• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 10
    Oct.  2014
    Turn off MathJax
    Article Contents
    Zhang An'gang, Fan Zifei, Song Heng, 2014. A New Dimensionless Deliverability Equation of Gas Condensate Reservoir. Earth Science, 39(10): 1391-1397. doi: 10.3799/dqkx.2014.131
    Citation: Zhang An'gang, Fan Zifei, Song Heng, 2014. A New Dimensionless Deliverability Equation of Gas Condensate Reservoir. Earth Science, 39(10): 1391-1397. doi: 10.3799/dqkx.2014.131

    A New Dimensionless Deliverability Equation of Gas Condensate Reservoir

    doi: 10.3799/dqkx.2014.131
    • Received Date: 2014-01-05
    • Publish Date: 2014-10-01
    • Complicated phase changes occur during the depletion exploitation of gas condensate reservoirs, which causes the precipitation of condensate oil and the mixed flow of gas phase and oil phase. Due to few research reports done so far, a new dimensionless deliverability equation of gas condensate reservoir is established by means of Taylor series expansion and polynomial regression on the basis of the inflow performance equation of gas condensate reservoir in pseudo-steady state in this study. Firstly, the definite integration of pseudo-pressure function in the equation is developed by Taylor series based on the inflow performance equation of gas condensate reservoir in pseudo-steady state; secondly, the coefficients of Taylor series are calculated by steady-state theory and polynomial regression method; finally, the dimensionless deliverability equation of gas condensate reservoir is established by analytic method. Its application shows that the inflow performance curve calculated by the dimensionless deliverability equation coincides with actual data of system well testing, which indicates that this equation can describe the two-phase inflow performance of gas condensate reservoir more accurately. Moreover, the open flow potential obtained by dimensionless deliverability equation is smaller than that by conventional dry gas conversion method; the open flow potential calculated by dimensionless deliverability equation which considers high velocity flow effect is much higher than the one that ignores the high velocity flow effect.

       

    • loading
    • Fevang, Ø., Whiston, C.H., 1996. Modeling Gas-Condensate Well Deliverability. SPE Reservoir Engineering, 11(4): 221-230. doi: 10.2118/30714-PA
      Jokhio, S.A., Tiab, D., Anwar, A., 2002. Establishing Gas Phase Well Performance for Gas Condensate Wells Producing under Three-Phase Conditions. SPE Western Regional/AAPG Pacific Section Joint Meeting, Anchorage, 76752: 1-18. doi: 10.2118/76752-MS
      Jones, J.R., Raghavan, R., 1988. Interpretation of Flowing Well Response in Gas-Condensate Wells. SPE Formation Evaluation, 3(3): 578-594. doi: 10.2118/14204-PA
      Kang, X.D., Qin, B., Li, X.F., et al., 2004. Characteristics of Gas Condensate Flow in Porous Media Considering Capillary Number and Non-Darcy Effect. Oil Drilling & Production Technology, 26(4): 41-45 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syzcgy200404013
      Liu, Y.J., Li, X.F., Kang, X.D., 2006. Determination of Reasonable Pressure Difference for Condensate Gas Reservoir. Acta Petrolei Sinica, 27(2): 85-88 (in Chinese with English abstract). http://www.researchgate.net/publication/298503725_Determination_of_reasonable_pressure_difference_for_condensate_gas_reservoir
      Mott, R., Cable, A., Spearing, M., 2000. Measurements and Simulation of Inertial and High Capillary Number Flow Phenomena in Gas-Condensate Relative Permeability. SPE Annual Technical Conference and Exhibition, Dallas, 62932: 1-13. doi: 10.2118/62932-MS
      Olaberinjo, A.F., Oyewola, M.O., Adeyanju, O.A., et al., 2006. KPIM of Gas/Condensate Productivity: Prediction of Condensate/Gas Ratio (CGR) Using Reservoir Volumetric Balance. SPE Eastern Regional Symposium, SPE Eastern Regional Meeting, Canton, 104307: 1-10. doi: 10.2118/104307-MS
      Qi, M.M., Lei, Z.D., Kang, X.D., et al., 2006. Study on Inflow Performance Relationship of Condensate Reservoir Considering High Velocity Flow Effect. Oil Drilling & Production Technology, 28(3): 74-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200603022.htm
      Qin, B., Li X.F., Cheng, S.Q., 2004. Production Performance of Condensate Gas Wells Considering Two-Phase Fluid of Gas and Liquid. Xinjiang Petroleum Geology, 25(4): 423-426 (in Chinese with English abstract).
      Qin, B., Li, X.F., Cheng, S.Q., 2005. Oil/Gas Percolation Performance of Condensate Reservoirs under Effect of High Velocity Flow. Natural Gas Industry, 25(2): 136-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200502018.htm
      Shi, D.P., Li, X.F., Liu, Y.J., 2006. Deliverability Equation Study of Gas Condensate Well Considering Phase Change. Oil Drilling & Production Technology, 28(4): 68-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200604021.htm
      Tong, M., Hu, Y.L., Li, X.F., et al., 2006. The Influence of Capillary Number Effect on Inflow Performance in Condensate Gas Well. Xinjiang Petroleum Geology, 27(2): 194-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200602017.htm
      Vogel, J.V., 1968. Inflow Performance Relationships for Solution-Gas Drive Wells. Journal of Petroleum Technology, 20(1): 83-92. doi: 10.2118/1476-PA
      Wiggins, M.L., Russell, J.E., Jennings, J.W., 1996. Analytical Development of Vogel-Type Inflow Performance Relationships. SPE Journal, 1(4): 355-362. doi: 10.2118/23580-PA
      Xie, X.L., Luo, K., Song, W.J., 2001. A Novel Equation for Modeling Gas Condensate Well Deliverability. Acta Petrolei Sinica, 22(3): 36-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200103011.htm
      康晓东, 覃斌, 李相方, 等, 2004. 凝析气藏考虑毛管数和非达西效应的渗流特征. 石油钻采工艺, 26(4): 41-45. doi: 10.3969/j.issn.1000-7393.2004.04.013
      刘一江, 李相方, 康晓东, 2006. 凝析气藏合理生产压差的确定. 石油学报, 27(2): 85-88 doi: 10.3321/j.issn:0253-2697.2006.02.018
      齐明明, 雷征东, 康晓东, 等, 2006. 综合高速效应的凝析气藏流入动态. 石油钻采工艺, 28(3): 74-77. doi: 10.3969/j.issn.1000-7393.2006.03.022
      覃斌, 李相方, 程时清, 2004. 考虑气液两相流的凝析气井生产动态研究. 新疆石油地质, 25(4): 423-426. doi: 10.3969/j.issn.1001-3873.2004.04.023
      覃斌, 李相方, 程时清, 2005. 凝析气藏考虑高速流动效应的油气渗流动态研究. 天然气工业, 25(2): 136-139. doi: 10.3321/j.issn:1000-0976.2005.02.044
      石德佩, 李相方, 刘一江, 2006. 考虑相变的凝析气井产能方程. 石油钻采工艺, 28(4): 68-70. doi: 10.3969/j.issn.1000-7393.2006.04.021
      童敏, 胡永乐, 李相方, 等, 2006. 毛细管数效应对凝析气井流入动态的影响. 新疆石油地质, 27(2): 194-196. doi: 10.3969/j.issn.1001-3873.2006.02.017
      谢兴礼, 罗凯, 宋文杰, 2001. 凝析气新的产能方程研究. 石油学报, 22(3): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200103011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (3342) PDF downloads(655) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return