• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 4
    Apr.  2014
    Turn off MathJax
    Article Contents
    Liao Jin, Hu Chaoyong, Li Chengzhan, Zhang Gege, Gao Jinrong, Huang Junhua, 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science, 39(4): 443-450. doi: 10.3799/dqkx.2014.042
    Citation: Liao Jin, Hu Chaoyong, Li Chengzhan, Zhang Gege, Gao Jinrong, Huang Junhua, 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science, 39(4): 443-450. doi: 10.3799/dqkx.2014.042

    Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy

    doi: 10.3799/dqkx.2014.042
    • Received Date: 2013-07-14
    • Publish Date: 2014-04-15
    • Thermoluminescence from marine carbonate is found to be sensitively responding to the earth climate change of glacial-interglacial stage, which implies a novel proxy for paleoceanography. Yet it is to be confirmed by studies as to whether it is suitable for the terrestrial sediments. In this study, thermoluminescence and oxygen isotopic composition have been carried out on stalagmite CX-1 from Chuanxin cave, Qingjiang valley, Hubei Province, China, to determine the physical links between the climate and thermoluminescence intensity. It is found that thermoluminescence glow in air environment is mainly contributed by chemiluminescence derived from oxidation of the organic matter from stalagmite carbonates. Therefore, thermoluminescence is closely related to organic matter content of stalagmite derived from the degradation of organic matter in soil and the degradation rate is related to soil temperature controlled by the insolation. The variations of TL (total luminescence intensity) and δ18O show similar features which can reasonably be associated with climate change. Therefore, stalagmite thermoluminescence can act as a new proxy for terrestrial paleoenvironment.

       

    • loading
    • Baker, A., Barnes, W.L., Smart, P.L., 1996. Speleothem Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 130(1-2): 65-76. doi: 10.1016/0009-2541(96)00003-4
      Baker, A., Caseldine, C.J., Gilmour, M.A., et al., 1999. Stalagmite Luminescence and Peat Humification Records of Palaeomoisture for the Last 2500 Years. Earth and Planetary Science Letters, 165(1): 157-162. doi: 10.1016/S0012-821X(98)00258-1
      Baker, A., Genty, D., Smart, P.L., 1998. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 26(10): 903-906. doi: 10.1130/0091-7613(1998)026<0903:HRROSH>2.3.CO;2
      Baïetto, V., Villeneuve, G., Guibert, P., et al., 2000. EPR and TL Correlation in Some Powered Greek White Marble. Applied Radiation and Isotopes, 52(2): 229-235. doi: 10.1016/S0969-8043(99)00120-7
      Brook, G.A., Rafter, M.A., Railsback, L.B., et al., 1999. A High-Resolution Proxy Record of Rainfall and ENSO since AD 1550 from Layering in Stalagmites from Cave, Madagascar. The Holocene, 9(6): 695-705. doi: 10.1191/095968399677907790
      Castagnoli, G.C., Bonino, G., Provenzale, A., 1988a. On the Thermoluminescence Profile of an Ionian Sea Sediment: Evidence of 137, 118, 12.1 and 10.8 y Cycles in the Last Two Millennia. Ⅱ Nuovo Cimento C, 11(1): 1-12. doi: 10.1007/BF02507892
      Castagnoli, G.C., Bonino, G., Provenzale, A., 1988b. The Thermoluminescence Profile of a Recent Sea Sediment Core and Solar Variability. Solar Physics, 117(1): 187-197. doi: 10.1007/BF00148582
      Cheng, H., Fleitmann, D., Edwards, R.L., et al., 2009. Timing and Structure of the 8.2 kyr B.P. Event Inferred from δ18O Records of Stalagmite from China, Oman, and Brazil. Geology, 37(11): 1007-1010. doi: 10.1130/G30126A.1
      Christodoulides, C., Fremlin, J.H., 1971. Thermoluminescence of Biological Materials. Nature, 232: 257-258. doi: 10.1038/232257a0
      Cosford, J., Qing, H.R., Eglington, B., et al., 2008. East Asian Monsoon Variability since the Mid-Holocene Recorded in a High-Resolution, Absolute-Dated Aragonite Speleothem from Eastern China. Earth and Planetary Science Letters, 275(3-4): 296-307. doi: 10.1016/j.epsl.2008.08.018
      Debenham, N.C., 1983. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 304: 154-156. doi: 10.1038/304154a0
      Debenham, N.C., Aitken, M.J., 1984. Thermoluminescence Dating of Stalagmitic Calcite. Archaeometry, 26(2): 155-170. doi: 10.1111/j.1475-4754.1984.tb00330.x
      Engin, B., Güven, O., 1997. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 48(9): 1257-1264. doi: 10.1016/S0969-8043(97)00114-0
      Engin, B., Güven, O., Köksal, F., 1999. Thermoluminescence and Electron Spin Resonance Properties of Some Travertines from Turkey. Applied Radiation and Isotopes, 51(6): 729-746. doi: 10.1016/S0969-8043(99)00091-3
      Fairchild, I.J., Smith, C.L., Baker, A., et al., 2006. Modification and Preservation of Environmental Signals in Speleothems. Earth-Science Reviews, 75(1-4): 105-153. doi: 10.1016/j.earscirev.2005.08.003
      Fattahi, M., Stokes, S., 2003. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 62(3-4): 229-264. doi: 10.1016/S0012-8252(02)00159-9
      Hu, C.Y., Henderson, G.M., Huang, J.H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. doi: 10.1016/j.epsl.2007.10.015
      Huang, J.H., Hu, C.Y., Zhou, Q.F., 2000. High-Resolution Carbon and Oxygen Isotope Records from Stalagmite and Palaeoclimate in Heshangdong Cave, Qingjiang, Hubei Province. Earth Science—Journal of China University of Geosciences, 25(5): 505-509(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005013.htm
      Huang, Y.M., Fairchild, I.J., 2001. Partitioning of Sr2+ and Mg2+ into Calcite under Karst-Analogue Experimental Conditions. Geochimica et Cosmochimica Acta, 65(1): 47-62. doi: 10.1016/S0016-7037(00)00513-5
      Johnson, K.R., Hu, C.Y., Belshaw, N.S., et al., 2006. Seasonal Trace-Element and Stable-Isotope Variations in a Chinese Speleothem: The Potential for High-Resolution Paleomonsoon Reconstruction. Earth and Planetary Science Letters, 244(1-2): 394-407. doi: 10.1016/j.epsl.2006.01.064
      Johnson, N.M., 1960. Thermoluminescence in Biogenic Calcium Carbonate. Journal of Sedimentary Petrology, 30(2): 305-313. doi: 10.1306/74D70A29-2B21-11D7-8648000102C1865D
      Liu, H.S., Hou, S.L., Fang, N.Q., et al., 2009. The Exploration of the Thermoluminescence Genesis of Deep-Sea Sedimentary Biological Carbonate Rocks. Progress in Nature Science, 19(9): 986-993(in Chinese).
      Liu, X.G., Fang, N.Q., 2010. Thermoluminescence Anomaly of a Pelagic Core and Its Relation to Paleoclimate Change. Marine Geology & Quaternary Geology, 30(4): 165-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201004026.htm
      Liu, Y.H., Henderson, G.M., Hu, C.Y., et al., 2013. Links between the East Asian Monsoon and North Atlantic Climate during the 8200 Year Event. Nature Geoscience, 6(2): 117-120. doi: 10.1038/ngeo1708
      Mangini, A., Spötl, C., Verdes, P., 2005. Reconstruction of Temperature in the Central Alps during the Past 2000 yr from a δ18O Stalagmite Record. Earth and Planetary Science Letters, 235(3-4): 741-751. doi: 10.1016/j.epsl.2005.05.010
      McDermott, F., 2004. Palaeo-Climate Reconstruction from Stable Isotope Variations in Speleothems: A Review. Quaternary Science Reviews, 23(7-8): 901-918. doi: 10.1016/j.quascirev.2003.06.021
      McDonald, J., Drysdale, R., Hill, D., 2004. The 2002—2003 El Niňo Recorded in Australian Cave Drip Waters: Implications for Reconstructing Rainfall Histories Using Stalagmites. Geophysical Research Letters, 31(22): 1-4. doi: 10.1029/2004GL020859
      Roque, C., Guibert, P., Vartanian, E., et al., 2001. Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Saunière, Dordogne, France. Quaternary Science Reviews, 20(5-9): 935-938. doi: 10.1016/S0277-3791(00)00049-4
      Shopov, Y., Stoykova, D., Tsankov, L., et al., 2000. Verification of the Cause of Glaciations and Sea Level Changes Using the Records of Calcite Speleothems. International Journal of Speleology, 29(1): 71-75. doi: 10.5038/1827-806X.29.1.3
      Shopov, Y.Y., Ford, D.C., Schwarcz, H.P., 1994. Luminescent Microbanding in Speleothems: High-Resolution Chronology and Paleoclimate. Geology, 22(5): 407-410. doi: 10.1130/0091-7613(1994)022<0407:LMISHR>2.3.CO;2
      Spötl, C., Mangini, A., Frank, N., et al., 2002. Start of the Last Interglacial Period at 135 ka: Evidence from a High Alpine Speleothem. Geology, 30(9): 815-818. doi: 10.1130/0091-7613(2002)030<0815:SOTLIP>2.0.CO;2
      Tan, M., Baker, A., Genty, D., et al., 2006. Applications of Stalagmite Laminae to Paleoclimate Reconstructions: Comparison with Dendrochronology/Climatology. Quaternary Science Reviews, 25(17-18): 2103-2117. doi: 10.1016/j.quascirev.2006.01.034
      Tan, M., Liu, T.S., Hou, J.Z., et al., 2003. Cyclic Rapid Warming on Centennial-Scale Revealed by a 2650 year Stalagmite Record of Warm Season Temperature. Geophysical Research Letters, 30(12): 1617-1620. doi: 10.1029/2003GL017352
      Tatumi, S.H., Nagatomo, T., Matsuoka, M., et al., 1993. Thermoluminescence and ESR in an Aragonite Speleothem. Journal of Physics D: Applied Physics, 26(9): 1482-1486. doi: 10.1088/0022-3727/26/9/022
      Vass, I., Govindjee, 1996. Thermoluminescence from the Photosynthetic Apparatus. Photosynthesis Research, 48(1-2): 117-126. doi: 10.1007/BF00041002
      Wang, W.Y., Liu, J.Q., Pan, M., et al., 2000. Reconstruction of the High Resolution Timescale in the Weinan Loess Section of the Late Quaternary. Earth Science—Journal of China University of Geosciences, 25(1): 98-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200001020.htm
      Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294: 2345-2348. doi: 10.1126/science.1064618
      Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308: 854-857. doi: 10.1126/science.1106296
      Wang, Y.J., Cheng, H., Edwards, R.L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224000 Years. Nature, 451: 1090-1093. doi: 10.1038/nature06692
      Wintle, A.G., 1978. A Thermoluminescence Dating Studying of Some Quaternary Calcite: Potential and Problems. Canadian Journal of Earth Science, 15(12): 1977-1986. doi: 10.1139/e78-208
      Wintle, A.G., Huntley, D.J., 1980. Thermoluminescence Dating of Ocean Sediments. Canadian Journal of Earth Science, 17(3): 348-360. doi: 10.1139/e80-034
      Wu, X.P., Wu, J.K., Hou, D.J., et al., 2013. Characteristics and Variability of Heinrich-2 Event by Stalagmite Oxygen Isotopic Composition in the Western Loess Plateau. Earth Science—Journal of China University of Geosciences, 38(3): 471-481(in Chinese with English abstract). http://www.researchgate.net/publication/286044434_Characteristics_and_variability_of_heinrich-2_event_recorded_by_stalagmite_oxygen_isotopic_composition_in_the_Western_Loess_Plateau
      Yuan, D.X., Cheng, H., Edwards, R.L., et al., 2004. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304: 575-578. doi: 10.1126/science.1091220
      Zhang, P.Z., Cheng, H., Edwards, R.L., et al., 2008. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 322: 940-942. doi: 10.1126/science.1163965
      黄俊华, 胡超涌, 周群峰, 2000. 湖北清江和尚洞石笋的高分辨率碳氧同位素及古气候研究. 地球科学——中国地质大学学报, 25(5): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005013.htm
      刘海生, 侯胜利, 方念乔, 等, 2009. 深海沉积生物碳酸盐岩天然热释光成因初探. 自然科学进展, 19(9): 986-993. doi: 10.3321/j.issn:1002-008X.2009.09.012
      刘宪光, 方念乔, 2010. 远洋沉积岩心天然热释光剖面的异常特征与古气候变化的关系. 海洋地质与第四纪地质, 30(4): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201004026.htm
      王文远, 刘嘉麒, 潘懋, 等, 2000. 末次间冰期以来渭南黄土剖面高分辨率古气候标尺. 地球科学——中国地质大学学报, 25(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001020.htm
      吴秀平, 吴锦奎, 侯典炯, 等, 2013. 黄土高原西部石笋记录的H2事件特征. 地球科学——中国地质大学学报, 38(3): 471-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201303006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (3351) PDF downloads(402) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return