• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 11
    Nov.  2015
    Turn off MathJax
    Article Contents
    Zhang Yafei, Xu Guangli, Hou Tianshun, Hu Huanzhong, 2015. PFC3D Mesoscopic Simulation of Self-Boring In-Situ Shear Pressure-Meter Model Test. Earth Science, 40(11): 1922-1932. doi: 10.3799/dqkx.2015.173
    Citation: Zhang Yafei, Xu Guangli, Hou Tianshun, Hu Huanzhong, 2015. PFC3D Mesoscopic Simulation of Self-Boring In-Situ Shear Pressure-Meter Model Test. Earth Science, 40(11): 1922-1932. doi: 10.3799/dqkx.2015.173

    PFC3D Mesoscopic Simulation of Self-Boring In-Situ Shear Pressure-Meter Model Test

    doi: 10.3799/dqkx.2015.173
    • Received Date: 2015-02-19
    • Publish Date: 2015-11-15
    • The self-boring in-situ shear pressure-meter test can obtain the strength and deformation parameters directly through its unique multi-level loading mode; however, the deformation mechanism of the soil surrounding the probe has seldom been studied. To reveal the deformation mechanism of the sand sample surrounding the probe of the self-boring in-situ shear pressure-meter (SBISP) during the loading process, the SBISP model test is simulated by PFC3D (particle flow code in three dimensions) program in this study. The development of the displacement and stress field of the soil surrounding the probe, as well as the deformation modulus of each grade of the numerical sample and the motion trails of the soil particles, are studied under multi-level loading process. The results of numerical experiments show that the displacement of particles in central area increases with the shear stress imposed stepwise, and the direction of displacement vector shows a clearly preferred direction. Several radial stress cores of approximately symmetrical distribution have formed near both sides of the probe. At the same time, the vertical stress has formed flat stress zones, and it has produced some stress concentration areas in the shoulder of the probe. The motion trails of the particles are step-like lines in the central area which can be divided into three characteristic zones as the distance to the probe increases. The vertical and horizontal displacements of particles descend in a negative exponential form, but the vertical displacement has a faster attenuation rate.

       

    • loading
    • Cundall, P.A., Strack, O.D.L., 1979. A Discrete Numerical Model for Graunlar Assemblies. Geotechnique, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
      Deng, Y.B., Zhou, J., Liu, W.B., et al., 2011. PFC Numerical Simulation of Augered Piling of Soil Displacement Screw Piles. Chinese Journal of Geotechnical Engineering, 33(9): 1391-1398 (in Chinese with English abstract). http://www.cqvip.com/QK/95758X/201109/39265705.html
      Gibson, R.E., Anderson, W.F., 1961. In-Situ Measurement of Soil Properties with the Pressuremeter. Civil Engineering Public Works Review, 56: 615-618. http://www.researchgate.net/publication/308548418_In-situ_measurement_of_soil_properties_with_the_pressuremeter
      Ma, W.W., 1999. Physics (Volume One). Higher Education Press, Beijing, 38-39 (in Chinese).
      Meng, G.T., 1997. The Mechanism, Method and Application of In-Situ Test for Soils. Geological Publishing House, Beijing, 161-204 (in Chinese).
      Shen, Z.J., 1996. Soil Sampling on Site or In-Situ Testing—A Preliminary Research on Development of Soil Parameter Test Technology. Chinese Journal of Geotechnical Engineering, 18(5): 90-91 (in Chinese).
      Xu, G.L., Zhang, X.L., Wang, C.Y., et al., 2009. The New Self-Boring Shear Pressure-Meter and Its Application. China University of Geosciences Press, Wuhan, 64-75 (in Chinese).
      Xu, G.L., Zhang, X.L., Wang, C.Y., 2010. Development and Application of Self-Boring In-Situ Shear Pressuremeter. Chinese Journal of Geotechnical Engineering, 32(6): 950-955 (in Chinese with English abstract).
      Zhang, X.L., Xu, G.L., Wang, C.Y., et al., 2007. Development and Application of Self-Boring In-Situ Shear Pressuremeter. Rock and Soil Mechanics, 28(Suppl. ): 909-913, 918 (in Chinese with English abstract).
      Zhang, X.L., Xu, G.L., Wang, C.Y., 2008. Self-Boring In-Situ Shear Pressuremeter and Its Application to Pile Foundation Engineering. Subgrade Engineering, 137(2): 63-65 (in Chinese).
      Zhang, Y.F., Xu, G.L., Shen, Y.J., et al., 2012. PFC Numerical Simulation of Self-Boring In-Situ Shear Pressuremeter Model Test. Journal of Engineering Geology, 20(5): 855-861 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201205030.htm
      Zhang, Y.F., Xu, G.L., Shen, Y.J., et al., 2014. PFC3D Numerical Experiments of Self-Boring In-Situ Shear Pressuremeter Model Test under Different Consolidation Pressures. Rock and Soil Mechanics, 35(2): 591-600 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx201402041
      Zhou, J., Chi, Y., Chi, Y.W., et al., 2000a. The Method of Particle Flow and PFC2D Code. Rock and Soil Mechanics, 21(3): 271-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200003019.htm
      Zhou, J., Chi, Y.W., Chi, Y., et al., 2000b. Simulation of Biaxial Test on Sand by Particle Flow Code. Chinese Journal of Geotechnical Engineering, 22(6): 701-704 (in Chinese with English abstract).
      Zhou, J., Chi, Y., 2003. Mesomechanical Simulation of Sand Mechanical Properties. Rock and Soil Mechanics, 24(6): 901-906 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200306006.htm
      Zhou, J., Zhang, G., Zeng, Q.Y., 2007. Model Tests and PFC2D Numerical Analysis of Active Laterally Loaded Piles. Chinese Journal of Geotechnical Engineering, 29(5): 650-656 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ytgcxb200705004
      邓益兵, 周健, 刘文白, 等, 2011. 螺旋挤土桩下旋成孔过程的颗粒流数值模拟. 岩土工程学报, 33(9): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109017.htm
      马文蔚, 1999. 物理学(上册). 北京: 高等教育出版社, 38-39.
      孟高头, 1997. 土体原位测试机理、方法及其工程应用. 北京: 地质出版社, 161-204.
      沈珠江, 1996. 原状取土还是原位测试——土质参数测试技术发展方向刍议. 岩土工程学报, 18(5): 94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC605.015.htm
      徐光黎, 张晓伦, 王春艳, 等, 2009. 新型自钻式剪切旁压仪及其应用. 武汉: 中国地质大学出版社, 64-75.
      徐光黎, 张晓伦, 王春艳, 2010. 自钻式原位剪切旁压仪的开发及应用. 岩土工程学报, 32(6): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006028.htm
      张晓伦, 徐光黎, 王春艳, 等, 2007. 自钻式原位剪切旁压仪及其工程应用. 岩土力学, 28(增刊): 909-913, 918. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1184.htm
      张晓伦, 徐光黎, 王春艳, 2008. 自钻式旁压剪切仪及其应用于桩基工程的讨论. 路基工程, 137(2): 63-65. doi: 10.3969/j.issn.1003-8825.2008.02.030
      张亚飞, 徐光黎, 申艳军, 等, 2012. 自钻式原位剪切旁压模型试验颗粒流模拟. 工程地质学报, 20(5): 855-861. doi: 10.3969/j.issn.1004-9665.2012.05.029
      张亚飞, 徐光黎, 申艳军, 等, 2014. 自钻式原位剪切旁压模型不同固结荷载颗粒流数值试验. 岩土力学, 35(2): 591-600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402041.htm
      周健, 池永, 池毓蔚, 等, 2000a. 颗粒流方法及PFC2D程序. 岩土力学, 21(3): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200003019.htm
      周健, 池毓蔚, 池永, 等, 2000b. 砂土双轴试验的颗粒流模拟. 岩土工程学报, 22(6): 701-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200006013.htm
      周健, 池永, 2003. 砂土力学性质的细观模拟. 岩土力学, 24(6): 901-906. doi: 10.3969/j.issn.1000-7598.2003.06.006
      周健, 张刚, 曾庆有, 2007. 主动侧向受荷桩模型试验与颗粒流数值模拟研究. 岩土工程学报, 29(5): 650-656. doi: 10.3321/j.issn:1000-4548.2007.05.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(3)

      Article views (3826) PDF downloads(470) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return