• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 39 Issue 11
    Nov.  2014
    Turn off MathJax
    Article Contents
    Fang Qi, Li Yilian, Cheng Peng, Yu Ying, Liu Danqing, Song Shaoyu, 2014. Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China. Earth Science, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150
    Citation: Fang Qi, Li Yilian, Cheng Peng, Yu Ying, Liu Danqing, Song Shaoyu, 2014. Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China. Earth Science, 39(11): 1575-1583. doi: 10.3799/dqkx.2014.150

    Enhancing CO2 Injectivity in High-Salinity and Low-Permeability Aquifers: A Case Study of Jianghan Basin, China

    doi: 10.3799/dqkx.2014.150
    • Received Date: 2014-03-02
    • Publish Date: 2014-11-01
    • Injectivity is a crucial technical and economical issue for CO2 geological storage projects due to large volumes of CO2 to be stored. Assessment and enhancement of CO2 injectivity in ubiquitous low-permeability reservoirs in the continental sedimentary basins of China is of great significance to the application and development of carbon capture and storage (CCS) in China. Numerical simulation was carried out to investigate the potential and enhancement of CO2 injectivity in high-salinity and low-permeability aquifers by taking Jiangling depression of Jianghan basin as the study area. The results show that pre-injection of freshwater and low-salinity saline water can effectively mitigate salt precipitation around the CO2 injection well at different levels; pre-injection of CO2-saturation solution and diluted HCl solution can significantly improve the porosity and permeability values and enhance CO2 injectivity. However, it is difficult to achieve a significant increase in CO2 injection rate in a short time due to the limited migration distance resulted from the low-permeability nature. Hydraulic fracturing measures can significantly increase CO2 injectivity and the improved capacity largely depends on fracturing half-length and fracturing degree. Therefore, for a single vertical well, it is possible to achieve the injection of hundreds of thousands of tons of CO2 per year to low-permeability reservoirs by adopting hydraulic fracturing measures and multi-layer injection.

       

    • loading
    • Alkan, H., Cinar, Y., lker, E.B., 2010. Impact of Capillary Pressure, Salinity and In-Situ Conditions on CO2 Injection into Saline Aquifers. Transport in Porous Media, 84(3): 799-819. doi: 10.1007/s1124-010-9541-8
      Bacci, G., Korre, A., Durucan, S., 2011. An Experimental and Numerical Investigation into the Impact of Dissolution/Precipitation Mechanisms on CO2 Injectivity in the Wellbore and Far Field Regions. International Journal of Greenhouse Gas Control, 5(3): 579-588. doi: 10.1016/j.ijggc.2011.05.007
      Benson, S.M., Cole, D.R., 2008. CO2 Sequestration in Deep Sedimentary Formations. Elements, 4(5): 325-331. doi: 10.2113/gselements.4.5.325
      Gale, J., 2004. Geological Storage of CO2: What Do We Know, Where Are the Gaps, and What More Needs to Be Done. Energy, 29(9-10): 1329-1338. doi: 10.1016/j.energy.2004.03.068
      Giorgis, T., Carpita, M., Battistelli, A., 2007.2D Modeling of Salt Precipitation during the Injection of Dry CO2 in a Depleted Gas Reservoir. Energy Conversion and Management, 48(6): 1816-1826. doi: 10.1016/j.enconman.2007.01.012
      Holloway, S., 2005. Underground Sequestration of Carbon Dioxide—A Viable Greenhouse Gas Mitigation Option. Energy, 30: 2318-2333. doi: 10.1016/j.energy.2003.10.023
      IPCC (Intergovernmental Panel on Climate Change), 2005. Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, New York.
      Kim, K.Y., Han, W.S., Oh, J., et al., 2012. Characteristics of Salt-Precipitation and the Associated Pressure Buildup during CO2 Storage in Saline Aquifers. Transport in Porous Media, 92: 397-418. doi: 10.1017/s11242-011-9909-4
      Li, G.Y., Lü, M.G., 2002. Atlas of China's Petroliferous Basins. Petroleum Industry Press, Beijing (in Chinese).
      Li, Y.L., Fang, Q., Ke, Y.B., et al., 2012. Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin. Earth Science—Journal of China University of Geosciences, 37(2): 283-288 (in Chinese with English abstract). doi: 10.3799/dqkx.2012.030
      Palandri, J.L., Kharaka, Y.K., 2004. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. Menlo Park, California, 1068: 64.
      Pruess, K., Müller, N., 2009. Formation Dry-Out from CO2 Injection into Saline Aquifers: 1. Effects of Solids Precipitation and Their Mitigation, Water Resources Research, 45(3): W03402. doi: 10.1029/2008WR007101
      Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 User's Guide. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      Verma, A., Pruess, K., 1988. Thermohydrological Conditions and Silica Redistribution near High-Level Nuclear Wastes Emplaced in Saturated Geological Formations. Journal of Geophysical Research, 93(B2): 1159-1173. doi: 10.1029/JB093iB02p01159
      Wang, Y.X., Mao, X.M., DePaolo, D., 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science—Journal of China University of Geosciences, 36(1): 163-171 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.017
      Xu, T., Sonnenthal, E., Spycher, N., et al., 2008. TOUGHREACT User's Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      Zhang, K., Wu, Y.S., Pruess, K., 2008. User's Guide for TOUGH2-MP—A Massively Parallel Version of the TOUGH2 Code. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley.
      Zhang, W., Li, Y., Omambia, A., 2010. Reactive Transport Modeling of Effects of Convective Mixing on Long-Term CO2 Geological Storage in Deep Saline Formations. International Journal of Greenhouse Gas Control, 5(2): 241-256. doi: 10.1016/j.ijggc.2010.10.007
      Zhang, W., Li, Y., Xu, T., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161-180. doi: 10.1016/j.ijggc.2008.07.007
      李国玉, 吕鸣岗, 2002. 中国含油气盆地图集. 北京: 石油工业出版社.
      李义连, 房琦, 柯怡兵, 等, 2012. 高盐度卤水对CO2地质封存的影响: 以江汉盆地潜江凹陷为例. 地球科学——中国地质大学学报, 37(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202013.htm
      王焰新, 毛绪美, DePaolo, D., 2011. CO2地质储存的纳米尺度流体-岩石相互作用研究. 地球科学——中国地质大学学报, 36(1): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(4)

      Article views (3513) PDF downloads(555) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return