• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 1
    Jan.  2014
    Turn off MathJax
    Article Contents
    Han Shili, Zhang Shugen, Liu Jianxin, Ding Jun, Zhang Wenshan, 2014. Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia. Earth Science, 39(1): 10-20. doi: 10.3799/dqkx.2014.002
    Citation: Han Shili, Zhang Shugen, Liu Jianxin, Ding Jun, Zhang Wenshan, 2014. Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia. Earth Science, 39(1): 10-20. doi: 10.3799/dqkx.2014.002

    Geochemistry and Tectonic Setting of Granites from Shire Region, Ethiopia

    doi: 10.3799/dqkx.2014.002
    • Received Date: 2013-07-23
    • Publish Date: 2014-01-01
    • There are pre-, syn-, and post-orogenic granites in Shire region of northern Ethiopia. Whole rock Sm-Nd isochron dating results show that diagenetic age of pre-, and post-orogenic ages are 824.4±15.5 Ma and 517.9±5.8 Ma respectively. Major, rare-earth and trace elements of three kinds of granite are obviously different. The pre-orogenic granites are relatively low in MgO and high in SiO2, belonging to the peraluminous series granite, with low K content and slight light REE enrichment, high large-ion lithophile element abundance and relative depletion of HFSE. The syn-orogenic granite belongs to the quasi-aluminous rock and high-potassium calc-alkaline granite, with the light REE enriched pattern, high large-ion lithophile element and HFSE abundances. The post-orogenic granite belongs to the weakly peraluminous high-potassium calc-alkaline granite, which has the chondrite-normalized REE patterns in the type of "gull" with severe depletion in Eu. The large-ion lithophile elements are concentrated, while P and Ti are severely depleted here. Comprehensive study shows both the pre- and syn-orogenic granites are I-type mantle-source granites in the passive continental margin-volcanic island arc tectonic setting; the post-orogenic granites are A2-type crust-source major granites, which were formed from the melting of thinner crust after the closure of oceanic basins and the growth of Arabian-Nubian shield.

       

    • loading
    • Ayalew, T., Bell, K., Moore, M. J., et al., 1990. U-Pb and Rb-Sr Geochronology of Western Ethiopian Shield. Geological Society of America Bulletin, 102(9): 1309-1316. doi:10.1130/0016-7606(1990)102<1309:UPARSG>2.3.CO;2
      Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. doi: 10.1016/009-2541(85)90034-8
      Collins, W.J., Bearns, S.D., White A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to South-Eastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. doi: 10.1007/BF00374895
      De Souza Filho, C.R., Drury, S.A., 1998. A Neoproterozoic Supra-Subduction Terrane in Northern Eritrea, NE Africa. Journal of the Geological Society, 155(3): 551-566. doi: 10.1144/gsjps.155.3.0551
      Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X
      Guo, K.C., Zhang, W.L., Yang, X.P., et al., 2011. Origin of Early Permian A-Type Granite in the Wudaogou Area, Heihe City. Journal of Jilin University (Earth Science Edition), 41(4): 1077-1083 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-jilin-university-earth-science-edition_thesis/0201247971332.html
      Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Large Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X
      Li, F.L., Xie, Y., Zhou, H.W., et al., 2011. Petrogenesis and Geodynamic Setting of Early Cretaceous Dykes in the Chun'an Area, Zhejiang Province. Journal of Mineralogy and Petrology, 31(3): 55-65 (in Chinese with English abstract). http://www.researchgate.net/publication/289640123_Petrogenesis_and_gedynamic_setting_of_early_cretaceous_dykes_in_the_Chun'an_area_Zhejiang_Province
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635- 643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Pearce, J.A., 1996. Source and Setting of Granitic Rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
      Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treaties on Ceochemistry. Elsevier Pergamon, Oxford.
      Shao, J.A., Mu, B.L., Zhu, H.Z., et al., 2010. Material Source and Tectonic Settings of the Mesozoic Mineralization of the Da Hinggan Mts. Acta Petrologica Sinica, 26(3): 649-656 (in Chinese with English abstract). http://www.researchgate.net/publication/279768472_Material_source_and_tectonic_settings_of_the_Mesozoic_mineralization_of_the_Da_Hinggan_Mts
      Stern, R.J., Kröner, A., Bender, R., et al., 1994. Precambrian Basement around Wadi Halfa, Sudan: A New Perspective on the Evolution of the East Saharan Craton. Geol. Rundsch. , 83(3): 564-577. doi: 10.1007/BF00194162
      Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98000024-3
      Tadesse, A.A., 1998. Geochemisstry of Neoproterozoic Granitoids from the Axum Area, Northern Ethiopia. Journal of African Earth Sciences, 27(3-4): 437-460. doi:S0899-5362(98)00072-4
      Tadesse, T., Hoshino, M., Suzuki, K., et al., 2000. Sm-Nd, Rb-Sr and Th-U-Pb Zircon Ages of Syn- and Post-Tectonic Granitoids from the Axum Area of Northern Ethiopia. Journal of African Earth Sciences, 30(2): 313-327. doi:S0899-5362(00)00022-1
      Tadesse, T., Suziki, K., Hoshino, M., 1997. Chemical Th-U-Total Pb Isochron Age of Zircon from the Mereb Granite in Northern Ethiopia. The Journal of Earth Planetary Sciences, Nagoya University, 44: 21-27. http://www.researchgate.net/publication/37505181_Chemical_Th-U-total_Pb_isochron_age_of_zircon_from_the_Mereb_Granite_in_northern_Ethiopia
      Tan, J., Wei, J.H., Li, S.R., et al., 2008. Geochemical Characteristics and Tectonic Significance of Kunlunguan A-Type Granite, Guangxi. Earth Science-Journal of China University of Geosciences, 33(6): 743-754 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.090
      Teklay, M., 1997. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield. Memoir 1, Department of Mines, Eritrea, Asmara, 125.
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. doi: 10.1093/petrology/37.1.45
      Wan, Y.S., 1999. Barium Anomaly and Its Geochemical Significance. Continental Dynamics, 4(1): 84-87. http://www.cnki.com.cn/Article/CJFDTotal-DLDX199901009.htm
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
      Woldemichael, B.W., Kimura, J.I., Dunkley, D.J., et al., 2010. SHRIMP U-Pb Zircon Geochronology and Sr-Nd Isotopic Systematic of the Neoproterozoic Ghimbi-Nedjo Mafic to Intermediate Intrusions of Western Ethiopia: A Record of Passive Margin Magmatism at 855 Ma. International Journal of Earth Sciences, 99(8): 1773-1790. doi: 10.1007/s00531-009-0481-x
      Yang, D.B., Xu, W.L., Pei, F.P., et al., 2009. Petrogenesis of the Paleoproterozoic K-Feldspar Granites in Bengbu Uplift: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotope. Earth Science-Journal of China University of Geosciences, 34(1): 148-164 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.014
      Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm
      Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008. Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm
      郭奎城, 张文龙, 杨晓平, 等, 2011. 黑河市五道沟地区早二叠世A型花岗岩成因. 吉林大学学报(地球科学版), 41(4): 1077-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104017.htm
      李福林, 谢瑜, 周汉文, 等, 2011. 浙江淳安早白垩世脉岩地球化学特征及成岩动力学背景. 矿物岩石, 31(3): 55-65. doi: 10.3969/j.issn.1001-6872.2011.03.009
      邵济安, 牟保磊, 朱慧忠, 等, 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景. 岩石学报, 26(3): 649-656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003001.htm
      谭俊, 魏俊浩, 李水如, 等, 2008. 广西昆仑关A型花岗岩地球化学特征及构造意义. 地球科学—中国地质大学学报, 33(6): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806001.htm
      杨德彬, 许文良, 裴福萍, 等, 2009. 蚌埠隆起区古元古代钾长花岗岩的成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素的制约. 地球科学—中国地质大学学报, 34(1): 148-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901016.htm
      张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27(1): 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (3940) PDF downloads(498) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return