• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 4
    Apr.  2016
    Turn off MathJax
    Article Contents
    Wu Yu, Xiang Wu, Fu Xianfang, Li Qili, Su Jing, Gong Wen, Wang Han, 2016. Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland. Earth Science, 41(4): 683-691. doi: 10.3799/dqkx.2016.057
    Citation: Wu Yu, Xiang Wu, Fu Xianfang, Li Qili, Su Jing, Gong Wen, Wang Han, 2016. Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland. Earth Science, 41(4): 683-691. doi: 10.3799/dqkx.2016.057

    Effect of Phenolic Acids Derived from Peatland on Surface Behavior of Iron and Its Significance:A Case Study in Hani Peatland

    doi: 10.3799/dqkx.2016.057
    • Received Date: 2015-09-16
    • Publish Date: 2016-04-15
    • The influence of dissolved organic matters as metal chelators on the bio-available iron input to the ocean has been widely reported by several studies. However, natural dissolved organic matters, especially the phenolics originated from peatlands and geochemical interactions with iron remains poorly understood. Hani peatland, as the national nature reserve in Jilin Province, is located in the central Longgang Mountain on the west side of Changbai Mountains. Physiochemical characteristics of water samples collected from rivers in Hani, including total dissolved iron, ferrous iron, dissolved organic carbon and pH etc., were detected in the field. Inner connections of these indexes were demonstrated through multivariate statistical analysis and simulation experiments on geochemical interactions between iron and phenolic acids were conducted in laboratory. Results show that total dissolved phenol plays an important role in the existence and transportation of ferrous iron. Ten phenolic acid, including protocatechuic acid, caffeic acid, gallic acid, gentisic acid, syringic acid, ferulic acid, p-hydroxybenzoic acid, p-coumaric acid, salicylic acid and vanillic acid, were detected by high performance liquid chromatography. Simulation experiments reveal that phenolics bearing either catechol or galloyl moiety groups (protocatechuic acid, caffeic acid and galllic acid) could chelate ferrous iron, which is the geochemical cause of high concentration of dissolved iron and is crucial for iron transport in peatland. Reducing action of phenolics to Fe(Ⅲ) is also responsible for maintaining high concentration of Fe(Ⅱ) and Fe(Ⅲ) in rivers drained from peatland. Considering the wide distribution of peatlands globally, the higher concentration of Fe in peatlands, and the enhancement of marine organisms by Fe, the complexation and reductive actions between iron and phenolics originated from peatlands are of important significance to global iron cycle coupled with other element cycles, such as carbon and sulfur, which can significantly influence global ecological balance.

       

    • loading
    • Andjelkovi, M., van Camp, J., de Meulenaer, B., et al., 2006.Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups.Food Chemistry, 98(1):23-31.doi: 10.1016/j.foodchem.2005.05.044
      Boyd, P.W., Jickells, T., Law, C.S., et al., 2007.Mesoscale Iron Enrichment Experiments 1993-2005:Synthesis and Future Directions Will Ocean Fertilization Work? Science, 315(5616):612-617.doi: 10.1126/science.1131669
      Dwibedy, P., Dey, G.R., Naik, D.B., et al., 1999.Pulse Radiolysis Studies on Redox Reactions of Gallic Acid:One Electron Oxidation of Gallic Acid by Gallic Acid OH Adduct.Physical Chemistry Chemical Physics, 1(8):1915-1918.doi: 10.1039/A809147A
      Falkowski, P., Scholes, R.J., Boyle, E., et al., 2000.The Global Carbon Cycle:A Test of Our Knowledge of Earth as a System.Science, 290(5490):291-296.doi: 10.1126/science.290.5490.291
      Fan, D.J., Ye, S.Y., Ding, X.G., et al., 2014.Authigenic Lepidocrocite and Greigite Particles in Aquatic Environment off the Yangtze River Estuary.Earth Science, 39(10):1464-1470.
      Gajewski, K., 2001.Sphagnum Peatland Distribution in North America and Eurasia during the Past 21 000 Years.Global Biogeochemical Cycles, 15(2):297-310.doi: 10.1029/2000GB001286
      Graham, T.L., 1991.Flavonoid and Isoflavonoid Distribution in Developing Soybean Seedling Tissues and in Seed and Root Exudates.Plant Physiol, 95(2):594-603. doi: 10.1104/pp.95.2.594
      Harwood, C.S., Parales, R.E., 1996.The b-Ketoadipate Pathway and the Biology of Self-Identity.Annual Review of Microbiology, 50(1):553-590.doi: 10.1146/annurev.micro.50.1.553
      Huang, T., 2013.Peatland Archives of Holocene Volcanic Eruption Response to Paleoclimate in Northeast China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Jiang, M., Lü, X.G., Yang, Q., et al., 2006.Iron Biogeochemical Cycle and Its Environmental Effect in Wetlands.Acta Pedologica Sinica, 43(3):493-499 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200603019.htm
      Jiang, S.J., Liu, Z.Y., 2002.The Meaning of UV254 as an Organic Matter Monitoring Parameter in Water Supply & Wastewater Treatment.Journal of Chongqing Jianzhu University, 24(2):61-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JIAN200202014.htm
      Krachler, R., Krachler, R.F., von der Kammer, F., et al., 2010.Relevance of Peat-Draining Rivers for the Riverine Input of Dissolved Iron into the Ocean.Science of the Total Environment, 408(11):2402-2408.doi: 10.1016/j.scitotenv.2010.02.018
      Liesack, W., Schnell, S., Revsbech, N.P., 2000.Microbiology of Flooded Rice Paddies.FEMS Microbiology Reviews, 24(5):625-645.doi: 10.1016/S0168-6445(00)00050-4
      Liu, W.K., 2001.The Studies on Fe Provision Mechanisms and Biological Effects of Compound Iron Fertilizer.Agricultural University of Hebei, Baoding (in Chinese with English abstract).
      Martin, J.H., 1990.Glacial-Interglacial CO2 Change:The Iron Hypothesis.Paleoceanography, 5(1):1-13.doi: 10.1029/PA005i001p00001
      Martin, J.H., Fitzwater, S.E., 1988.Iron Deficiency Limits Phytoplankton Growth in the North-East Pacific Subarctic.Nature, 331(6154):341-343.doi: 10.1038/331341a0
      Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990.Iron in Antarctic Waters.Nature, 345(6271):156-158.doi: 10.1038/345156a0
      Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1991.The Case for Iron.Limnol.Oceanogr., 36:1793-1802.doi: 10.4319/lo.1991.36.8.1793
      Matsunaga, K., Nishioka, J., Kuma, K., et al., 1998.Riverine Input of Bioavailable Iron Supporting Phytoplankton Growth in Kesennuma Bay(Japan).Water Research, 32(11):3436-3442.doi: 10.1016/S0043-1354(98)00113-4
      Moran, J.F., Klucas, R.V., Grayer.R.J., et al., 1997.Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues:Prooxidant and Antioxidant Properties.Free Radical Biology and Medicine, 22(5):861-870. doi: 10.1016/S0891-5849(96)00426-1
      Powell, R.T., Landing, W.M., Bauer, J.E., 1996.Colloidal Trace Metals, Organic Carbon and Nitrogen in a Southeastern U.S.Estuary.Marine Chemistry, 55(1-2):165-176.doi: 10.1016/S0304-4203(96)00054-0
      Powell, R.T., Wilson-Finelli, A., 2003.Importance of Organic Fe Complexing Ligands in the Mississippi River Plume.Estuarine, Coastal and Shelf Science, 58(4):757-763.doi: 10.1016/S0272-7714(03)00182-3
      Pracht, J., Boenigk, J., Isenbeck-Schröter, M., et al., 2001.Abiotic Fe (Ⅲ) Induced Mineralization of Phenolic Substances.Chemosphere, 44(4):613-619.doi: 10.1016/S0045-6535(00)00490-2
      Qiao, S.Y., 1993.A Preliminary Study on Hani Peat-Mire in the West Part of the Changbai Mountain.Scientia Geographica Sinica, 13(3):279-287(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX199303011.htm
      Raiswell, R., 2006.Towards a Global Highly Reactive Iron Cycle.Journal of Geochemical Exploration, 88(1):436-439.doi: 10.1016/j.gexplo.2005.08.098
      Roden, E.E., Wetzel, R.G., 2002.Kinetics of Microbial Fe(Ⅲ) Oxide Reduction in Freshwater Wetland Sediments.Limnology and Oceanography, 47(1):198-211.doi: 10.4319/lo.2002.47.1.0198
      Rose, A.L., Waite, T.D., 2003.Kinetics of Iron Complexation by Dissolved Natural Organic Matter in Coastal Waters.Marine Chemistry, 84(1-2):85-103.Doi: 10.1016/S0304-4203(03)00113-0
      Saitoh, Y., Nakatsuka, T., Kuma, K., et al., 2008.Processes Influencing Iron Distribution in the Coastal Waters of the Tsugaru Strait, Japan.Journal of Oceanography, 64(6):815-830.doi: 10.1007/s10872-008-0068-3
      Strli, M., Radovi, T., Kolar, J., et al., 2002.Anti-and Prooxidative Properties of Gallic Acid in Fenton-Type Systems.Journal of Agricultural and Food Chemistry, 50(22):6313-6317.doi: 10.1021/jf025636j
      Sun, X.T., 2011.Effects of Hydrothermal Changes on Phenolic Compounds and Phenol Oxidase Activities in Peatlands (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Turner, S.M., Nightingale, P.D., Spokes, L.J., et al., 1996.Increased Dimethyl Sulphide Concentrations in Sea Water from In-Situ Iron Enrichment.Nature, 383(6600):513-517.doi: 10.1038/383513a0
      Wan, X., Xiang, W., Wu, Y., et al., 2013a.Causes of High Concentration Dissolved Iron in Plateau Peatland.Environmental Science & Technology, 36(11):7-11.doi: 10.3969/j.issn.1003-6504.2013.11.002
      Wan, X., Xiang, W., Yu, S., 2013b.Determination of Phenols from Peatland Water by Solid Phase Extraction and High Performance Liquid Chromatography.Chinese Journal of Analysis Laboratory, 32(10):15-19.doi: 10.13595/j.cnki.issn1000-0720.2013.0259
      Windom, H.L., Niencheski, L.F., Smith Jr, R.G., 1999.Biogeochemistry of Nutrients and Trace Metals in the Estuarine Region of the Patos Lagoon (Brazil).Estuarine, Coastal and Shelf Science, 48(1):113-123.Doi: 10.1006/ecss.1998.0410
      Witter, A.E., Luther Ⅲ, G.W., 1998.Variation in Fe-Organic Complexation with Depth in the Northwestern Atlantic Ocean as Determined Using a Kinetic Approach.Marine Chemistry, 62(3-4):241-258.doi: 10.1016/S0304-4203(98)00044-9
      Xu, S.L., Duan, W.H., Liu, S.J., et al., 1986.A Study on the Ferrous Iron Oxidized by the Air in Aqueous Solution—Ⅰ.The Effect of pH Value on the Oxidizing Rate and the Catalytic Mechanism of the "Screen Effect" on Hydrated Ferrous Ion Destroyed by the Hydrolytic Product of Ferric Ion.Journal of Yunnan University, 8(2):191-197 (in Chinese with English abstract).
      Zhao, G.M., Chen, B., Wang, L., et al., 2014.Sedimentary Environmental Partitioning of Holocene Strata and Assessment of Carbon Burial Rate of Various Paleo-Environments in the Yellow River Delta.Earth Science, 39(4):451-461.
      Zou, Y.C., Jiang, M., 2008.Comparison of Analysis and Determination Methods of Iron in Wetland Soil.Wetland Science, 6(2):136-141(in Chinese with English abstract).
      范德江, 陈彬, 王亮, 等, 2014.长江口外悬浮颗粒物中自生纤铁矿和胶黄铁矿.地球科学, 39(10):1464-1470. http://earth-science.net/WebPage/Article.aspx?id=2947
      黄庭, 2013. 东北泥炭记录的全新世火山喷发事件及其古气候响应研究(博士学位论文). 武汉: 中国地质大学.
      姜明, 吕宪国, 杨青, 等, 2006.湿地铁的生物地球化学循环及其环境效应.土壤学报, 43(3):493-499. doi: 10.11766/trxb200412270320
      蒋绍阶, 刘宗源, 2002.UV254作为水处理中有机物控制指标的意义.重庆建筑大学学报, 24(2):61-65.
      刘文科, 2001. 复混铁肥的供铁机理及其生物效应研究(硕士学位论文). 保定: 河北农业大学.
      乔石英, 1993.长白山西麓哈尼泥炭沼泽初探.地理科学, 13(3):279-287. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199303011.htm
      孙兴庭, 2011. 水热条件变化对泥炭沼泽中酚类物质和酚氧化酶的影响及其意义(硕士学位论文). 武汉: 中国地质大学.
      万翔, 向武, 邬钰, 等, 2013a.高原泥炭沼泽区高浓度溶解性铁的成因研究.环境科学与技术, 36(11):7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201311002.htm
      万翔, 向武, 于桑, 等, 2013b.固相萃取-高效液相色谱法同时测定泥炭沼泽源水体中9种酚类物质.分析试验室, 32(10):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201310006.htm
      徐绍龄, 段维恒, 刘时杰, 等.空气氧化水溶液中亚铁离子的研究——Ⅰ.溶液pH值对氧化速率的影响及铁的水解产物破坏水合亚铁离子"遮蔽效应"的催化机理.云南大学学报(自然科学版), 8(2):191-197. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ198602015.htm
      赵广明, 叶思源, 丁喜桂, 等, 2014.黄河三角洲全新世以来沉积环境的划分及各环境中碳埋藏速率的评价.地球科学, 39(4):451-461. http://earth-science.net/WebPage/Article.aspx?id=2854
      邹元春, 姜明, 2008.湿地土壤铁的分析测定方法比较.湿地科学, 6(2):136-141. http://www.cnki.com.cn/Article/CJFDTOTAL-KXSD200802007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (5046) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return