• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 5
    May  2014
    Turn off MathJax
    Article Contents
    Ping Hongwei, Chen Honghan, Régis Thiéry, Zhang Hui, Li Peijun, Wu Nan, 2014. Effects of Oil Cracking on Homogenization Temperature and Trapping Pressure of Oil Inclusion and Its Geological Significance. Earth Science, 39(5): 587-600. doi: 10.3799/dqkx.2014.056
    Citation: Ping Hongwei, Chen Honghan, Régis Thiéry, Zhang Hui, Li Peijun, Wu Nan, 2014. Effects of Oil Cracking on Homogenization Temperature and Trapping Pressure of Oil Inclusion and Its Geological Significance. Earth Science, 39(5): 587-600. doi: 10.3799/dqkx.2014.056

    Effects of Oil Cracking on Homogenization Temperature and Trapping Pressure of Oil Inclusion and Its Geological Significance

    doi: 10.3799/dqkx.2014.056
    • Received Date: 2013-12-21
    • Publish Date: 2014-05-01
    • This paper systematically elaborates the effects of oil cracking on homogenization temperature and trapping pressure of oil inclusion using crude oil crack kinetic and petroleum inclusion thermodynamics modeling. The results demonstrate that homogenization temperature shows a trend of increase and the trapping pressure shows a trend of decrease at the initial stage of oil cracking (TR < 13%, T < 160 ℃); with the progressing of oil cracking (TR < 24%, T < 190 ℃), homogenization temperature shows a trend of decrease and the trapping pressure shows a trend of increase, however, the homogenization temperature still exceeds the initial homogenization temperature and the trapping pressure is still below the initial trapping pressure at this stage of oil cracking. After that, the homogenization temperature continues to decrease or even turns negative values in some severe oil cracking processes; at the same time, trapping pressure continues to increase or exceed litho static pressure. In addition, oil cracking only results in normal pressure or under pressure during the initial stage of oil cracking (TR < 13%, T < 160 ℃), while oil cracking will lead to overpressure (TR > 40%) or even exceeding litho static pressure (TR > 70%) during the high level of oil cracking. Therefore, deeply buried reservoirs with pressure systems from under pressure to normal pressure should be paid more attention especially when formation temperature ranges from 160 ℃ to 190 ℃, and oil cracking gas exploration should be focused on the reservoirs with overpressure or ultrahigh pressure when formation temperature is over 190 ℃.

       

    • loading
    • Al Darouich, T., Behar, F., Largeau, C., 2006. Pressure Effect on the Thermal Cracking of the Light Aromatic Fraction of Safaniya Crude Oil-Implications for Deep Prospects. Organic Geochemistry, 37(9): 1155-1169. doi: 10.1016/j.orggeochem.2006.04.004
      Aplin, A.C., Macleod, G., Larter, S.R. et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
      Behar, F., Kressmann, S., Rudkiewicz, J.L., et al., 1992. Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 19(1-3): 173-189. doi: 10.1016/0146-6380(92)90035-V
      Behar, F., Lorant, F., Mazeas, L., 2008. Elaboration of a New Compositional Kinetic Schema for Oil Cracking. Organic Geochemistry, 39(6): 764-782. doi: 10.1016/j.orggeochem.2008.03.007
      Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum Accumulation and Leakage in a Deeply Buried Carbonate Reservoir, Níspero Field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003
      Burruss, R.C., 2003. Petroleum Fluid Inclusions, an Introduction. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Can., Toronto, 159-174.
      Chen, H., Ping, H., Zhao, Y., 2009. Effects of Oil Inclusion Homogenization Temperatures and Their Geological Meanings. Journal of Geochemical Exploration, 101(1): 25. doi: 10.1016/j.gexplo.2008.12.071
      Hantschel, T., Kauerauf, A.I., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin.
      Hill, R.J., Tang, Y., Kaplan, I.R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12): 1651-1672. doi: 10.1016/S0146-6380(03)00173-6
      Horsfield, B., Schenk, H.J., Mills, N. et al., 1992. An Investigation of the In-Reservoir Conversion of Oil to Gas: Compositional and Kinetic Findings from Closed-System Programmed-Temperature Pyrolysis. Organic Geochemistry, 19(1-3): 191-204. doi: 10.1016/0146-6380(92)90036-W
      Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. doi: 10.1016/0166-5162(89)90113-4
      Kuo, L.C., Eric Michael, G., 1994. A Multicomponent Oil-Cracking Kinetics Model for Modeling Preservation and Composition of Reservoired Oils. Organic Geochemistry, 21(8-9): 911-925. doi: 10.1016/0146-6380(94)90050-7
      McNeil, R.I., BeMent, W.O., 1996. Thermal Stability of Hydrocarbons: Laboratory Criteria and Field Examples. Energy & Fuels, 10(1): 60-67. doi: 10.1021/ef9501399
      Munz, I.A., Wangen, M., Girard, J.P., et al., 2004. Pressure-Temperature-Time-Composition (P-T-t-X) Constraints of Multiple Petroleum Charges in the Hild Field, Norwegian North Sea. Marine and Petroleum Geology, 21(8): 1043-1060. doi: 10.1016/j.marpetgeo.2004.05.006
      Okubo, S., 2005. Effects of Thermal Cracking of Hydrocarbons on the Homogenization Temperature of Fluid Inclusions from the Niigata Oil and Gas Fields, Japan. Applied Geochemistry, 20(2): 255-260. doi: 10.1016/j.apgeochem.2004.09.001
      Peng, D., Robinson, D., 1976. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Research Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011
      Ping, H.W., Chen, H.H., 2011. Main Controlling Factors on Oil Inclusion Homogenization Temperatures and Their Geological Significance. Earth Science—Journal of China University of Geosciences, 36(1): 131-138 (in Chinese with English abstract). http://www.researchgate.net/publication/286864613_Main_controlling_factors_on_oil_inclusion_homogenization_temperatures_and_their_geological_significance
      Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012. Accumulation History of the Deeply Buried Condensate Reservoir in Minfeng Sag of the Northern Dongying Depression and Its Exploration Significance. Acta Petrolei Sinica, 33(6): 970-977 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201206008.htm
      Ping, H.W., Chen, H.H., Thiéry, R., 2013. Improvement on Paleopressure Prediction Using Petroleum Inclusions Thermodynamic Modeling: Saturation Pressure Prediction and Volume Calibration. Earth Science—Journal of China University of Geosciences, 38(1): 143-155 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.014
      Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic Modelling of Petroleum Inclusions: The Prediction of the Saturation Pressure of Crude Oils. Geofluids, 11(3): 328-340. doi: 10.1111/j.1468-8123.2011.00343.x
      Pironon, J., Bourdet, J., 2008. Petroleum and Aqueous Inclusions from Deeply Buried Reservoirs: Experimental Simulations and Consequences for Overpressure Estimates. Geochimica et Cosmochimica Acta, 72(20): 4916-4928. doi: 10.1016/j.gca.2008.07.019
      Roedder, E., 1984. Fluid Inclusions: Reviews in Mineralogy. Mineralogical Society of America, Washington, 646.
      Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual Characterization of Petroleum Fluid Inclusions (Composition and P-T Trapping Conditions) by Microthermometry and Confocal Laser Scanning Microscopy: Inferences from Applied Thermodynamics of Oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1
      Tsuzuki, N., Takeda, N., Suzuki, M., et al., 1999. The Kinetic Modeling of Oil Cracking by Hydrothermal Pyrolysis Experiments. International Journal of Coal Geology, 39(1-3): 227-250. doi: 10.1016/S0166-5162(98)00047-0
      Ungerer, P., Behar, F., Villalba, M., et al., 1988. Kinetic Modelling of Oil Cracking. Organic Geochemistry, 13(4-6): 857-868. doi: 10.1016/0146-6380(88)90238-0
      Vandenbroucke, M., Behar, F., Rudkiewicz, J.L., 1999. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30(9): 1105-1125. doi: 10.1016/S0146-6380(99)00089-3
      Zhang, Z.S., 1988. Pyrobitumen and Measurement of Its Reflectivity. Xinjiang Petroleum Geology, 9(2): 24-29(in Chinese).
      Zhao, Y.J., Chen, H.H., 2008. The Relationship between Fluorescence Colors of Oil Inclusions and Their Maturities. Earth Science—Journal of China University of Geosciences, 33(1): 91-96 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.012
      平宏伟, 陈红汉, 2011. 影响油包裹体均一温度的主要因素及其地质涵义. 地球科学——中国地质大学学报, 36(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101015.htm
      平宏伟, 陈红汉, Thiéry, R., 2013. 石油包裹体热动力学模拟古压力改进: 饱和压力预测和体积校正. 地球科学——中国地质大学学报, 38(1): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301019.htm
      平宏伟, 陈红汉, 宋国奇, 等, 2012. 东营凹陷北带民丰洼陷深层凝析油藏成藏史及其勘探意义. 石油学报, 33(6): 970-977. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206008.htm
      张子枢, 1988. 焦沥青及其反射率的测定. 新疆石油地质, 9(2): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD198802004.htm
      赵艳军, 陈红汉, 2008. 油包裹体荧光颜色及其成熟度关系. 地球科学——中国地质大学学报, 33(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(4)

      Article views (3759) PDF downloads(524) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return