• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 1
    Jan.  2015
    Turn off MathJax
    Article Contents
    Lin Zhanju, Niu Fujun, Luo Jing, Liu Minghao, Yin Guo'an, 2015. Thermal Regime at Bottom of Thermokarst Lakes along Qinghai-Tibet Engineering Corridor. Earth Science, 40(1): 179-188. doi: 10.3799/dqkx.2015.013
    Citation: Lin Zhanju, Niu Fujun, Luo Jing, Liu Minghao, Yin Guo'an, 2015. Thermal Regime at Bottom of Thermokarst Lakes along Qinghai-Tibet Engineering Corridor. Earth Science, 40(1): 179-188. doi: 10.3799/dqkx.2015.013

    Thermal Regime at Bottom of Thermokarst Lakes along Qinghai-Tibet Engineering Corridor

    doi: 10.3799/dqkx.2015.013
    • Received Date: 2014-07-06
    • Publish Date: 2015-01-15
    • Thermokarst lakes have greatly influenced landscapes in cold regions, and the thermal erosion of their lakeshores may induce ground instability that affects infrastructure. Our study area includes three sub-regions where thermokarst lakes have obviously extended: the Chumaerhe high plateau, Wudaoliang basin, and Beiluhe basin. Based on continual monitoring of four lakes, and sporadic observation of lake-bottom temperatures of many lakes using HOBO Sensors in 2009—2010, the thermal regime of lake bottoms and the relation between lake-bottom temperature and water depth are examined. The results show that in January, when ice cover was present, the lake-bottom temperatures at 90% of the lakes in Chumarhe high plateau were below 0 ℃, which is likely because of shallow depths and high salinity of lakes in the region. However, the lake-bottom temperature of most lakes in Wudaoliang and Beiluhe basins were above 0 ℃, except in some lakes shallower than the maximum ice thickness. In general, lake-bottom temperature in the three sub-regions increased with water depth during this period. When lakes were free of ice between June and October, the lake-bottom temperatures in the three sub-regions were all warm and the highest temperature was near 18 ℃. The seasonal increase in lake-bottom temperature in summer is more rapid in shallower lakes, and the temperatures were inversely related to water depth. The annual variation in lake-bottom temperature approximates a sinusoidal curve, with the coldest temperature occurring in January to February and the warmest in July to August.

       

    • loading
    • Brewer, M.C., 1958. The Thermal Regime of an Arctic. Eos Transactions American Geophysical Union, 39(2): 278-284. doi: 10.1029/TR039i002p00278
      Burn, C.R., 2002. Tundra Lakes and Permafrost, Richards Island, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 39(8): 1281-1298. doi: 10.1139/e2012-043
      Burn, C.R., 2005. Lake-Bottom Thermal Regimes, Western Arctic Coast, Canada. Permafrost and Periglacial Progresses, 16(4): 355-367. doi: 10.1002/ppp.542
      Cheng, G.D., 2002. Interaction between Qinghai-Tibet Railway Engineering and Permafrost and Environmental Effects. Bulletin of Chinese Academy of Sciences, (1): 21-25 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=KYYX200201006&dbcode=CJFD&year=2002&dflag=pdfdown
      Harris, S.A., 2002. Causes and Consequences of Rapid Thermokarst Development in Permafrost or Glacial Terrain. Permafrost and Periglacial Processes, 13(3): 237-242. doi: 10.1002/ppp.419
      Jin, H.J., Zhao, L., Wang, S.L., et al., 2006. The Temperature's Features of Permafrost and Its Degradation Modes along the Qinghai-Tibet Highway. Science in China (Series D), 36(11): 1009-1019 (in Chinese). doi: 10.1007/s11430-006-2003-z
      Kokelj, S.V., Jorgenson, M.T., 2013. Advances in Thermokarst Research. Permafrost and Periglacial. Processes, 24(2): 108-119. doi: 10.1002/ppp.1779
      Li, B.Y., Gu, G.A., Li, S.D., 1996. The Series of the Comprehensive Scientific Expedition to the Hoh Xil Region—Physical Environment of Qinghai. Science Press, Beijing, 100-114 (in Chinese).
      Li, Y., Gao, Y.P., Tang, Y., 2011. A Study of Information Extraction Based on QuickBird—Taking the Extraction of Cultivated Land for an Example. Guangdong Agriculture Sciences, (17): 144-146 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/5631076/
      Lin, Z.J., Niu, F.J., Ge, J.J., et al., 2010. Variation Characteristics of Thawing Lakes in Permafrost Regions of the Qinghai-Tibetan Plateau and Their Influence on the Thermal State of Permafrost. Journal of Glaciology and Geocryology, 32(2): 341-350 (in Chinese with English abstract). http://www.cqvip.com/QK/93756X/201002/33811910.html
      Lin, Z.J., Niu, F.J., Liu, H., et al., 2011a. Hydrothermal Processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology, 65(3): 446-455. doi: 10.1016/j.coldregions.2010.10.013
      Lin, Z.J., Niu, F.J., Liu, H., et al., 2011b. Disturbance-Related Thawing of a Ditch and Its Influence on Roadbeds on Permafrost. Cold Regions Science and Technology, 66(2): 105-114. doi: 10.1016/j.coldregions.2011.01.006
      Lin, Z.J., Niu, F.J., Lu, J.H., et al., 2011c. Changes in Permafrost Environments Caused by Construction and Maintenance of Qinghai-Tibet Highway. Journal of Central South University of Technology, 18(5): 1454-1464. doi: 10.1007/s11771-011-0861-9
      Lin, Z.J., Niu, F.J., Liu, H., et al., 2013. Numerical Simulation of Permafrost Degradation under Influence of Thaw Lake on Qinghai-Tibet Plateau. Acta Geologica Sinica, 87(5): 737-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201305011&dbcode=CJFD&year=2013&dflag=pdfdown
      Lin, Z.J., Niu, F.J., Luo, J., et al., 2014. Analysis on Physical and Chemical Properties of Water in Thermokarst Lakes along Qinghai-Tibet Engineering Corridor. Advances in Water Science, 25(2): 217-224 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKXJ201402009.htm
      Lin, Z.J., Niu, F.J., Xu, Z.Y., et al., 2010. Thermal Regime of a Thermokarst Lake and Its Influence on Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 21(4): 315-324. doi: 10.1002/ppp.692
      Ling, F., Zhang, T.J., 2003. Numerical Simulation of Permafrost Thermal Regime and Talik Development under Shallow Thaw Lakes on the Alaskan Arctic Coastal Plain. Journal of Geophysical Research Atmospheres, 108(D16): 26-36. doi: 10.1029/2002JD003014
      Ling, F., Wu., Q.B., Zhang, T.J., 2012. Modelling Open-Talik Formation and Permafrost Lateral Thaw under a Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 23(4): 312-321. doi: 10.1002/ppp.1754
      Niu, F.J., Dong, S., Lin, Z.J., et al., 2013. Distribution of Thermokarst Lakes and Its Thermal Influence on Permafrost along Qinghai-Tibet Highway. Advances in Earth Science, 28(6): 695-702 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201306010.htm
      Niu, F.J., Lin, Z.J., Liu, H., et al., 2011. Characteristics of Thermokarst Lakes and Their Influence on Permafrost in Qinghai-Tibet Plateau. Geomorphology, 132(3-4): 222-233. doi: 10.1016/j.geomorph.2011.05.011
      Niu, F.J., Xu, J., Lin, Z.J., et al., 2008. Engineering Activity Induced Environmental Hazards in Permafrost Regions of Qinghai-Tibet Plateau. In: Kane, D.L., Hinkel, K.M., eds., Proceedings of 9th International Conference on Permafrost, Institute of Northern Engineering, University of Alaske Fairbanks, USA.
      Ran, Y.H., Li, X., Cheng, G.D., et al., 2012. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23(4): 322-333. doi: 10.1002/ppp.1756
      Wang, G.X., Hu, H.C., Li, T.B., 2009. The Influence of Freeze-Thaw Cycles of Active Soil Layer on Surface Runoff in a Permafrost Watershed. Journal of Hydrology, 375(3-4): 438-449. doi: 10.1016/j.jhydrol.2009.06.046
      Wu, Q.B., Zhang, T.J., 2008. Recent Permafrost Warming on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 113(D13): 1-22. doi: 10.1029/2007JD009539
      Zhou, Y.W., Guo, D.X., Qiu, G.Q., et al., 2000. Geocryological in China. Science Press, Beijing (in Chinese).
      程国栋, 2002. 青藏铁路工程与多年冻土相互作用及环境效应. 中国科学院院刊, (1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX200201006.htm
      金会军, 赵林, 王绍令, 等, 2006. 青藏公路沿线冻土的地温特征及退化方式. 中国科学(D辑), 36(11): 1009-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200611003.htm
      李炳元, 顾国安, 李树德., 1996. 可可西里综合科学考察系列丛书-青海可可西里地区自然环境. 北京: 科学出版社, 100-114.
      李奕, 高雅萍, 唐尧, 2011. 基于QuickBird数据的信息提取方法研究——以耕地提取为例. 广东农业科学, (17): 144-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201117054.htm
      林战举, 牛富俊, 葛建军, 等, 2010. 青藏铁路北麓河地区典型热喀斯特湖变化特征及其对冻土热状况的影响. 冰川冻土, 32(2): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201002018.htm
      林战举, 牛富俊, 刘华, 等, 2013. 热融湖影响下多年冻土退化的数值模拟. 地质学报, 87(5): 737-746. doi: 10.3969/j.issn.0001-5717.2013.05.011
      林战举, 牛富俊, 罗京, 等, 2014. 青藏工程走廊热融湖塘水理化特性分析. 水科学进展, 2014, 25(2): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201402009.htm
      牛富俊, 董晟, 林战举, 等, 2013. 青藏公路沿线热喀斯特湖分布特征及其热效应研究. 地球科学进展, 28(6): 695-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201306010.htm
      周幼吾, 郭东信, 邱国庆, 等, 2000. 中国冻土. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (3720) PDF downloads(269) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return