• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 7
    Jul.  2014
    Turn off MathJax
    Article Contents
    Jia Lulu, Wang Hansheng, Xiang Longwei, 2014. Uncertainty of Approximate Relationship between GIA Induced Viscous Gravity and Radial Displacement. Earth Science, 39(7): 905-914. doi: 10.3799/dqkx.2014.085
    Citation: Jia Lulu, Wang Hansheng, Xiang Longwei, 2014. Uncertainty of Approximate Relationship between GIA Induced Viscous Gravity and Radial Displacement. Earth Science, 39(7): 905-914. doi: 10.3799/dqkx.2014.085

    Uncertainty of Approximate Relationship between GIA Induced Viscous Gravity and Radial Displacement

    doi: 10.3799/dqkx.2014.085
    • Received Date: 2013-12-10
    • Publish Date: 2014-07-15
    • Based on glacial isostatic adjustment (GIA) models of different mantle viscosities, the contribution from different layers in the earth's interior to the GIA viscous gravity perturbation rates is investigated, and the approximate relation between GIA gravity perturbation rate and uplift rate and whether it is independent of the mantle viscosity are validated in this paper. Furthermore, the Wahr's approximate relation with the data from absolute gravimetry and global positioning system (GPS) was checked. It is found that the contribution of the lithosphere to GIA gravity perturbation rate and geoid anomaly rate is more than 86%, the contribution of the five layers under the lithosphere to GIA gravity signal is less than 14% yet. The relative difference between GIA uplift rate calculated by using approximate relation and that by the finite element method is about 15%, and the difference does not depend on changes in the mantle viscosity. The ratio of gravity versus uplift obtained by ground-based measurements in North America is 0.141±0.014 μGal/mm, which is very close to 0.154 μGal/mm of Wahr's theoretical ratio. The relative difference between the two ratio values above is just 9.2%. Therefore, this study gives the uncertainty value of the Wahr's approximate relation between 9.2%-15.0%, which can be used to evaluate the effects on the results of the separated GIA and present-day mass balance signals.

       

    • loading
    • Altamimi, Z., Collilieux, X., Legrand, J., et al., 2007. ITRF2005: A New Release of the International Terrestrial Reference Frame Based on Time Series of Station Positions and Earth Orientation Parameters. Journal of Geophysical Research, 112(B9): B09401. doi: 10.1029/2007JB004949
      Bevis, M., Kendrick, E., Jr. Smalley, R., 2009. Geodetic Measurements of Vertical Crustal Velocity in West Antarctica and the Implications for Ice Mass Balance. Geochem. Geophys. Geosyst., 10(10): Q10005. doi: 10.1029/2009GC002642
      Blewitt, G., Lavallee, D., 2002. Effect of Annual Signals on Geodetic Velocity. Journal of Geophysical Research, 107(B7): 2145. doi: 10.1029/2001JB000570
      Chambers, D.P., 2006. Observing Seasonal Steric Sea Level Variations with GRACE and Satellite Altimetry. Journal of Geophysical Research, 111(C3): C03010. doi: 10.1029/2005JC002914
      Dziewonski, A.M., Anderson, D.L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Int. , 25(4): 297-356. doi: 10.1016/0031-9201(81)90046-7
      E, D.C., Yang, Y.D., Chao, D.B., 2009. The Sea Level Change from the Antarctic Ice Sheet Based on GRACE. Chinese J. Geophys., 52(9): 2222-2228(in Chinese with English abstract).
      Ekman, M., Mäkinen, J., 1996. Recent Postglacial Rebound, Gravity Change and Mantle Flow in Fennoscandia. Geophysical Journal International, 126(1): 229-234. doi: 10.1111/j.1365-246X.1996.tb05281.x
      Fang, M., Hager, B.H., 2001. Vertical Deformation and Absolute Gravity. Geophysical Journal International, 146(2): 539-548. doi: 10.1046/j.0956-540x.2001.01483.x
      Feng, W., Zhong, M., Lemoine, J.M., et al., 2013. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements. Water Resources Research, 49(4): 2110-2118. doi: 10.1002/wrcr.20192
      Guo, J.Y., Huang, Z.W., Shum, C.K., et al., 2012. Comparisons among Contemporary Glacial Isostatic Adjustment Models. Journal of Geodynamics, 61: 129-137. doi: 10.1016/j.jog.2012.03.011
      Hu, X.G., Chen, J.L., Zhou, Y.H., et al., 2006. Seasonal Water Storage Change of the Yangtze River Basin Detected by GRACE. Science China Earth Sciences, 36(3): 225-232(in Chinese).
      Jia, L.L., Wang, H.S., Xiang, L.W., et al., 2011. Effects of Glacial Isostatic Adjustment on the Estimate of Ice Mass Balance over Antarctica and the Uncertainties. Chinese J. Geophys. , 54(6): 1466-1477(in Chinese with English abstract).
      King, M.A., Bingham, R.J., Moore, P., et al., 2012. Lower Satellite-Gravimetry Estimates of Antarctic Sea-Level Contribution. Nature, 491(7425): 586-589. doi: 10.1038/nature11621
      Kuo, C.Y., Shum, C.K., Braun, A., et al., 2008. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges. Terrestrial Atmospheric and Oceanic Sciences, 19(1-2): 21-35. doi: 10.3319/TAO.2008.19.1-2.21(SA)
      Kuo, C.Y., Shum, C.K., Braun, A., et al., 2004. Vertical Crustal Motion Determined by Satellite Altimetry and Tide Gauge Data in Fennoscandia. Geophysical Research Letters, 31(1): L01608. doi: 10.1029/2003GL019106
      Lidberg, M., Johansson, J.M., Scherneck, H.G., et al., 2010. Recent Results Based on Continuous GPS Observations of the GIA Process in Fennoscandia from BIFROST. Journal of Geodynamics, 50(1): 8-18. doi: 10.1016/j.jog.2009.11.010
      Luo, Z.C., Li, Q., Zhang, K., et al., 2012. Trend of Mass Change in the Antarctic Ice Sheet Recovered from the GRACE Temporal Gravity Field. Science China Earth Sciences, 55(1): 76-82. doi: 10.1007/s11430-011-4275-1
      Mazzotti, S., Lambert, A., Henton, J., et al., 2011. Absolute Gravity Calibration of GPS Velocities and Glacial Isostatic Adjustment in Mid-Continent North America. Geophysical Research Letters, 38(24): L24311. doi: 10.1029/2011GL049846.
      Milne, G.A., Mitrovica, J.X., Schrag, D.P., 2002. Estimating Past Continental Ice Volume from Sea-Level Data. Quaternary Science Reviews, 21(1-3): 361-376. doi: 10.1016/S0277-3791(01)00108-1
      Mitrovica, J.X., Forte, A.M., 1997. Radial Profile of Mantle Viscosity: Results from the Joint Inversion of Convection and Post-Glacial Rebound Observables. Journal of Geophysical Research, 102(B2): 2751-2769. doi: 10.1029/96JB03175
      Peltier, W.R., 1998. Postglacial Variations in the Level of the Sea: Implications for Climate Dynamics and Solid-Earth Geophysics. Reviews of Geophysics, 36(4): 603-689. doi: 10.1029/98RG02638
      Peltier, W.R., 2002. Global Glacial Isostatic Adjustment: Palaeogeodetic and Space-Geodetic Tests of the ICE-4G (VM2) Model. Journal of Quaternary Science, 17(5-6): 491-510. doi: 10.1002/jqs.713
      Purcell, A., Dehecq, A., Tregoning, P., et al., 2011. Relationship between Glacial Isostatic Adjustment and Gravity Perturbations Observed by GRACE. Geophysical Research Letters, 38(18): L18305. doi: 10.1029/2011GL048624
      Sella, G.F., Stein, S., Dixon, T.H., 2007. Observation of Glacial Isostatic Adjustment in "Stable" North America with GPS. Geophysical Research Letters, 34(2): L02306. doi: 10.1029/2006GL027081
      Sun, W.K., Miura, S., Sato, T., et al., 2010. Gravity Measurements in Southeastern Alaska Reveal Negative Gravity Rate of Change Caused by Glacial Isostatic Adjustment. Journal of Geophysical Research, 115(B12): B12406. doi: 10.1029/2009JB007194
      Tamisiea, M.E., 2011. Ongoing Glacial Isostatic Contributions to Observations of Sea Level Change. Geophysical Journal International, 186(3): 1036-1044. doi: 10.1111/j.1365-246X.2011.05116.x
      Thomas, I.D., King, M.A., Bentley, M.J., et al., 2011. Widespread Low Rates of Antarctic Glacial Isostatic Adjustment Revealed by GPS Observations. Geophysical Research Letters, 38(22): L22302. doi: 10.1029/2011GL049277
      Velicogna, I., Wahr, J., 2006. Measurements of Time-Variable Gravity Show Mass Loss in Antarctica. Science, 311(5768): 1754-1756. doi: 10.1126/science.1123785
      Wahr, J., Han, D., Trupin, A., 1995. Predictions of Vertical Uplift Caused by Changing Polar Ice volumes on a Viscoelatic Earth. Geophysical Research Letters, 22(8): 977-980. doi: 10.1029/94GL02840
      Wahr, J., Wingham, D., Bentley, C., 2000. A Method of Combing ICESat and GRACE Satellite Data to Constrain Antarctica Mass Balance. Journal of Geophysical Research, 105(B7): 16279-16294. doi: 10.1029/2000JB900113
      Wang, H.S., Wu, P., Wouter, V.D.W., et al., 2009. Glacial Isostatic Adjustment Model Constrained by Geodetic Measurments and Relative Sea Level. Chinese J. Geophys. , 52(10): 2450-2460(in Chinese with English abstract).
      Wang, H.S., Wu, P., Xu, H.Z., 2009. A Review of Research in Glacial Isostatic Adjustment. Progress in Geophys. , 24(6): 1958-1967(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200906006.htm
      Wang, H.S., Jia, L.L., Wu, P., et al., 2010. Effects of Global Glacial Isostatic Adjustment on the Secular Changes of Gravity and Sea Level in East Asia. Chinese J. Geophys. , 53(11): 2590-2602(in Chinese with English abstract).
      Wang, H.S., Jia, L.L., Steffen, H., et al., 2013. Increased Water Storage in North America and Scandinavia from GRACE Gravity Data. Nature Geoscience, 6(1): 38-42. doi: 10.1038/NGEO1652
      Wang, H.S., Wu, P., Jia, L.L., et al., 2011. The Role of Glacial Isostatic Adjustment in the Present-Day Crustal Motion and Sea Levels of East Asia. Earth Planets Space, 63(8): 915-928. doi: 10.5047/eps.2011.05.002
      Wang, H.S., Wu, P., 2006., Effects of Lateral Variations in Lithospheric Thickness and Mantle Viscosity on Glacially Induced Surface Motion on a Spherical, Self-Gravitating Maxwell Earth. Earth and Planetary Science Letters, 244(3-4): 576-589. doi: 10.1016/j.epsl.2006.02.026
      Wang, H.S., Wu, P., Wal, W.V.D., 2008. Using Postglacial Sea Level, Crustal Velocities and Gravity-Rate-of-Change to Constrain the Influence of Thermal Effects on Mantle Lateral Heterogeneities. Journal of Geodynamics, 46(3-5): 104-117. doi: 10.1016/j.jog.2008.03.003
      Wang, H.S., Wang, Z.Y., Yuan, X.D., et al., 2007. Water Storage Changes in Three Gorges Water Systems Area Inferred from GRACE Time-Variable Gravity Data. Chinese J. Geophys., 50(3): 730-736(in Chinese with English abstract).
      Wessel, P., Smith, W.H., 1991. Free Software Helps Map and Display Data. Eos, Transactions American Geophysical Union, 72(41): 441-446. doi: 10.1029/90EO00319
      Wu, J., Liu, Q., 2012. Pollen-Recorded Vegetation and Climate Changes from Moon Lake since Late Glacial. Earth Science—Journal of China University of Geoscience, 37(5): 947-954(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201205010.htm
      Wu, P., 2004. Using Commercial Finite Element Packages for the Study of Earth Deformations, Sea Levels and the State of Stress. Geophysical Journal International, 158(2): 401-408. doi: 10.1111/j.1365-246X.2004.02338.x
      Wu, P., Wang, H.S., Steffen, H., 2013. The Role of Thermal Effect on Mantle Seismic Anomalies under Laurentia and Fennoscandia from Observations of Glacial Isostatic Adjustment. Geophysical Journal International, 192(1): 7-17. doi: 10.1093/gji/ggs009
      Wu, X.P., Heflin, M.B., Schotman, H., et al., 2010. Simultaneous Estimation of Global Present-Day Water Transport and Glacial Isostatic Adjustment. Nature Geoscience, 3(9): 642-646. doi: 10.1038/ngeo938
      Zhou, X., Sun, W.K., Zhao, B., et al., 2012. Geodetic Observations Detecting Coseismic Displacements and Gravity Changes Caused by the Mw=9.0 Tohoku-Oki Earthquake. Journal of Geophysical Research, 117(B5): B05408. doi: 10.1029/2011JB008849H
      鄂栋臣, 杨元德, 晁定波, 2009. 基于GRACE资料研究南极冰盖消减对海平面的影响. 地球物理学报, 52(9): 2222-2228. doi: 10.3969/j.issn.0001-5733.2009.09.005
      胡小工, 陈剑利, 周永宏, 等, 2006. 利用GRACE空间重力测量监测长江流域水储量的季节性变化. 中国科学, 36(3): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200603002.htm
      贾路路, 汪汉胜, 相龙伟, 等, 2011. 冰川均衡调整对南极冰质量平衡监测的影响及其不确定性. 地球物理学报, 54(6): 1466-1477. doi: 10.3969/j.issn.0001-5733.2011.06.006
      汪汉胜, Wu, P., Wouter, V.D.W., 等, 2009. 大地测量观测和相对海平面联合约束的冰川均衡调整模型. 地球物理学报, 52(10): 2450-2460. doi: 10.3969/j.issn.0001-5733.2009.10.004
      汪汉胜, Wu, P., 许厚泽, 2009. 冰川均衡调整(GIA)的研究. 地球物理学进展, 24(6): 1958-1967. doi: 10.3969/j.issn.1004-2903.2009.06.005
      汪汉胜, 贾路路, Wu, P., 等, 2010. 冰川均衡调整对东亚重力和海平面变化的影响. 地球物理学报, 53(11): 2590-2602. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011010.htm
      汪汉胜, 王志勇, 袁旭东, 等, 2007. 基于GRACE时变重力场的三峡水库补给水系水储量变化. 地球物理学报, 50(3): 730-736. doi: 10.3321/j.issn:0001-5733.2007.03.011
      伍婧, 刘强, 2012. 晚冰期以来月亮湖孢粉记录反映的古植被与古气候演化. 地球科学——中国地质大学学报, 37(5): 947-954 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201205010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(3)

      Article views (3487) PDF downloads(578) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return