• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 4
    Apr.  2016
    Turn off MathJax
    Article Contents
    Yang Yong, He Gaowen, Zhu Kechao, Yao Huiqiang, Ma Jinfeng, Yang Shengxiong, Deng Xiguang, 2016. Classification of Seafloor Geological Types of Qianyu Seamount from Mid-Pacific Seamounts Using Multibeam Backscatter Intensity Data. Earth Science, 41(4): 718-728. doi: 10.3799/dqkx.2016.061
    Citation: Yang Yong, He Gaowen, Zhu Kechao, Yao Huiqiang, Ma Jinfeng, Yang Shengxiong, Deng Xiguang, 2016. Classification of Seafloor Geological Types of Qianyu Seamount from Mid-Pacific Seamounts Using Multibeam Backscatter Intensity Data. Earth Science, 41(4): 718-728. doi: 10.3799/dqkx.2016.061

    Classification of Seafloor Geological Types of Qianyu Seamount from Mid-Pacific Seamounts Using Multibeam Backscatter Intensity Data

    doi: 10.3799/dqkx.2016.061
    • Received Date: 2015-06-07
    • Publish Date: 2016-04-15
    • Cobalt-rich ferromanganese crusts are mainly distributed around the top brim and on the slope of Mid-Pacific seamounts and West Pacific seamounts. Calcium-pelagic sediment, carbonate rock and debris flow driven by gravity process are main seafloor sediment types of seamounts, which control the distribution of cobalt-rich ferromanganese crusts. In this paper, multibeam backscatter intensity data from EM122 multibeam system are first used in China to recognize seafloor geological types of Qianyu seamount on Mid-Pacific seamounts. Backscatter data are processed and classified statistically with verification of sub-bottom profile and ground-truthing data to identify four seafloor geological types including cobalt-rich crust, calcium-pelagic sediment, carbonate rock and debris flow. Different backscatter intensities are represented by different seafloor geological types, cobalt-rich crust area shows as uniform strong backscatter intensity representing, and calcium-pelagic sediment area shows as uniform weak backscatter, their backscatter difference is about 20 dB. The top of Qianyu seamount is mostly outcropped by carbonate rock, and locally covered by calcium-pelagic sediment, and cobalt-rich crust distribute around the top brim and southern and eastern slope ridges. Furthermore, three gravity slide areas are recognized on the Qianyu seamount, which are of debris flows.

       

    • loading
    • Anderson, J.T., 2007.Acoustic Seabed Classification of Marine Physical and Biological Landscapes.ICES Cooperative Research Report, 286:1-6.
      Anderson, J.T., Holliday, D.V., Kloser, R., et al., 2008.Acoustic Seabed Classification:Current Practice and Future Directions.ICES Journal of Marine Science, 65:1004-1011. doi: 10.1093/icesjms/fsn061
      Aplin, A.C., Cronan, D.S., 1985.Ferromanganese Oxide Deposits from the Central Pacific Ocean-Ⅰ.Encrustsations from the Line Island Archipelago.Geochimica et Cosmochimica Acta, 49:427-436. doi: 10.1016/0016-7037(85)90034-1
      Chakraborty, B., Kodagali, V., 2004.Characterizing Indian Ocean Manganese Nodule-Bearing Seafloor Using Multi-Beam Angular Backscatter.Geo-Marine Letters, 24:8-13. doi: 10.1007/s00367-003-0153-y
      Clouard, V., Bonneville, A., 2005.Ages of Seamounts, Islands and Plateaus on the Pacific Plate.In:Foulger, G.R., Natland, J.H., Presnall, D., et al., eds., Plates, Plumes and Paradigms (Special Paper).Geological Society of America.CRC Press, Boulder, 338:71-90.
      Craig, J.D., Andrews, J.E., Meylan, M.A., 1982.Ferromanganese Deposits in the Hawaiian Archipelago.Marine Geology, 45:127-157. doi: 10.1016/0025-3227(82)90183-9
      Edwards, B.D., Dartnel, P., Chezar, H., 2003.Characterizing Benthic Substrates of Santa Monica Bay with Seafloor Photography and Multibeam Sonar Imagery.Marine Environmental Research, 56:47-66. doi: 10.1016/S0141-1136(02)00324-0
      Ellingsen, K.E., Gray, J.S., Bjombom, E., 2002.Acoustic Classification of Seabed Habitats Using the QTC VIEW System.Journal of Marine Science, 59:825-835. http://cat.inist.fr/?aModele=afficheN&cpsidt=21627570
      Goff, J.A., Olson, H.C., Duncan, C.S., 2000.Correlation of Side-Scan Backscatter Intensity with Grain-Size Distribution of Shelf Sediments, New Jersey Margin.Geo-Marine Letters, 20:43-49. doi: 10.1007/s003670000032
      He, G.W., Liang, D.H., Song, C.B., et al., 2004.Determining the Distribution Boundary of Cobalt-Rich Crusts of Guyot by Synchronous Application of Sub-Bottom Profiling and Deep-Sea Video Recording.Earth Science, 30(4):509-512(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200504019.htm
      Hein, J.R., Koschinsky, A., Bau, M., et al., 2000.Cobalt-Rich Ferromanganese Crusts in the Pacific.In:Cronan, D.S., ed., Handbook of Marine Mineral Deposits.CRC Press, Boca Raton, 239-279.
      Kloser, R., 2007.Seabed Backscatter, Data Collection, and Quality Overview.Cooperative Research Report, 286:45-60.
      Kodama, T., Maeda, K., 1996.Interpretation of a Backscattering Image for the Prospecting of Cobalt-Rich Manganese Crust.The Journal of the Acoustical Society of America, 100(4):2667. doi: 10.1121/1.417493
      Lee, S.H., Kim, K., 2004.Side-Scan Sonar Characteristics and Manganese Nodule Abundance in the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific.Marine Georesources & Geotechnology, 22:100-114. doi: 10.1080/10641190490473434?src=recsys&journalCode=umgt20
      Lee, T.G., Hein, J.R., Lee, K., et al., 2005.Sub-Seafloor Acoustic Characterization of Seamounts near the Ogasawara Fracture Zone in the Western Pacific Using Chirp (3-7 kHz) Sub-Bottom Profiles.Deep-Sea Research Ⅰ, 52:1932-1956. doi: 10.1016/j.dsr.2005.04.009
      Lee, T.G., Lee, K., Hein, J.R., et al., 2009.Geophysical Investigation of Seamounts near the Ogasawara Fracture Zone, Western Pacific.Earth Planets and Space, 61:319-331. doi: 10.1186/BF03352914
      Manheim, F.T., 1986.Marine Cobalt Resources.Science, 232(4750):600-608. doi: 10.1126/science.232.4750.600
      Masson, D.G., Canals, M., Alonso, B., et al., 1998.The Canary Debris Flow:Source Area Morphology and Failure Mechanisms.Sedimentology, 45:411-432. doi: 10.1046/j.1365-3091.1998.0165f.x
      Masson, D.G., Watts, A.B., Gee, M.J.R., et al., 2002.Slope Failures on the Flanks of the Western Canary Islands.Earth-Science Reviews, 57:1-35. doi: 10.1016/S0012-8252(01)00069-1
      Pearson, P.N., 1995.Planktonic Foraminifer Biostratigraphy and the Development of Pelagic Caps on Guyots in the Marshall Islands Group.Proceedings of the Ocean Drilling Program(Scientific Results), 144:21-59. http://cat.inist.fr/?aModele=afficheN&cpsidt=3152808
      Simard, Y., Stepnowski, A., 2007.Classification Methods and Criteria.ICES Cooperative Research Report, 286:61-72.
      Tao, C.H., Jin, X.L., Xu, F., et al., 2004.The Prospect of Seabed Classification Technology.Donghai Marine Science, 22(3):28-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY200403004.htm
      Thomas, K., 2012.Developing a Strategy for the Exploration of Vast Seafloor Areas for Prospective Magnganese Nodule Fields.In:Zhou, H.Y., Morgan, C.L., eds., Marine Minerals:Finding the Right Balance of Sustainable Development and Environmental Protection.41st Conference of Underwater Mining Institute, Shanghai.
      Usui, A., Okamoto, N., 2010.Geophysical and Geological Exploration of Cobalt-Rich Ferromanganese Crusts:An Attempt of Small-Scale Mapping on a Micronesian Seamount.Marine Georesources & Geotechnology, 28(3):192-206.
      Wessel, P., Sandwell, D.T., Kim, S.S., 2010.The Global Seamount Census.Oceanography, 23(1):24-33. doi: 10.5670/oceanog
      Winterer, E.L., Metzler, C.V., 1984.Origin and Subsidence of Guyots in Mid-Pacific Mountains.Journal of Geophysical Research, 89(B12):9969-9979. doi: 10.1029/JB089iB12p09969
      Winterer, E.L., Waasbergen, R.V., Mammerickx, J., et al., 1995.Karst Morphology and Diagenesis of the Top of Albian Limestone Platforms, Mid-Pacific Mountanins.Proceedings of the Ocean Drilling Program(Scientific Results), 143:433-470. http://www-odp.tamu.edu/publications/143_SR/VOLUME/CHAPTERS/sr143_29.pdf
      Zhang, G.Y., Tao, C.H., Li, H.M., et al., 2012.Seafloor Classification in Hydrothermal Field Using Multi-Beam Sonar.Marine Geology Frontiers, 28(7):59-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201207010.htm
      何高文, 梁东红, 宋成兵, 等, 2005.浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线.地球科学, 30(4):509-512. http://earth-science.net/WebPage/Article.aspx?id=1408
      陶春辉, 金翔龙, 许枫, 等, 2004.海底声学底质分类技术的研究现状与前景.东海海洋, 22(3):28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DHHY200403004.htm
      张国堙, 陶春辉, 李怀明, 等, 2012.多波束声参数在海底热液区底质分类中的应用——以东太平洋海隆"宝石山"热液区为例.海洋地质前沿, 28(7):59-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201207010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (4560) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return