• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 3
    Mar.  2014
    Turn off MathJax
    Article Contents
    Huang Faming, Tian Yugang, 2014. WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting. Earth Science, 39(3): 368-374. doi: 10.3799/dqkx.2014.035
    Citation: Huang Faming, Tian Yugang, 2014. WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting. Earth Science, 39(3): 368-374. doi: 10.3799/dqkx.2014.035

    WA-VOLTERRA Coupling Model Based on Chaos Theory for Monthly Precipitation Forecasting

    doi: 10.3799/dqkx.2014.035
    • Received Date: 2013-09-26
    • Publish Date: 2014-03-15
    • To address the inefficiency of exsiting prediction models of monthly precipitation time series due to large amount of noises and obvious characteristics of chaos, a coupling model is proposed in this study, which takes full advantages of wavelet analysis and VOLTERRA adaptive model. The monthly precipitation time series is firstly mapped into several time-frequency domains, and then a third-order VOLTERRA adaptive model is established for each domain based on the phase-space reconstruction. The final forecasting results are the algebraic sums of all the forecasted components obtained by respective VOLTERRA adaptive model corresponding to different time-frequency domains. An experiment has been conducted by applying different models to estimate the monthly precipitation time series in Hangzhou and Nantong, and the comparison of the data obtained by the conventional model with the results obtained using wavelet analysis and support vector machine (WA-SVM) coupling prediction model confirms that this new WA-VOLTERRA coupling method can achieve higher accuracy. The new model offers a new approach for monthly precipitation forecasting.

       

    • loading
    • Chen, C.J., Ni, C.J., 2011. Testing for Nonlinearity in Time Series of Monthly Precipitation in Panxi Region. Plateau and Mountain Meteorology Research, 31(2): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCCX201102004.htm
      Gao, R., Liu, X.H., 2005. Short-Term Load Forecasting Method Based on Support Vector Machine Combined with Wavelet Transform. Journal of Shandong University (Engineering Science), 35(3): 115-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJSY200504017.htm
      Han, M., 2007. Prediction Theory and Method of Chaotic Time Series. China Water & Power Press, Beijing, 28-30 (in Chinese).
      Lai, Y.C., Lerner, D., 1998. Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series. Physics D, 115(1-2): 1-18. doi: 10.1016/S0167-2789(97)00230-3
      Li, H.X., Xu, S.G., Fan, C.R., 2007. Identification of Chaos of Monthly Runoff and Prediction of Runoff Time Series Using Volterra Adaptive Method. Journal of Hydraulic Engineering, 38(6): 760-766 (in Chinese with English abstract).
      Liang, J., Zeng, G.M., Guo, S.L., et al., 2006. Diagnosis of Chaotic Behavior and Forecast Resouces for Monthly Rainfall in Dongting Lake Area. Water Resources and Power, 24(5): 16-19 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_sdnykx200605005.aspx
      Ma, X.X., Mu, H.Z., Guo, H.F., 2008. Reservoir Monthly Runoff Forecast Model Based on Wavelet-ANFIS Analysis. Water Resources and Power, 26(1): 26-29 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SDNY200801008&dbcode=CJFD&year=2008&dflag=pdfdown
      Sivakumer, B., 2004. Chaos Theory in Geophysics: Past, Present and Future. Chaos, Solitons and Fractals, 19(22): 441-462. doi: 10.1016/S0960-0779(03)00055-9
      Sivakumar, B., Berndtsson, R., Olsson, J., et al., 2001. Evidence of Chaos in Rainfall-Runoff Process. Hydrology Science, 46(1): 131-145. doi: 10.1080/02626660109492805
      Sivakumar, B., Jayawardena, A.W., Fernando, T., 2002. River Flow Forecasting: Use of Phase-Space Reconstruction and Artificial Neural Networks Approaches. Journal of Hydrology, 265(1-4): 225-245. doi: 10.1016/S0022-1694(02)00112-9
      Song, X.Y., Zhang, G.D., 2007. Basin Rainfall Series Forecast Based on WA-SVM Combined Model. Journal of Yangtze River Scientific Research Institute, 24(5): 23-26 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=25715296
      Vallejos, R.O., Anteneodo, C., 2002. Theoretical Estimates for the Largest Lyapunov Exponent of Many-Particle Systems. Physical Review E, 66(2): 1203-1218. doi: 10.1103/PhysRevE.66.021110
      Wang, D.Z., Xia, J., Zhang, L.P., 2002. Chaos Analysis of Monthly Precipitation Time Series in North-East China Area. International Journal Hydroelectric Energy, 20(3): 32-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDNY200203010.htm
      Wang, H.R., Song, Y., Liu, C.M., et al., 2004. Application and Issues of Chaos Theory in Hydroscience. Advances in Water Science, 15(3): 400-407 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200403025.htm
      Wei, B.L., Luo, X.S., Wang, B.H., et al., 2002. A Method Based on the Third-Order Volterra Filter for Adaptive Predictions of Chaotic Time Series. Acta Physica Sinica, 51(10): 2205-2210 (in Chinese with English abstract). doi: 10.7498/aps.51.2205
      Yang, Y.G., Chen, Y.H., 2009. Chaotic Characteristics and Prediction for Water Inrush in Mine. Earth Science—Journal of China University of Geosciences, 34(2): 258-262 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.024
      You, R.Y., Chen, Z., Xu, S.C., et al., 2004. Study on Phase-Space Reconstruction of Chaotic Signal Based on Wavelet Transform. Acta Physica Sinica, 53(9): 2882-2888 (in Chinese with English abstract). doi: 10.7498/aps.53.2882
      Yu, G.R., Xia, Z.Q., 2008. Prediction Model of Chaotic Time Series Based on Support Vector Machine and Its Application to Runoff. Advances in Water Science, 19(1): 116-122 (in Chinese with English abstract). http://www.researchgate.net/publication/279617604_Prediction_model_of_chaotic_time_series_based_on_support_vector_machine_and_its_application_to_runoff
      Zhang, J.S., Xiao, X.C., 2000. Predicting Low-Dimensional Chaotic Time Series Using Volterra Adaptive Filers. Acta Physica Sinica, 49(3): 403-408 (in Chinese with English abstract). doi: 10.7498/aps.49.403
      陈超君, 倪长健, 2011. 攀西地区月降水时序非线性特性分析. 高原山地气象研究, 31(2): 26-30. doi: 10.3969/j.issn.1674-2184.2011.02.004
      高荣, 刘晓华, 2005. 基于小波变换的支持向量机短期负荷预测. 山东大学学报(工学版), 35(3): 115-118. doi: 10.3969/j.issn.1672-3961.2005.03.027
      韩敏, 2007. 混沌时间序列预测理论与方法. 北京: 中国水利水电出版社, 28-30.
      李红霞, 许士国, 范垂仁, 2007. 月径流序列的混沌特征识别及Volterra自适应预测法的应用. 水利学报, 38(6): 760-766. doi: 10.3321/j.issn:0559-9350.2007.06.019
      梁婕, 曾光明, 郭生练, 等, 2006. 洞庭湖区月降雨序列的混沌特性识别及预测研究. 水电能源科学, 24(5): 16-19. doi: 10.3969/j.issn.1000-7709.2006.05.005
      马细霞, 穆浩泽, 郭慧芳, 2008. 基于小波-ANFIS的水库月径流预报模型. 水电能源科学, 26(1): 26-29. doi: 10.3969/j.issn.1000-7709.2008.01.007
      宋星原, 张国栋, 2007. 基于WA-SVM组合模型的流域月降雨量预测研究. 长江科学院院报, 24(5): 23-26. doi: 10.3969/j.issn.1001-5485.2007.05.007
      王德智, 夏军, 张利平, 2002. 东北地区月降雨时间序列的混沌特性研究. 水电能源科学, 20(3): 32-34. doi: 10.3969/j.issn.1000-7709.2002.03.011
      王红瑞, 宋宇, 刘昌明, 等, 2004. 混沌理论及在水科学中的应用与存在的问题. 水科学进展, 15(3): 400-407. doi: 10.3321/j.issn:1001-6791.2004.03.025
      韦保林, 罗晓曙, 汪秉宏, 等, 2002. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法. 物理学报, 51(10): 2205-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200210006.htm
      杨永国, 陈玉华, 2009. 矿井涌水量混沌特征与预测. 地球科学——中国地质大学学报, 34(2): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902004.htm
      游荣义, 陈忠, 徐慎初, 等, 2004. 基于小波变换的混沌信号相空间重构研究. 物理学报, 53(9): 2882-2888. doi: 10.3321/j.issn:1000-3290.2004.09.014
      于国荣, 夏自强, 2008. 混沌时间序列支持向量机模型及其在径流预测中应用. 水科学进展, 19(1): 116-122. doi: 10.3321/j.issn:1001-6791.2008.01.020
      张家树, 肖先赐, 2000. 混沌时间序列的Volterra自适应预测. 物理学报, 49(3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200003003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (3524) PDF downloads(430) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return