• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 11
    Nov.  2015
    Turn off MathJax
    Article Contents
    Wu Songtao, Zou Caineng, Zhu Rukai, Yuan Xuanjun, Yao Jingli, Yang Zhi, Sun Liang, Bai Bin, 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162
    Citation: Wu Songtao, Zou Caineng, Zhu Rukai, Yuan Xuanjun, Yao Jingli, Yang Zhi, Sun Liang, Bai Bin, 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162

    Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin

    doi: 10.3799/dqkx.2015.162
    • Received Date: 2015-03-02
    • Publish Date: 2015-11-15
    • The successful exploration and development of shale gas have triggered an upsurge of research in global marine shale. However, more reservoir quality research of non-marine shale in oil window is still needed. Reservoir quality potential of Upper Triassic Chang 7 shale in Ordos basin was analyzed based on the data from thin section, FE-SEM, environmental SEM, nano-CT, GRI, and gas adsorption. Chang 7 shale is deposited in semi-deep to deep lake, covering an area of 10×104 km2. Geochemical data suggests that Chang 7 shale has potential of great hydrocarbon (HC) generation, with TOC > 2%, Ro=0.8%-1.0% and HI=124-480 mg/g. The brittle mineral content is 45%-59%. The total porosity and permeability are 0.6%-3.8%, 0.000 72×10-3-0.002 30×10-3 μm2 respectively. Three types of pores including interparticle pores, intra-particle pores and intra-organic matter (OM) pores are discovered, and intra-illite/smectite mix-layers pores dominate in the storage space, with small number of OM pores. The diameter of pores is 30-200 nm and the connectivity of pore system is medium to good, indicating that Chang 7 shale is of the potential to become reservoir for shale oil. The pore volume is more related to illite/smectite mix-layers content than to that of maturity and hydrocarbon index, which may suggest that the porosity in Chang 7 shale is controlled by diagenesis rather than HC generation. The residual HC is absorbed and distributed as free hydrocarbons in intra-pyrite pores, intra-illite/smectite mix-layer pores, intra-illite pores and inter-feldspar pores.

       

    • loading
    • Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2010. New Pore-Scale Considerations for Shale Gas in Place Calculations. SPE Unconventional Gas Conference, Pittsburgh.
      Chen, M., Jin, Y., Zhang, G.Q., 2008. Rock Mechanics in Petroleum Engineering. Science Press, Beijing (in Chinese).
      Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources & International Petroleum Conference, Calgary, 15. doi: 10.218/137693-MS
      Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., et al., 2012. Investigating the Microstructure of Gas Shales by FIB/SEM Tomography & STEM Imaging. AAPG 2012 Annual Conference and Exhibition, Long Beach.
      Deng, X.Q., Li, W.H., Liu, X.S., et al., 2009. Discussion on the Stratigraphic Boundary between Middle Triassic and Upper Triassic. Acta Geologica Sinica, 83(8): 1089-1096 (in Chinese with English abstract). http://www.researchgate.net/publication/287869770_Discussion_on_the_stratigraphic_boundary_between_middle_triassic_and_upper_triassic
      Desbois, G., Urai, J.L., Kukla, P.A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth Discuss, (4): 15-22. http://www.oalib.com/paper/1376104
      Dewhurst, D.N., Jones, R.M., Raven, M.D., 2002. Microstructural and Petrophysical Characterization of Muderong Shale: Application to Top Seal Risking. Petroleum Geoscience, (8): 371-383. http://www.ingentaconnect.com/content/geol/pg/2002/00000008/00000004/art00008
      Duan, Y., Cao, X.X., Zhao, Y., et al., 2014. Characteristics and Formation Mechanism of Mesozoic Underpressured Reservoirs in Ordos Basin. Earth Science—Journal of China University of Geosciences, 39(3): 341-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201403010.htm
      Fu, Q., Li, Y., 2010. Characteristics of Slope Breaks and Its Implication on Petroleum Geology in Yanchang Formation Chang 6 (Late-Triassic) of Ordos Basin. Acta Sedimentologica Sinica, 28(2): 294-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201002011.htm
      Gareth, R.C., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. doi: 10.1306/10171111052
      Hanson, A.D., Ritts, B.D., Moldwan, J.M., 2007. Organic Geochemistry of Oil and Source Rock Strata of the Ordos Basin, North-Central China. AAPG Bulletin, 91(9): 1273-1293. doi: 10.1306/05040704131
      Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201201/40612853.html
      Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013. Characteristics of Micropores in Mudstones of the Cretaceous Qingshankou Formation, Songliao Basin. Acta Petrolei Sinica, 34(1): 30-36 (in Chinese with English abstract). http://www.researchgate.net/publication/287947715_Characteristics_of_micropores_in_mudstones_of_the_Cretaceous_Qingshankou_Formation_Songliao_Basin
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
      Jia, C.Z., Zheng, M., Zhang, Y.F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263
      Jia, J.L., Liu, Z.J., Achim, B., et al., 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science—Journal of China University of Geosciences, 39(2): 174-186 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.017
      Joel, D.W., Steven, W.S., 2011. Eagle Ford Shale Reservoir Properties from Digital Rock Physics. First Break, 29: 97-100.
      Kang, Y.Z., 2012. Characteristics and Exploration Prospect of Unconventional Shale Gas Reservoirs in China. Natural Gas Industry, 32(4): 1-5 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600263
      Li, X.J., Lü, Z.G., Dong, D.Z., et al., 2009. Geologic Controls on Acunmulation of Shale Gas in North America. Natural Gas Industry, 29(5): 27-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200905006.htm
      Li, Y.X., Zhang, J.C., 2011. Types of Unconventional Oil and Gas Resources in China and Their Development Potential. International Petroleum Economics, (3): 61-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GJJJ201103012.htm
      Loucks, R.G., Reed R.M., Ruppel S.C., 2010. Preliminary Classification of Matrix Pores in Mudstones. Coast Association of Geological Societies (GCAGS), April.
      Loucks, R.G., Reed R.M., Ruppel S.C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississipian Barnett Shale. Journal of Sedimentary Research, (79): 848-861. doi: 10.2110/jsr.2009.092
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. doi: 10.1306/08171111061
      Loucks. R.G., Stephen, C.R., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. doi: 10.1306/11020606059
      Ma, Y.S., Feng, J.H., Mu, Z.H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX201206003.htm
      McCreesh, C.A., Erlich, R., Crabtree, S.J., 1991. Petrography and Reservoir Physics 2: Relating Thin Section Porosity to Capillary Pressure, the Association between Pore Types and Throat Size. AAPG Bulletin, 75: 1563-1578.
      Milner, M., McLin, R., Petriello, J., 2010. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion Milled Backscatter SEM Methods. Canadian Unconventional Resources & International Petroleum Conference, Calgary.
      Passey, Q.R., Bohacs, K.M., Esch, W.L., et al., 2010. From Oil-Prone Source Rocks to Gas-Producing Shale Reservoir—Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. CPS/SPE International Oil & Gas Conference and Exhibition, Beijing.
      Passey, Q.R., Bohacs, K.M., Esch, W.L. et al., 2012. My Source Rock is Now My Reservoir—Geologic and Petrophysical Characterization of Shale-Gas Reservoirs. 2011-2012 AAPG Distinguished Lecture, Bakersfield.
      Pepper, A.S., 1991. Estimating the Petroleum Expulsion Behaviour of Source Rocks: A Novel Quantitative Approach. In: England, W.A., Fleet, A.J., eds., Petroleum Migration. Geological Society of London, 59: 9-31.
      Pepper, A.S., Corvi, P.J., 1995. Simple Kinetic Models of Petroleum Formation: Part 1: Oil and Gas Generation from Kerogen. Marine Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-E
      Ritter, U., 2003. Solubility of Petroleum Compounds in Kerogen: Implications for Petroleum Expulsion. Organic Geochemistry, 34: 319-326. doi: 10.1016/S0146-6380(02)00245-0
      Schieber, J., 2010. Common Themes in the Formation and Preservation of Porosity in Shales and Mudstones—Illustrated with Examples Across the Phanerozoic. SPE-132370.
      Slatt, E.M., O'Neal, N.R., 2011. Pore Types in the Barnett and Woodford Gas Shale: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. doi: 10.1306/03301110145
      Stainforth, J.G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine Petroleum Geology, 26(4): 552-572. doi: 10.1016/j.marpetgeo.2009.01.006
      Tian, H., Zhang, S.C., Liu, S.B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Sinica, 33(3): 419-427 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB201203011.htm
      Yang, H., Fu, Q., Fu, J.H., 2009. Sedimentary Sequence and Petroleum Accumulation in Upper Triassic, Ordos Basin. Geological Publishing House, Beijing, 1-50 (in Chinese).
      Yang, H., Li, S.X., Liu, X.Y., 2013. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin. Acta Petrolei Sinica, 34(1): 1-11 (in Chinese with English abstract). doi: 10.1038/aps.2012.174
      Yang, H., Zhang, W.Z., 2005. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation: Geology and Geochemistry. Geochimica, 34(2): 147-154 (in Chinese with English abstract).
      Yang, J.J., 2002. Tectonic Evolution and Oil-Gas Reservoir Distribution in Ordos Basin. Petroleum Industry Press, Beijing, 50-150 (in Chinese).
      Yu, J., Yang, Y.J., Du, J.L., 2010. Sedimentation during the Transgression Period in Late Triassic Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 37(2): 181-187 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60025-0
      Zhang, W.Z., Yang, H., Li, J.F., et al., 2006. Leading Effect of High-Class Source Rock of Chang 7 in Ordos Basin on Enrichment of Low Permeability Oil-Gas Accumulation. Petroleum Exploration and Development, 33(3): 289-293 (in Chinese with English abstract).
      Zhang, W.Z., Yang, H., Yang, Y.H., et al., 2008. Petrology and Element Geochemistry and Development Environment of Yanchang Formation Chang-7 High Quality Source Rocks in Ordos Basin. Geochimica, 37(1): 59-64 (in Chinese with English abstract). http://www.researchgate.net/publication/285087763_Petrology_and_element_geochemistry_and_development_environment_of_Yanchang_Formation_Chang-7_high_quality_source_rocks_in_Ordos_Basin
      Zhao, M.W., Behr, H.J., Ahrendt, H., 1996. Thermal and Tectonic History of the Ordos Basin, China: Evidence from Apatite Fission Track Analysis, Vitrinite Reflectance, and K-Ar Dating. AAPG Bulletin, 80(6): 1110-1134. http://aapgbull.geoscienceworld.org/content/80/7/1110
      Zhao, X.Y., Zhang, Y.Y., 1990. Clay Mineral and Clay Mineral Analysis. Ocean Press, Beijing (in Chinese).
      Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      Zou, C.N., Tao, S.Z., Hou, L.H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese).
      Zou, C.N., Yang, Z., Cui, J.W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201301/44578517.html
      Zou, C.N., Yang, Z., Tao, S.Z., et al., 2012a. Nano-Hydrocatbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600111
      Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012b. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations. Acta Petrolei Sinica, 33(2): 173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203
      陈勉, 金衍, 张广清, 2008. 石油工程岩石力学. 北京: 科学出版社.
      邓秀芹, 李文厚, 刘新社, 等, 2009. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论. 地质学报. 83(8): 1089-1096. doi: 10.3321/j.issn:0001-5717.2009.08.005
      段毅, 曹喜喜, 赵阳, 等, 2014. 鄂尔多斯盆地中生界低压油藏特征与形成机制. 地球科学——中国地质大学学报, 39(3): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403010.htm
      傅强, 李益, 2010. 鄂尔多斯盆地晚三叠世延长组长6期湖盆坡折带特征及其地质意义. 沉积学报, 28(2): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002011.htm
      黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
      黄振凯, 陈建平, 王义军, 等, 2013. 松辽盆地白垩系青山口组泥岩微观孔隙特征. 石油学报, 34(1): 30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009
      贾承造, 郑民, 张永锋, 2012. 中国非常规油气资源与勘探开发前景. 石油石油勘探与开发, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
      贾建亮, 刘招君, Achim Bechtel, 等, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学——中国地质大学学报, 39(2): 174-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201402006.htm
      康玉柱, 2012. 中国非常规泥页岩油气藏特征及勘探前景展望. 天然气工业, 32(4): 1-5. doi: 10.3787/j.issn.1000-0976.2012.04.001
      李新景, 吕宗刚, 董大忠, 等, 2009. 北美页岩气资源形成的地质条件. 天然气工业, 5: 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905006.htm
      李玉喜, 张金川, 2011. 我国非常规油气资源类型和潜力. 国际石油经济, (3): 61-67. doi: 10.3969/j.issn.1004-7298.2011.03.011
      马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004
      田华, 张水昌, 柳少波, 等, 2012. 压汞法和气体吸附法研究富有机质页岩孔隙特征. 石油学报, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm
      杨华, 傅强, 付金华, 2009. 鄂尔多斯盆地晚三叠世盆地沉积层序与油气成藏. 北京: 地质出版社, 1-50.
      杨华, 李士祥, 刘显阳, 2013. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
      杨华, 张文正, 2005. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征. 地球化学, 34(2): 147-154. doi: 10.3321/j.issn:0379-1726.2005.02.007
      杨俊杰, 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社, 50-150.
      喻建, 杨亚娟, 杜金良, 2010. 鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征. 石油勘探与开发, 37(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002009.htm
      张文正, 杨华, 李剑锋, 等, 2006. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析. 石油勘探与开发, 33(3): 289-293. doi: 10.3321/j.issn:1000-0747.2006.03.006
      张文正, 杨华, 杨奕华, 等, 2008. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境. 地球化学, 37(1): 59-64. doi: 10.3321/j.issn:0379-1726.2008.01.008
      赵杏媛, 张有瑜, 1990. 粘土矿物与粘土矿物分析. 北京: 海洋出版社.
      邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
      邹才能, 陶士振, 侯连华, 等, 2011. 非常规油气地质. 北京: 地质出版社.
      邹才能, 杨智, 崔景伟, 等, 2013. 页岩形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
      邹才能, 杨智, 陶士振, 等, 2012a. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
      邹才能, 朱如凯, 吴松涛, 等, 2012b. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (4256) PDF downloads(365) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return