• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 1
    Jan.  2015
    Turn off MathJax
    Article Contents
    Liang Chenyue, Liu Yongjiang, Meng Jingyao, Wen Quanbo, Li Weimin, Zhao Yingli, Mi Xiaonan, Zhang Li, 2015. Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone. Earth Science, 40(1): 115-129. doi: 10.3799/dqkx.2015.008
    Citation: Liang Chenyue, Liu Yongjiang, Meng Jingyao, Wen Quanbo, Li Weimin, Zhao Yingli, Mi Xiaonan, Zhang Li, 2015. Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone. Earth Science, 40(1): 115-129. doi: 10.3799/dqkx.2015.008

    Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone

    doi: 10.3799/dqkx.2015.008
    • Received Date: 2014-05-01
    • Publish Date: 2015-01-15
    • Shulan ductile shear zone represents a suit of mylonites with sinistral strike-slip characteristics and NNE gneissosity located in south-middle part of the Jiamusi-Yitong fault (called Jia-Yi fault in short). Systematic measurement of the finite strains of feldspar in mylonites indicates that the strain type is extension strain in L-S tectonites. Quartz C-axis EBSD fabric indicates that the quartz fabrics is mainly low-middle temperature prism-glide fabrics with slip system of {0001} < 110>. By calculation of micro structures and quartz C-axis fabrics, it is found that the shearing strain is 0.44; all kinematic vorticities are all more than 0.95, which indicates that the deformation is mainly simple shear. Mineral deformation behaviors, quartz C-axis EBSD fabrics, quartz grain size-frequency diagram and Kruhl thermometer demonstrate that the ductile shear zone was developed under a condition of low-grade greenschist facies, with deformation temperatures ranging from 400 to 500 ℃, and dislocation creep is the main deformation mechanism. The shapes of recrystallized quartz grains in mylonites with their jagged and indented boundaries are natural records of deformation conditions. Fractal analysis shows that the boundaries of recrystallized grains have statistically self-similarities with the numbers of fractal dimension from 1.195 to 1.220. The paleo-stress from dynamically recrystallized grain sizes of quartz are 24.35-27.59 MPa, representing the lower limit of the paleo-stress during mylonization. Together with temperature estimates and applying published flow laws, it is concluded that estimated strain rates on the order of 10-12.00 to 10-13.18 s-1, contrasting with regional strain rate of 10-13.00 to 10-15.00 s-1, indicate deformation of mylonite in Shulan ductile shear zone with low strain rates which are consistent with most other ductile zone, suggest the deformation is slow process. Taking into consideration of the regional tectonic setting of NE China, we suggest that the formation of the ductile shear zone with NNE trending might be related to moving direction changing of the Izanagi plate obliquely subducting under the Eurasia plate.

       

    • loading
    • Bahattacharya, A.R., Weber, K., 2004. Fabric Development during Shear Deformation in the Main Central Thrust Zone, NW Himalaya, India. Tectonophysics, 387(1-4): 23-46. doi: 10.1016/j.tecto.2004.04.026
      Boutonnet, E., Leloup, P.H., Sassier, C., et al., 2013. Ductile Strain Rate Measurements Document Long-Term Strain Localization in the Continental Crust. Geology, 41(8): 819-822. doi: 10.1130/G33723.1
      Brodie, K.H., 1980. Variations in Mineral Chemistry across a Shear Zone. Journal of Structural Geology, 2(1-2): 265-272. doi: 10.1016/0191-8141(80)90059-0
      Brodie, K.H., Rutter, E.H., 1985. On the Relationship between Deformation and Metamorphism, with Special Reference to the Behavior of Basic Rocks. Metamorphic Reactions, 4: 138-179. doi: 10.1007/978-1-4612-5066-1_6
      Chen, P.J., 1988. Age and Pattern of Huge Parallel Move of the Tancheng-Lujiang Fault Zone. Chinese Science Bulletin, 4: 289-293 (in Chinese).
      Cheng, Y.H., Teng, X.J., Li, Y.F., et al., 2014. Chronology Constraint and Tectonic Evolution of Hanwula Early Cretaceous Ductile Shear Belt in Dong Ujimqin, Inner Mongolia. Earth Science—Journal of China University of Geosciences, 39(4): 375-386 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.036
      Dou, L.R., Song, J.G., Wang, Y., 1996. Chronology of the Formation of the Northern Tan-lu Fault Zone and Its Implications. Geological Review, 42(6): 508-512 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026535632
      Hacker, B., Yin, A., Christie, J., et al., 1990. Differential Stress, Strain Rate, and Temperatures of Mylonitization in the Ruby Mountains, Nevada: Implications for the Rate and Duration of Uplift. Journal of Geophysical Research, 95(B6): 8569-8580. doi: 10.1029/JB095iB06p08569
      Han, G., Q., Liu, Y., J., Neubauer, F., et al., 2012. Characteristics, Timing, and Offsets of the Middle-Southern Segment of the Western Boundary Strike-Slip Fault of the Songliao Basin in Northeast China. Journal of Jilin University (Earth Science Edition), 39(3): 397-405 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201203013.htm
      Hirth, G., Teyssier, C., Dunlap, W.J., 2010. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences(Geol Rundsch), 90: 77-87. doi: 10.1007/s005310000152
      Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145-159. doi: 10.1016/0191-8141(92)90053-Y
      Hirth, G., Tullis, J., 1994. The Brittle-Plastic Transition in Experimentally Deformed Quartz Aggregates. Journal of Geophysical Research, 99(B6): 11731-11747. doi: 10.1029/93JB02873
      Hu, L., 1998. An Outline of Microstructure Geology. Geological Publishing House, Beijing (in Chinese).
      Huang, J.J., 1994. On Some Viewpoints on Studies of Mylonite and Their Applications. Geology of Chemical Minerals, 16(2): 117-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC402.007.htm
      Koch, P.S., 1983. Rheology and Microstructures of Experimentally Deformed Quartz Aggregates. University of California, CA, Los Angeles.
      Koch, P.S., Christie, J.M., Ord, A., et al., 1989. Effect of Water on the Rheology of Experimentally Deformed Quartzite. Journal of Geophysical Research: Solid Earth, 94(B10): 13975-13996. doi: 10.1029/JB094iB10p13975
      Kronenberg, A.K., Tullis, J., 1984. Flow Strengths of Quartz Aggregates: Grains Size and Pressure Effects due to Hydrolytic Weakening. Journal of Geophysical Research, 89(B6): 4281-4297. doi: 10.1029/JB089iB06p04281
      Kruhl, J.H., Nega, M., 1996. The Fractal Shape of Sutured Quartz Grain Boundaries: Application as a Geothermometer. International Journal of Earth Sciences, 85(1): 38-43. doi: 10.1007/BF00192058
      Kruhl, J.H., Nega, M., Milla, H.E., 1995. The Fractal Shape of Grain Boundary Sutures: Reality, Model and Application as a Geo-Thermometer. Conference Fractal and Dynamic Systems in Geosciences, 85(1): 38-43. doi: 10.1007/BF00192058
      Li, D.L., Wang, E.L., 2001. Structural Geology. Jilin University Press, Chuangchun (in Chinese).
      Li, Z.S., Tian, X.L., Zhang, W.J., et al., 2013. Fractal Analysis of East-West Ductile Shear Zone in Guachehe Town Area, Tongcheng, Anhui and Its Applicability of Strain-Rate Estimation. Science & Technology Review, 31(20): 15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201320016.htm
      Liang, C.Y., Liu, Y.J., Li, W., et al., 2011. Characteristics of Extensional Structure of Keluo Complex in Nenjiang Area, Heilongjiang, China. Geological Bulletin of China, 30(2-3): 291-299 (in Chinese with English abstract). http://www.cqvip.com/QK/95894A/20112/37549572.html
      Liu, J.L., Cao, S.Y., Zou, Y.X., et al., 2008. EBSD Analysis of Rock Fabrics and Its Application. Geological Bulletin of China, 27(10): 1638-1645 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200810005
      Liu, R.X., 1988. Microstructural Geology. Peking University Press, Beijing (in Chinese).
      Mamtani, M., 2010. Strain-Rate Estimation Using Fractal Analysis of Quartz Grains in Naturally Deformed Rocks. Journal of the Geological Society of India, 75(1): 202-209. doi: 10.1007/s12594-010-0008-x
      Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc. , 6(1): 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
      Maruyama, S., Seno, T., 1986. Orogeny and Relative Plate Motions: Example of the Japanese Islands. Tectonophysics, 127(3-4): 305-329. doi: 10.1016/0040-1951(86)90067-3
      Means, W.D., Hobbs, B.E., Lister, G.S., et al., 1980. Vorticity and Non-Coaxialicy in Progressive Deformation. Journal of Structural Geology, 2(3): 371-378. doi: 10.1016/0191-8141(80)90024-3
      Meng, J.Y., Liu, Y.J., Liang, C.Y., et al., 2013. Characteristics of Ductile Deformation of Jiamusi-Yitong Fault. Global Geology, 32(4): 800-807 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201304019&dbcode=CJFD&year=2013&dflag=pdfdown
      Mercier, J.C.C., Anderson, D.A., Carter, N.L., 1977. Stress in the Lithosphere: Inferences from Steady State Flow of Rocks. Pure and Applied Geophysics, 115(1-2): 199-226. doi: 10.1007/BF01637104
      Okudaira, T., Takeshita, T., Hara, I., et al., 1995. A New Estimate of the Conditons for Transtions from Basal <a>to Prism <c> Slip in Naturally Deformed Quartz. Tectonophysics, 250(1/3): 31-46. doi: 10.1016/0040-1951(95)00039-4
      Parrish, D.K., Krivz, A.L., Carter, N.L., 1976. Finite-Element Folds of Similar Geometry. Tectonophysics, 32(3-4): 183-207. doi: 10.1016/0040-1951(76)90062-7
      Passchier, C.W., 1988. The Use of Mohr Circles to Describe Non-Coaxial Progressive Deformation. Tectonophysics, 149(3-4): 323-338. doi: 10.1016/0040-1951(88)90181-3
      Passchier, C.W., Trouw, R.A.J., 2005. Micro-Tectonics. Springer-Verlag, Heidelberg, Berlin.
      Paterson, M.S., Luan, F.C., 1990. Quartzite Rheology under Geological Conditions. Geological Society, London, Special Publications, 54(1): 299-307. doi: 10.1144/GSL.SP.1990.054.01.26
      Pfiffner, O.A., Ramsay, J.G., 1982. Constraints on Geological Strain Rates: Arguments from Finite Strain States of Naturally Deformed Rocks. Journal of Geophysical Research, 87(B1): 311-321. doi: 10.1029/JB087iB01p00311
      Poirier, J.P., 1985. Creep of Cystals. Camridge Unversity Press, New York.
      Ramsay, J.G., 1980. Shear Zone Geometry: A Review. Journal of Structural Geology, 2(1-2): 83-89. doi: 10.1016/0191-8141(80)90038-3
      Ramsay, J.G., Graham, R.H., 1970. Strain Variation in Shear Belts. Canadian Journal of Earth Science, 7: 786-813. doi: 10.1139/e70-078
      Rutter, E.H., Brodie, K.H., 2004a. Experimental Grain-Size Sensitive Flow of Hot-Pressed Brazilian Quartz Aggregates. Journal of Structural Geology, 26: 2011-2023. doi: 10.1016/j.jsg.2004.04.006
      Rutter, E.H., Brodie, K.H., 2004b. Experimental Intracrystalline Plastic Flow in Hot-Pressed Synthetic Quartzite Prepared from Brazilan Quartz Crystals. Journal of Structural Geology, 26: 259-270. doi: 10.1016/S0191-8141(03)00096-8
      Shi, W.J., Wei, J.H., Tan, J., et al., 2014, Late Early Cretaceous Gold Mineralization in Tan-Lu Fault Zone: Evidence from Rb-Sr Isotopic Dating of Pyrite from Longquanzhan Gold Deposit. Earth Science—Journal of China University of Geosciences, 39(3): 325-340 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.031
      Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A "Natural Laboratory" for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
      Stipp, M., Tullis, J., 2003. The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 30(21): 2088. doi: 10.1029/2003GL018444
      Stipp, M., Tullis, J., Scherwath, M., et al., 2010. A New Perspective on Paleo-Piezometry: Dynamically Recrystallized Grain Size Distributions in Dicate Mechanism Changes. Geology, 38(8): 759-762. doi: 10.1130/G31162.1
      Stöckhert, B., Brix, M.R., Kleinschrodt, R., et al., 1999. Thermochronometry and Microstructures of Quartz—A Comparison with Experimental Flow Laws and Predictions on the Temperature of the Brittle-Plastic-Transition. Journal of Structural Geology, 21(3): 351-369. doi: 10.1016/S0191-8141(98)00114-X
      Sun, X.M., Liu, Y.J., Sun, Q.C., et al., 2008. 40Ar/39Ar Geochronology Evidence of Strike-Slip Movement in Dunhua-Mishan Fault Zone. Journal of Jilin University (Earth Science Edition), 38(6): 965-972 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cckjdxxb200806009
      Takahashi, M., Nagahama, H., Masuda, T., et al., 1998. Fractal Analysis of Experimentally, Dynamically Recrystallized Quartz Grains and Its Possible Application as a Strain Rate Meter. Journal of Structural Geology, 20(2-3): 269-275. doi: 10.1016/S0191-8141(97)00072-2
      Takeshita, T., 1996. Estimate of Physical Conditions for Deformation C-Axis Transitions in Naturally Deformed Quartzite. The Journal of the Geological Society of Japan, 102(3): 211-222. doi: 10.5575/geosoc.102.211
      Tikoff, B., Fossen, H., 1995. The Limitations of Three-Dimensional Kinematic Vorticity Analysis. Journal of Structural Geology, 17(12): 1771-1784. doi: 10.1016/0191-8141(95)00069-P
      Twiss, R.J., 1977. Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure and Applied Geophysics, 115(1-2): 227-244. doi: 10.1007/BF01637105
      Twiss, R.J., 1980. Static Theory of Size Variation with Stress for Subgrains and Dynamically Recrystallized Grains//Magnitude of Deviatoric Stresses in the Earth's Crust and Upper Mantle: Proceedings of Conference IX: Convened under Auspices of National Earthquake Hazards Reduction Program. Menlo Park, CA: US Geological Survey, 80(625): 665-683.
      Wan, T.F., Zhu, H., 1996. The Maximum Sinistral Strike-Slip and Its Forming Age of Tancheng-Lujiang Fault Zone. Geological Journal of China Universities, 2(1): 14-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX601.001.htm
      Wan, T.F., Zhu, H., Zhao, L., et al., 1996. Formation and Evolution of the Tancheng-Lujiang Fault Zone: A Review. Geoscience, 10(2): 159-168 (in Chinese with English abstract).
      Wang, X.S., Zheng, Y.D., Yang, C.H., et al., 2001. Determination of the Deformation Temperature and Strain Rate by the Fractal Shape of Dynamically Recrystallized Quartz Grains. Acta Petrologica et Mineralogica, 20(1): 36-41 (in Chinese with English abstract). http://www.researchgate.net/publication/285907317_Determination_of_the_deformation_temperature_and_strain_rate_by_the_fractal_shape_of_dynamically_recrystallized_quartz_grains
      Wang, Y.B., Liang, M.H., Huo, Q.Z., et al., 2004. The Study of the Limit Deformation Measurement with Deformation Feldspar in Granite Areas. Northwestern Geology, 37(1): 19-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200402004.htm
      Wallis, S.R., 1992. Vorticity Analysis in Metachert from the Sambagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271-280. doi: 10.1016/0191-8141(92)-8141(92)90085-B
      Wallis, S.R., 1995. Vorticity Analysis and Recognition of Ductile Extension in the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 17(8): 1077-1093. doi: 10.1016/0191-8141(95)00005-x
      Wernicke, B., 1981. Low-Angle Normal Fault in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291: 645-648. doi: 10.1038/291645a0
      Wu, X.Q., Liu, D.L., Li, Z.S., et al., 2006. A New Fractal Method for the Determination of Deformation Temperatures and Strain Rates—A Case Study of the Fuchashan Tectonite in the Tanlu Fault. Geology in China, 33(1): 153-159 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252108369.html
      Xia, H.R., Liu, J.L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201101007.htm
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction (EBSD). Geoscience, 21(2): 213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200702006.htm
      Xu, J.W., Ma, G.F., 1992. Review of Ten Years (1981-1991) of Research on the Tancheng-Lujiang Fault Zone. Geological Review, 38(4): 316-324 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199204003.htm
      Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009. Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamic. Acta Petrologica Sinica, 25(7): 1721-1736 (in Chinese with English abstract). http://www.oalib.com/paper/1472350
      Yang, B.J., Zhang, M.S., Wang, P.J., 2003. Geological and Geophysical Interpretations of Chinese Oil-Gas Fields (Volume 1). Science Press, Beijing (in Chinese).
      Yang, T.N., Xu, H.S., 2008. Mechanisms of Dynamic Recrystallization: Recognition from Natural Tectonites. Geological Bullet in China, 27(9): 1459-1467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809010.htm
      Yang, X.Y., 2005. On the Studies of Ductile Shear Zone: Their Geological Significance. Advances in Earth Science, 20(7): 765-771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200507010.htm
      Zhang, B., Zhang, J.J., Guo, L., et al., 2005. Analysis of Structural Features and Deformation of the Mylonite Zone in the Detachment Fault System of the Yalaxiangbo Metamorphic Complex Core, Northern Himalayan Dome Belt. Progress in Natural Science, 15(3): 692-699 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=20502436
      Zhang, B., Zhang, J.J., Guo, L., 2006. Fractal Analysis of Dynamically Recrystallized Quartz Grains and Estmation of Mainly Rheological Parmeters of the Ranba Ductile Shear Zone, Northern Himalayan Dome Belt. Chinese Jounal of Geology, 41(1): 158-169 (in Chinese with English abstract). http://www.researchgate.net/publication/289223585_Fractal_analysis_of_dynamically_recrystallized_quartz_grains_and_estimation_of_mainly_rheological_parameters_of_the_Ranba_ductile_shear_zone_northern_Himalayan_dome_belt
      Zhang, B.L., Liu, R.X., Xiang, H.F., et al., 2008. Features of Mylonite at Central Southern Section of the Red River Fault Zone and Estimation of Its Primary Rheological Parameters. Seismology and Geology, 30(2): 473-483 (in Chinese with English abstract). http://www.researchgate.net/publication/289223493_Features_of_mylonite_at_central_southern_section_of_the_Red_River_Fault_zone_and_estimation_of_its_primary_rheological_parameters
      Zheng, Y.D., Chang, Z.Z., 1985. Finite Strain Measurement and Ductile Shear Zones. Geological Publishing House, Beijing (in Chinese).
      Zheng, Y.D., Wang, T., 2005. Kinematics and Dynamics of the Mesozoic Orogeny and Late-Orogenic Extensional Collapse in the Sino-Mongolian Border Areas. Science in China(Series D), 48(7): 849-862. doi: 10.1360/03yd0552
      Zhu, G., Liu, G.S., Dunlap, W.J., et al., 2004. 40Ar/39Ar Geochronological Constraints on Syn-Orogenic Strike-Slip Movement of Tan-Lu Fault Zone. Chinese Science Bulletin, 49(5): 499-508.
      Zhu, G., Xu, Y.D., Liu, G.S., et al., 2006. Structural and Deformational Characteristics of Strike-Slippings along the Middle-Southern Sector of the Tan-Lu Faut Zone. Chinese Journal of Geology, 41(2): 226-241, 255 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dzkx200602006
      陈丕基, 1988. 郯庐断裂巨大平移的时代与格局. 科学通报, 33(4): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198804013.htm
      程银行, 滕学建, 李艳锋, 等, 2014. 东乌旗罕乌拉韧性剪切带的构造属性及其年代约束. 地球科学——中国地质大学学报, 39 (4): 375-386. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404001.htm
      窦立荣, 宋建国, 王瑜, 1996. 郯庐断裂带北段形成的年代学及其意义. 地质评论, 42(6): 508-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199606003.htm
      韩国卿, 刘永江, 温泉波, 等, 2009. 嫩江-八里罕断裂带岭下韧性剪切带变形特征. 吉林大学学报(地球科学版), 39(3): 397-405. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903007.htm
      胡玲, 1998. 显微构造地质学概论. 北京: 地质出版社.
      黄建军, 1994. 糜棱岩研究的若干理论与应用初评. 化工地质, 16(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC402.007.htm
      李德伦, 王恩林, 2001. 构造地质学. 长春: 吉林大学出版社.
      李振生, 田晓莉, 张文俊, 等, 2013. 安徽桐城挂车河镇地区东西向韧性剪切带分形特征及其估算应变速率适用性分析. 科技导报, 31(20): 15-19. doi: 10.3981/j.issn.1000-7857.2013.20.001
      梁琛岳, 刘永江, 李伟, 等, 2011. 黑龙江省嫩江地区科洛杂岩伸展构造特征. 地质通报, 30(2-3): 291-299.
      刘俊来, 曹淑云, 邹运鑫, 等, 2008. 岩石电子背散射衍射(EBSD) 组构分析及应用. 地质通报, 27 (10) : 1638-1645. doi: 10.3969/j.issn.1671-2552.2008.10.005
      刘瑞珣, 1988. 显微构造地质学. 北京: 北京大学出版社.
      孟婧瑶, 刘永江, 梁琛岳, 等, 2013. 佳-伊断裂带韧性变形特征. 世界地质, 32(4): 800-807. doi: 10.3969/j.issn.1004-5589.2013.04.018
      石文杰, 魏俊浩, 谭俊, 等, 2014. 郯庐断裂带晚白垩世金成矿作用: 来自龙泉站金矿床黄铁矿Rb-Sr年代学证据. 地球科学——中国地质大学学报, 39 (3): 325-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403009.htm
      孙晓猛, 刘永江, 孙庆春, 等, 2008. 敦密断裂带走滑运动的40Ar/39Ar年代学证据. 吉林大学学报(地球科学版), 38(6): 965-972. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200806009.htm
      万天丰, 朱鸿, 1996. 郯庐断裂带的最大左旋走滑断距及其形成时期. 高校地质学报, 2(1): 14-27.
      万天丰, 朱鸿, 赵磊, 等, 1996. 郯庐断裂带的形成与演化: 综述. 现代地质, 10(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ602.002.htm
      王新社, 郑亚东, 杨崇辉, 等, 2001. 用动态重结晶石英颗粒的分形确定变形温度及应变速率. 岩石矿物学杂志, 20(1): 36-41. doi: 10.3969/j.issn.1000-6524.2001.01.005
      王云斌, 梁明宏, 霍勤知, 等, 2004. 利用变形花岗岩体中的长石矿物进行有限应变测量初探. 西北地质, 37(1) : 19-24. doi: 10.3969/j.issn.1009-6248.2004.01.004
      吴小奇, 刘德良, 李振生, 等, 2006. 确定变形温度和应变速率分形法的探讨—以郯庐断裂浮槎山构造岩为例. 中国地质, 33(1): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601016.htm
      夏浩然, 刘俊来, 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70. doi: 10.3969/j.issn.1671-2552.2011.01.006
      徐海军, 金淑燕, 郑伯让, 2007. 岩石组构学研究的最新技术—电子背散射衍射(EBSD). 现代地质, 21(2): 213- 225. doi: 10.3969/j.issn.1000-8527.2007.02.005
      徐嘉炜, 马国锋, 1992. 郯庐断裂带研究的十年回顾. 地质评论, 38(4): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199204003.htm
      许志琴, 王勤, 梁凤华, 等, 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm
      杨宝俊, 张梅生, 王璞君, 2003. 中国油气区地质—地球物理解析(上卷). 北京: 科学出版社.
      杨天南, 徐宏顺, 2008. 通过构造岩鉴别岩石动态重结晶的机制. 地质通报, 27(9): 1459-1467. doi: 10.3969/j.issn.1671-2552.2008.09.008
      杨晓勇, 2005. 论韧性剪切带研究及其地质意义. 地球科学进展, 20(7): 765-771. doi: 10.3321/j.issn:1001-8166.2005.07.010
      张秉良, 刘瑞珣, 向宏发, 等, 2008. 红河断裂带中南段糜棱岩分形特征及主要流变参数的估算. 地震地质, 30(2): 473-483. doi: 10.3969/j.issn.0253-4967.2008.02.012
      张波, 张进江, 郭磊, 2006. 北喜马拉雅穹隆带然巴韧性剪切带石英动态重结晶颗粒的分维几何分析与主要流变参数的估算. 地质科学, 41(1): 158-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200601014.htm
      张波, 张进江, 郭磊, 等, 2005. 北喜马拉雅穹隆带雅拉香波变质核杂岩拆离断层系中糜棱岩带构造特征及变形分析. 自然科学进展, 15(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200506010.htm
      郑亚东, 常志忠, 1985. 岩石有限应变测量及韧性剪切带. 北京: 地质出版社.
      郑亚东, 王涛, 2005. 中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析. 中国科学(D辑), 35(4): 291-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200504000.htm
      朱光, 刘国生, Dunlap, W.J., 等, 2004. 郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据. 科学通报, 49(2): 190-198. doi: 10.3321/j.issn:0023-074X.2004.02.015
      朱光, 徐佑德, 刘国生, 等, 2006. 郯庐断裂带中-南段走滑构造特征与变形规律. 地质科学, 41(2): 226-241, 255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200602006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(7)

      Article views (4463) PDF downloads(485) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return