• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 11
    Nov.  2015
    Turn off MathJax
    Article Contents
    Zhou Hongfu, Nie Dexin, Wang Chunshan, 2015. Correlation between Wave Velocity and Deformation Modulus of Basalt Masses as Dam Foundation in Hydropower Projects. Earth Science, 40(11): 1904-1912. doi: 10.3799/dqkx.2015.171
    Citation: Zhou Hongfu, Nie Dexin, Wang Chunshan, 2015. Correlation between Wave Velocity and Deformation Modulus of Basalt Masses as Dam Foundation in Hydropower Projects. Earth Science, 40(11): 1904-1912. doi: 10.3799/dqkx.2015.171

    Correlation between Wave Velocity and Deformation Modulus of Basalt Masses as Dam Foundation in Hydropower Projects

    doi: 10.3799/dqkx.2015.171
    • Received Date: 2014-12-31
    • Publish Date: 2015-11-15
    • Deformation modulus is an important parameter for rock engineering design. However, the relation between longitudinal wave velocity and deformation modulus is often used to estimate the deformation modulus of large-scale and deep rock mass in the hydroelectric projects because it is difficult to conduct many in-situ and laboratory deformation modulus tests due to the limited funds, time and test size during the engineering survey and the test results have no general representativeness. In this paper, the intrinsic relation between longitudinal wave velocity and rock deformation modulus is theoretically explained based on the wave differential equation. Meanwhile, 132 in-situ test data derived from 4 hydropowers are used to set up an experience formula between longitudinal wave velocity and deformation modulus for basalt in the Jinsha River area. The results show that there is close relation between the basalt longitudinal wave velocity and its deformation modulus. The deformation modulus difference of different basalt rock masses by calculating of longitudinal wave velocity is small when Vp < 4 500 m/s. While it becomes larger when Vp > 4 500 m/s. The optimal equation is helpful to evaluate the deformation modulus of basalt rock mass, and it offers a quick and scientific method for selecting basic parameters of dam foundation in the hydropower projects.

       

    • loading
    • Barton, N., 2002. Some New Q-Value Correlations to Assist in Site Characterization and Tunnel Design. International Journal of Rock Mechanics & Mining Sciences, (39): 185-216. http://www.sciencedirect.com/science/article/pii/S1365160902000114
      Chun, B.S., Lee, Y.J., Seo, D.D., et al., 2006. Correlation of Deformation Modulus by PMT with RMR and Rock Mass Condition. Tunneling and Underground Space Technology, (21): 231-232. http://www.sciencedirect.com/science/article/pii/S0886779805001392
      Cui, Y.X., 2005. Probability Evaluation of Cataclastic Rock Mass Used for High Concrete Dam Foundation (Dissertation). Chengdu University of Technology, Chengdu, 46 (in Chinese with English abstract).
      Kayabasi, A., Gokceoglu, C., Ercanoglu, M., 2003. Estimating the Deformation Modulus of Rock Masses: A Comparative Study. International Journal of Rock Mechanics & Mining Sciences, (40): 55-63. http://www.sciencedirect.com/science/article/pii/S1365160902001120
      Kulatilako, P.H.S.W., Ucpirti, H., Wang, S., et al., 1992. Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-Persistent Joints and Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses. Rock Mechanics and Rock Engineering, 25(4): 253-274. doi: 10.1007/BF01041807
      Li, W.S., Huang, Z.P., Tan, X., 2010. Research and Application of Correlation between Deformation Modulus and Wave Velocity of Rock Mass in Hydroelectric Project. Chinese Journal of Rock Mechanics and Engineering, 29(Suppl. 1): 2727-2733 (in Chinese with English abstract). http://www.researchgate.net/publication/288052608_Research_and_application_of_correlation_between_deformation_modulus_and_wave_velocity_of_rock_mass_in_hydroelectric_project
      Song, Y.H., Ju, G.H., Sun, M., 2011. Relationship between Wave Velocity and Deformation Modulus of Rock Masses. Rock and Soil Mechanics, 32(5): 1507-1512, 1567 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx201105035
      The Professional Standards Compilation Group of People's Republic of China, 1999. SL228-98 Design Code for Concrete Face Rockfill Dams. China Water Power Press, Beijing (in Chinese).
      The Professional Standards Compilation Group of People's Republic of China, 2001a. SL264-2001 Specifications for Rock Tests in Water Conservancy and Hydroelectric Power Engineering. China Water Power Press, Beijing (in Chinese).
      The Professional Standards Compilation Group of People's Republic of China, 2001b. SL274-2001 Design Code for Rolled Earth-Rock Fill Dams. China Water Power Press, Beijing (in Chinese).
      The Professional Standards Compilation Group of People's Republic of China, 2005. SL319-2005 Design Specification for Concrete Gravity Dams. China Water Power Press, Beijing (in Chinese).
      Wu, X.C., Wang, S.J., Ding, E.B., 1998. Relationship between Rock Mass Deformability Modulus and the Depth. Chinese Journal of Rock Mechanics and Engineering, 17(5): 487-492 (in Chinese with English abstract). http://www.oalib.com/paper/1483832
      Zhang, L.Y., Einstein, H.H., 2004. Using RQD to Estimate the Deformation Modulus of Rock Masses. International Journal of Rock Mechanics & Mining Sciences, (41): 337-341. http://www.sciencedirect.com/science/article/pii/S136516090300100X
      Zhang, Y.H., Zhou, H.M., Wu, A.Q., et al., 2011. Statistical Analysis of Deformation Moduli of Rock Masses Based on Quality Classification. Chinese Journal of Rock Mechanics and Engineering, 30(3): 486-492 (in Chinese with English abstract).
      Zhang, Z.R., Sheng, Q., Yang, Y.S., et al., 2010. Study of Size Effect of Rock Mass Deformation Modulus Based on In-Situ Test. Rock and Soil Mechanics, 31(9): 2875-2881 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=35163518
      Zhou, H.F., 2008. Research for Multi-Complicated Rock Mass as Gravity Dam Foundation Located in the Wide River-Bed with Deep Overburden Layer (Dissertation). Chengdu University of Technology, Chengdu, 65 (in Chinese with English abstract).
      Zhou, H.F., Nie, D.X., Chen, J.M., 2010. A New Experimentation Method and an Example of Deformation Modulus for Deep Cracked Rock Mass. Journal of Jilin University (Earth Science Edition), 40(6): 1390-1394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201006025.htm
      崔银祥, 2005. 碎裂岩体用作高混凝土重力坝坝基的可能性评价(博士学位论文). 成都: 成都理工大学, 46.
      李维树, 黄志鹏, 谭新, 2010. 水电工程岩体变形模量与波速相关性研究及应用. 岩石力学与工程学报, 29(增刊1): 2727-2733. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1023.htm
      宋彦辉, 巨广宏, 孙苗, 2011. 岩体波速与坝基岩体变形模量关系. 岩土力学, 32(5): 1507-1512, 1567. doi: 10.3969/j.issn.1000-7598.2011.05.035
      吴兴春, 王思敬, 丁恩保, 1998. 岩体变形模量随深度的变化关系. 岩石力学与工程学报, 17(5): 487-492. doi: 10.3321/j.issn:1000-6915.1998.05.002
      中华人民共和国行业标准编写组, 1999. SL228-98混凝土面板堆石坝设计规范. 北京: 中国水利水电出版社.
      中华人民共和国行业标准编写组, 2001a. SL264-2001水利水电工程岩石试验规程. 北京: 中国水利水电出版社.
      中华人民共和国行业标准编写组, 2001b. SL274-2001碾压式土石坝设计规范. 北京: 中国水利水电出版社.
      中华人民共和国行业标准编写组, 2005. SL319-2005混凝土重力坝设计规范. 北京: 中国水利水电出版社.
      张宜虎, 周火明, 邬爱清, 等, 2011. 基于质量分级的岩体变形模量统计. 岩石力学与工程学报, 30(3): 486-492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103008.htm
      张占荣, 盛谦, 杨艳霜, 等, 2010. 基于现场试验的岩体变形模量尺寸效应研究. 岩土力学, 31(9): 2875-2881. doi: 10.3969/j.issn.1000-7598.2010.09.031
      周洪福, 2008. 深覆盖宽河床多种复杂岩体作为重力坝建基岩体研究(博士学位论文). 成都: 成都理工大学, 65.
      周洪福, 聂德新, 陈津民, 2010. 深部破碎岩体变形模量的一种新型试验方法及工程应用. 吉林大学学报(地球科学版), 40(6): 1390-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201006025.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(6)

      Article views (3746) PDF downloads(406) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return