• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 6
    Jun.  2012
    Turn off MathJax
    Article Contents
    LIU Jiang-tao, CHENG Qiu-ming, WANG Jian-guo, 2012. Application of Structural Equation Modeling in Geochemical Data Analysis. Earth Science, 37(6): 1191-1198. doi: 10.3799/dqkx.2012.127
    Citation: LIU Jiang-tao, CHENG Qiu-ming, WANG Jian-guo, 2012. Application of Structural Equation Modeling in Geochemical Data Analysis. Earth Science, 37(6): 1191-1198. doi: 10.3799/dqkx.2012.127

    Application of Structural Equation Modeling in Geochemical Data Analysis

    doi: 10.3799/dqkx.2012.127
    • Received Date: 2012-07-19
      Available Online: 2021-11-09
    • Publish Date: 2012-06-15
    • In order to find a combination of geochemical elements reflecting the abnormal mineralization, this paper provides a method of structural equation modeling (SEM) for geochemical data processing based on principal component analysis (PCA). Different from the PCA, the structural equation model takes the favorable fitness with studying object as the criterion to determine the optimal solution, through which the new component will be determined; it is a combination of factor analysis and path analysis. Therefore, the component determined by the structural model is not necessarily the one with the largest variability, but the one closest to the object of study, which can thus better reflect the research target. This study not only describes the principle of structural equation modeling, but also makes use of it in the geochemical data analysis experiment. The geochemical data is measured from lake sediments samples obtained from the Southwest Nova Scotia, Canada, a model of geochemical elements related to the hydrothermal fluid gold mine is established. The spatial distribution law of the composite variables given by the structural model, and the relation between those variables and the gold deposits as well, is studied. A comparison with those of the PCA results shows that the factor variables related to the gold mine computed by the structural equation modeling are highly correlated to the space of the gold deposits, and they can also better predict the gold deposits.

       

    • loading
    • Agterberg, F.P., Bonham-Carter, G.F., Wright, D.F., 1990. Statistical pattern integration for mineral exploration. In: Gaal, G., Merriam, D.F., eds., Computer Applications in Resource Estimation, Prediction and Assessment for Metals and Petroleum. Pergamon Press, Oxford.
      Anderson, J.C., Gerbing, D.W., 1988. Structural equation modeling in practice: a review and recommended two-step approach. Psychological Bulletin, 103(3): 411-423. doi: 10.1037/0033-2909.103.3.411
      Anderson, J.C., Gerbing, D.W., 1992. Assumptions and comparative strengths of the two-step approach. Sociological Methods Research, 20(3): 321-333. doi: 10.1177/0049124192020003002
      Bagozzi, R.P., 1981. Evaluating structural equations models with unobservable variables and measurement error: a comment. Journal of Marketing Research, 18 (3): 375-381.
      Bentler, P.M., 1990. Comparative fit indexes in structural models. Psychological Bulletin, 107(2): 238-246. doi: 10.1037/0033-2909.107.2.238
      Bentler, P.M., Bonett, D.G., 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88 (3), 588-606. doi: 10.1037/0033-2909.88.3.588
      Cheng, Q.M., Bonham-Carter, G., Wang, W.L., et al., 2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers & Geosciences, 37(5): 662-669. doi: 10.1016/j.cageo.2010.11.001
      Cook, T.D., Campbell, D.T., 1979. Quasi-experimentation: design and analysis issues for field settings. Houghton Mifflin, Boston.
      Hair, J.F., Anderson, R.E., Tatham R.L., et al., 1998. Multivariate data analysis (5th ed. ). Prentice Hall International, UK.
      Hu, L., Bentler, P.M., 1998. Fit indices in covariance structure modeling: sensitivity to under parameterized model misspecification. Psychological Methods, 3(4): 424-453. doi: 10.1037/1082-989X.3.4.424
      Hulland, J., Chow, Y.H., Lam, S., 1996. Use of causal models in marketing research: a review. International Journal of Research in Marketing, 13(2): 181-197. doi: 10.1016/0167-8116(96)00002
      Luo, X.R., Wen, M.L., Ouyang, F., 2012. Reconnaissance geochemical. Metallurgical Industry Press, Beijing (in Chinese).
      McQuitty, S., 2004. Statistical power and structural equation models in business research. Journal of Business Research, 57(2): 175-183. doi:10.1016/ S0148-2963(01)0030-0
      Wen, Z.L., Hou, J.T., Mash, H.W., 2004. Structural equation modeling: cutoff criteria for goodness of fit indices and chi-square test. Acta Psychologica Sinica, 36(2): 186-194 (in Chinese with English abstract).
      Xie, X.J., 1979. Regional geochemical exploration. Geological Publishing House, Beijing (in Chinese).
      Xu, Y.G., Cheng, Q.M., 2001. A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 1(2): 147-156. doi: 10.1144/gechem.1.2.147
      罗先熔, 文美兰, 欧阳菲, 2012. 勘察地球化学. 北京: 冶金工业出版社.
      温忠麟, 侯杰泰, 马什赫伯特, 2004. 结构方程模型检验: 拟合指数与卡方准则. 心理学报, 36(2): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB200402009.htm
      谢学锦, 1979. 区域化探. 北京: 地质出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (881) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return