, Q.M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. eds., Proceedings of the fifth annual conference of the international association for mathematical geology. Natural Resources Research, 9(1): 43-52. doi: 10.1023/A:1010109829861
|
Cheng, Q.M., Liu, J.T., Zhang, S.Y., et al., 2009. Application of GIS-Model builder technology for national mineral resource assessment. Earth Science—Journal of China University of Geosciences, 34(2): 338-346 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.036
|
Cohen, D.R., Kelley, D.L., Anand, R., 2010. Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. doi: 10.1144/1467-7873/09-215
|
Deng, S.T., Guo, Z.J., Zhang, Z.C., 2006. Metallogenic age and significance of contact metasomatic type iron deposits in the eastern Tianshan. Geology and Prospecting, 42(6): 17-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzykt200606004
|
Dunn, C.E., 2007. Biogeochemistry in mineral exploration: handbook of exploration and environmental geochemistry 9, Elsevier, Amsterdam. Geochemistry: Exploration, Environment, Analysis, 10: 17-26. http://www.sciencedirect.com/science/article/pii/S1874273407090018
|
Einaudi, M.T., Burt, D.M., 1982. Introduction—terminology, classification and composition of skarn deposits. Economic Geology, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745
|
Goldberg, I.S., 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61(1-3): 191-202. doi: 10.106/S0375-6742(97)00045-9
|
Govett, G.J.S., 1973. Differential secondary dispersion in transported soils and post-mineralization rocks: an electrochemical interpretation. In: Jones, M.J., ed., Geochemical exploration. Institution of Mining and Metallurgy, London, 81-91.
|
Govett, G.J.S., 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely shaped surface soil samples. Journal of Geochemical Exploration, 6(1-2): 359-382. doi: 10.1016/0376-6742(76)90024-8
|
Jin, Y., Liu, Y.T., Xie, Y.L., 2005. Relationship between magmatism and polymetal mineralization in Dongwuqi area, Inner Mongolia. Geology and Mineral Resources of South China, (1): 8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200501001.htm
|
Liu, D.Q., Tang, Y.L., Zhou, R.H., 1996. Metallogenic series types of ore deposits in Xinjiang. Geological Publishing House, Beijing (in Chinese).
|
Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. Characteristics of regional mineralization in Daxinanling, Inner Mongolia, China. Earth Science Frontiers, 11(1): 270-277(in Chinese with English abstract).
|
Ma, R.S., Shu, L.S., Sun, J.Q., 1997. The tectonic deformation, evolution and metallization in the eastern Tianshan Belt, northwest China. Geological Publish House, Beijing, 202 (in Chinese).
|
Mann, A.W., 2010. Strong versus weak digestions: ligand-based soil extraction geochemistry. Geochemistry: Exploration, Environment, Analysis, 10(1): 17-26. doi: 10.1144/1467-7873/09-216
|
Mann, A.W., Birrel, R.D., Fedikow, M.A.F., et al., 2005. Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5(3): 201-210. doi: 10.1144/1467-7873/03-045
|
McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al., 1983. Characteristic analysis-1981: final program and a possible discovery. Mathematical Geology, 15(1): 59-83. doi: 10.1007/BF01030076
|
Moon, C.J., 1999. Towards a quantitative model of downstream dilution of point source. Journal of Geochemical Exploration, 65(2): 111-132. doi: 10.106/S0375-6742(98)00065-X
|
Nie, F.J., Zhang, W.Y., Du, A.D., et al., 2007. Re-Os isotopic age dating of molybdenite separates from the Chaobulengskarn iron-polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia. ACTA Geoscientifica Sinica, 28(4): 315-323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200704000.htm
|
Nie, X.L., Hou, W.R., 2010. The discovery of the Diyanqinamu large-size Mo-Ag deposit, Inner Mongolia, and its geological significance. ACTA Geoscientica Sinica, 31(3): 469-472(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003026.htm
|
Saaty, T.L., 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Book Co., New York.
|
Shao, J.D., Tao, J.X., Li, S.W., et al., 2009. The new progress in ore prospecting within Daxing'anling mineralization belt, China. Geological Bulletin of China, 28(7): 955-962(in Chinese with English abstract). http://www.researchgate.net/publication/296710610_The_new_progress_in_ore_prospecting_within_Daxing'_anling_mineralization_belt
|
Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Natural Resources Research, 2(2), 69-81. doi: 10.1007/BF02272804
|
Smee, B.W., 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61(1-3): 149-172. doi: 10.1016/S0375-6472(98)00007-7
|
Smee, B.W., 1983. Laboratory and field evidence in support of the electrochemically-enhanced migration of ions through glaciolacustrine sediment. Journal of Geochemical Exploration, 19(1-3): 277-304. doi: 10.1016/0375-6742(83)90022-5
|
Wang, C.Y., Ma, R.S., 1994. Study on the regional metamorphism and the tectonic settings in the eastern Tianshanorogenic belt. Journal of Nanjing University (Natural Science Edition), 30(3): 494-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ403.017.htm
|
Wang, D.H., Li, C.J., Chen, Z.H., et al., 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910-915(in Chinese with English abstract). http://www.researchgate.net/publication/279675833_Metallogenic_characteristics_and_direction_in_mineral_search_in_the_East_Tianshan_Xinjiang_China
|
Wang, X.Q., Zhang, B.M., Liu, X.M., 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101-112. http://www.researchgate.net/publication/283363571_Nanogeochemistry_deep-penetrating_geochemical_exploration_through_cover
|
Wang, X.Q., Wen, X.Q., Rong, Y., 2007. Vertical variations and dispersion of elements in arid desert regolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163-171. doi: 10.1144/1467-7873/07-131
|
Xu, L.Q., Chen, Z.Y., Chen, Z.H., et al., 2010. SHRIMP dating of medium-coarse-granite in Chaobuleng iron deposit, Dong Ujimqin, Inner Mongolia. Mineral Deposits, 29(2): 317-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201002014.htm
|
Ye, R., Zhang, B.M., Yao, W.S., 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120-129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203014.htm
|
Zhang, B.M., Chi, Q.H., Zhang, Y.S., 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposits in arid desert terrains. Earth Science Frontiers, 19(3): 130-137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203015.htm
|
Zhao, J., Wang, W.L., Dong, L.H., et al., 2012. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical Exploration, 122: 81-89. doi: 10.1016/j.gexplo.2012.08.006
|
Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200705002.htm
|
Zhao, Y.M., Tan, H.J., Xu, Z.L., et al., 1983. The calcic-skarn iron ore deposits of Makeng type in Southwestern Fujian. Journal of Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (Special Issue 1): 1-141. http://www.researchgate.net/publication/291303483_The_calcic-skarn_iron_ore_deposit_of_making_type_in_southwestern_Fujian
|
陈岳龙, 1999. 东天山、北秦岭花岗岩类地球化学. 北京: 地质出版社.
|
陈毓川, 王登红, 2010. 重要矿产预测类型划分方案. 北京: 地质出版社.
|
成秋明, 1989. 多母体资源总量模拟方法. 长春地质学院学报, 19(5): 50-56.
|
成秋明, 2008c. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm
|
成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36 (2): 307-316. doi: 10.3799/dqkx.2011.032
|
成秋明, 刘江涛, 张生元, 等, 2009. GIS中的空间建模器技术及其在全国矿产资源潜力预测中的应用. 地球科学, 34(2): 338-346. doi: 10.3321/j.issn:1000-2383.2009.02.017
|
邓松涛, 郭召杰, 张志诚, 2006. 东天山接触交代型铁矿成矿时代的确定及其意义. 地质与勘探, 42(6): 17-20. doi: 10.3969/j.issn.0495-5331.2006.06.004
|
金岩, 刘玉堂, 谢玉玲, 2005. 内蒙古东乌旗地区岩浆活动与多金属成矿的关系. 华南地质与矿产, (1): 8-12. doi: 10.3969/j.issn.1007-3701.2005.01.002
|
刘德权, 唐延龄, 周汝洪. 1996. 中国新疆矿床成矿系列. 北京: 地质出版社.
|
刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm
|
马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社, 1-201.
|
聂凤军, 张万益, 杜安道, 等, 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 地球学报, 28(4): 315-323. doi: 10.3321/j.issn:1006-3021.2007.04.001
|
聂秀兰, 侯万荣. 2010. 内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义. 地球学报, 31(3): 469-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003026.htm
|
邵积东, 陶继雄, 李四娃, 等, 2009. 大兴安岭成矿带找矿工作新进展. 地质通报, 28(7): 955-962. doi: 10.3969/j.issn.1671-2552.2009.07.015
|
王赐银, 马瑞士, 1994. 东天山造山带区域变质作用及其构造环境研究. 南京大学学报(自然科学版), 30(3): 494-503. doi: 10.3321/j.issn:0469-5097.1994.03.001
|
王登红, 李纯杰, 陈郑辉, 等, 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910-915. doi: 10.3969/j.issn.1671-2552.2006.08.002
|
王学求, 张必敏, 刘学敏, 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203012.htm
|
许立权, 陈志勇, 陈郑辉, 等, 2010. 内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP年令及其意义. 矿床地质, 29(2): 317-322. doi: 10.3969/j.issn.0258-7106.2010.02.013
|
叶荣, 张必敏, 姚文生, 等, 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203014.htm
|
张必敏, 迟清华, 张永勤, 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203015.htm
|
赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
|
赵一鸣, 毕承思, 谭惠静, 等, 1983. 闽西南地区马坑式钙矽卡岩型铁矿床. 中国地质科学院矿床地质研究所所刊. (专辑1): 1-141. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300007002.htm
|