• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 4
    Apr.  2014
    Turn off MathJax
    Article Contents
    Yang Guodong, Li Yilian, Ma Xin, Dong Jianxing, 2014. Effect of Chlorite on CO2-Water-Rock Interaction. Earth Science, 39(4): 462-472. doi: 10.3799/dqkx.2014.044
    Citation: Yang Guodong, Li Yilian, Ma Xin, Dong Jianxing, 2014. Effect of Chlorite on CO2-Water-Rock Interaction. Earth Science, 39(4): 462-472. doi: 10.3799/dqkx.2014.044

    Effect of Chlorite on CO2-Water-Rock Interaction

    doi: 10.3799/dqkx.2014.044
    • Received Date: 2013-08-19
    • Publish Date: 2014-04-15
    • In order to understand the geochemical processes of key minerals in the supercritical CO2 -water-rock system, we establish a one-dimensional vertical model to study the effect of chlorite contents in cap rock of 3%, 9% and 15% on CO2 -water-rock interaction by numerical simulation software of TOUGHREACT based on the basic geological conditions of deep saline aquifer in Ordos basin, China. It is found that the mineral composition and permeability of the caprock change greatly after CO2 broke into the caprock. It is not favorable for CO2 storage when chlorite volume fraction is 3% because of the increasing permeability in 5 000 years. The permeability of caprock increases first and then decreases when chlorite volume fraction is 9% and 15%, resulting in self-sealing which facilitates the sequestration of CO2. The results show that the dissolution of chlorite provides Mg2+, Fe2+ and AlO2- for precipitation of calcium montmorillonite, ankerite, dawsonite, and magnesite. The higher the chlorite content, the greater the amount of CO2 mineralization capture, and the more obvious the effect of caprock self-sealing with the maximum caprock permeability decrease of 10%. This study provides a theoretical basis for long-term geological storage of CO2 and its stability evaluation.

       

    • loading
    • Alfredo, T.B., Pedro, P.M., Xavier, L.B., et al., 2012. A Methodology for Territorial Distribution of CO2 Emission Reductions in Transport Sector. International Journal of Energy Research, 36(14): 1298-1313. doi: 10.1002/er.1871
      Bachaud, P., Berne, P., Renard, F., et al., 2011. Use of Tracers to Characterize the Effects of a CO2-Saturated Brine on the Petrophysical Properties of a Low Permeability Carbonate Caprock. Chemical Engineering Research and Design, 89(9): 1817-1826. doi: 10.1016/j.cherd.2010.11.004
      Bachu, S., Adams, J.J., 2003. Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution. Energy Conversion and Management, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8
      Bildstein, O., Jullien, M., Credoz, A., et al., 2009. Integrated Modeling and Experimental Approach for Caprock Integrity, Risk Analysis, and Long Term Safety Assessment. Energy Procedia, 1(1): 3237-3244. doi: 10.1016/j.egypro.2009.02.108
      Bildstein, O., Kerwevan, C., Lagneau, V., et al., 2010. Integrative Modeling of Caprock Integrity in the Context of CO2 Storage: Evolution of Transport and Geochemical Properties and Impact on Performance and Safety Assessment. Oil & Gas Science and Technology, 65(3): 485-502. doi: 10.2516/ogst/2010006
      Chasset, C., Jarsjo, J., Erlstrom, M., et al., 2011. Scenario Simulations of CO2 Injection Feasibility, Plume Migration and Storage in a Saline Aquifer, Scania, Sweden. International Journal of Greenhouse Gas Control, 5(5): 1303-1318. doi: 10.1016/j.ijggc.2011.06.003
      Credoz, A., Bildstein, O., Jullien, M., et al., 2009. Experimental and Modeling Study of Geochemical Reactivity between Clayey Caprocks and CO2 in Geological Storage Conditions. Energy Procedia, 1(1): 3445-3452. doi: 10.1016/j.egypro.2009.02.135
      Dalgaard, T., Olesen, J.E., Petersen, S.O., et al., 2011. Developments in Greenhouse Gas Emissions and Net Energy Use in Danish Agriculture—How to Achieve Substantial CO2 Reductions. Environmental Pollution, 159(11): 3193-3203. doi: 10.1016/j.envpol.2011.02.024
      Dong, J.X., Li, Y.L., Yang, G.D., et al., 2012. Numerical Simulation of CO2-Water-Rock Interaction Impact on Caprock Permeability. Geological Science and Technology Information, 31(1): 115-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201201021.htm
      Fleury, M., Pironon, J., Le Nindre, Y.M., et al., 2011. Evaluating Sealing Efficiency of Caprocks for CO2 Storage: An Overview of the Geocarbone-Integrity Program and Results. Oil & Gas Science and Technology, 65(3): 435-444. doi: 10.2516/ogst/2010007
      Gherardi, F., Xu, T., Pruess, K., 2007. Numerical Modeling of Self-Limiting and Self-Enhancing Caprock Alteration Induced by CO2 Storage in a Depleted Gas Reservoir. Chemical Geology, 244(1-2): 103-129. doi: 10.1016/j.chemgeo.2007.06.009
      Hepple, R.P., Benson, S.M., 2005. Geological Storage of Carbon Dioxide as a Climate Change Mitigation Strategy: Performance Requirements and the Implications of Surface Seepage. Environmental Geology, 47(4): 576-585. doi: 10.1007/s00254-004-1181-2
      Huang, H.P., Deng, H.W., 1995. Sealing Ability and Its Influencing Factors of Mudstone Caprock. Natural Gas Geoscience, 6(27): 20-26 (in Chinese).
      Jiang, H.Y., Shen, P.P., Wang, N.J., et al., 2007. Policies for CO2 Emission Reduction and Prospects for CO2 Geological Storage Underground. Sino-global Energy, 12(5): 7-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZW200705001.htm
      Li, X.C., Fang, Z.M., Wei, N., et al., 2009. Discussion on Technical Roadmap of CO2 Capture and Storage in China. Rock and Soil Mechanics, 30(9): 2674-2678, 2696 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200909026.htm
      Li, Y.L., Fang, Q., Ke, Y.B., et al., 2012. Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin. Earth Science—Journal of China University of Geosciences, 37(2): 283-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201203018.htm
      Liu, Y., Wang, Y., 2011. State-of-the-Art Researches on CO2 Geologic Storage in Deep Saline Aquifer. Advances in Science and Technology of Water Resources, 31(6): 74-79 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/slsdkjjz201106019
      McGeough, E.J., Little, S.M., Janzen, H.H., et al., 2012. Life-Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in Eastern Canada: A Case Study. Journal of Dairy Science, 95(9): 5164-5175. doi: 10.3168/jds.2011-5229
      Michael, K., Arnot, M., Cook, P., et al., 2009. CO2 Storage in Saline Aquifers I—Current State of Scientific Knowledge. Energy Procedia, 1(1): 3197-3204. doi: 10.1016/j.egypro.2009.02.103
      Michael, K., Golab, A., Shulakova, V., et al., 2010. Geological Storage of CO2 in Saline Aquifers—A Review of the Experience from Existing Storage Operations. International Journal of Greenhouse Gas Control, 4(4): 659-667. doi: 10.1016/j.ijggc.2009.12.011
      Mitrovi, M., Malone, A., 2011. Carbon Capture and Storage (CCS) Demonstration Projects in Canada. Energy Procedia, 4: 5685-5691. doi: 10.1016/j.egypro.2011.02.562
      Ouellet, A., Bérard, T., Desroches, J., et al., 2011. Reservoir Geomechanics for Assessing Containment in CO2 Storage: A Case Study at Ketzin, Germany. Energy Procedia, 4: 3298-3305. doi: 10.1016/j.egypro.2011.02.250
      Petroleum Geology Group of Changqing Oilfield, 1992. Petroleum Geology of China (Vol. 12): Changqing Oilfield. Petroleum Industry Press, Beijing, 490 (in Chinese).
      Ren, Z.L., Zhao, C.Y., 1997. Late Mesozoic Comparative Research on the Geothermal Field of the Ordos Basin and Qinshui Basin. Acta Sedimentologica Sinica, 15(2): 134-137(in Chinese with English abstract). http://www.researchgate.net/publication/313171156_Late_Mesozoic_comparative_research_on_the_geothermal_field_of_the_Ordos_Basin_and_Qinshui_Basin
      Smith, M.M., Wolery, T.J., Carroll, S.A., 2013. Kinetics of Chlorite Dissolution at Elevated Temperatures and CO2 Conditions. Chemical Geology, 347(6): 1-8. doi: 10.1016/j.chemgeo.2013.02.017
      Sun, S., Peng, S.P., Shen, P.P., et al., 2011. The Key Scientific and Technological Issues of CO2 Sequestration in Saline Aquifer on Large-Scale. Xiangshan Science Conference—The 415th Symposium, Beijing (in Chinese).
      Wollenweber, J., Alles, S., Busch, A., et al., 2010. Experimental Investigation of the CO2 Sealing Efficiency of Caprocks. International Journal of Greenhouse Gas Control, 4(2): 231-241. doi: 10.1016/j.ijggc.2010.01.003
      Xu, T., Sonnenthal, E., Spycher, N., et al., 2004. TOUGHREACT User's Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geological Media. Lawrence Berkeley Laboratory Report(LBNL)—55460, Berkeley, California, 195.
      Yin, L.H., Hou, G.C., Zhang, M.S., et al., 2008. Geothermal System in Ordos Basin. Geotechnical Investigation & Surveying, (2): 34-38(in Chinese with English abstract).
      Zeng, R.S., Sun, S., Chen, D.Z., et al., 2004. Decrease Carbon Dioxide Emission into the Atmosphere—Underground Disposal of Carbon Dioxide. Bulletin of National Science Foundation of China, 196-200(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJJ200404002.htm
      Zhang, W., Li, Y., Xu, T., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161-180. doi: 10.1016/j.ijggc.2008.07.007
      Zhao, X.Y., Wang, X.X., Zhang, Y.Y., et al., 1995. Clay Minerals in China Oil-Bearing Basins. China University of Geosciences Press, Wuhan, 305 (in Chinese).
      长庆油田石油地质志编写组, 1992. 中国石油地质志(卷十二)长庆油田. 北京: 石油工业出版社, 490.
      董建兴, 李义连, 杨国栋, 等, 2012. CO2-水-岩相互作用对盖层渗透率影响的数值模拟. 地质科技情报, 31(1): 115-121. doi: 10.3969/j.issn.1000-7849.2012.01.019
      黄海平, 邓宏文, 1995. 泥岩盖层的封闭性能及其影响因素. 天然气地球科学, 6(27): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199502003.htm
      江怀友, 沈平平, 王乃举, 等, 2007. 世界二氧化碳减排政策与储层地质埋存展望. 中外能源, 12(5): 7-13. doi: 10.3969/j.issn.1673-579X.2007.05.002
      李小春, 方志明, 魏宁, 等, 2009. 我国CO2捕集与封存的技术路线探讨. 岩土力学, 30(9): 2674-2678, 2696. doi: 10.3969/j.issn.1000-7598.2009.09.022
      李义连, 房琦, 柯怡兵, 等, 2012. 高盐度卤水对CO2地质封存的影响: 以江汉盆地潜江凹陷为例. 地球科学——中国地质大学学报, 37(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202013.htm
      刘阳, 王媛, 2011. 深部咸水层CO2地质封存研究现状. 水利水电科技进展, 31(6): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201106023.htm
      任战利, 赵重远, 1997. 鄂尔多斯盆地与沁水盆地中生代晚期地温场对比研究. 沉积学报, 15(2): 134-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.027.htm
      孙枢, 彭苏萍, 沈平平, 等, 2011. 规模化二氧化碳咸水层封存的关键科学技术问题. 香山科学会议——第415次学术讨论会, 北京.
      尹立河, 侯光才, 张茂省, 等, 2008. 鄂尔多斯盆地地热系统. 工程勘察, (2): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200802013.htm
      曾荣树, 孙枢, 陈代钊, 等, 2004. 减少二氧化碳向大气层的排放——二氧化碳地下储存研究. 中国科学基金. 196-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ200404002.htm
      赵杏媛, 王信行, 张有瑜, 等, 1995. 中国含油气盆地粘土矿物. 武汉: 中国地质大学出版社, 305.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(5)

      Article views (3504) PDF downloads(667) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return