• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 6
    Jun.  2016
    Turn off MathJax
    Article Contents
    Wang Xiaoxian, Zhang Jinjiang, Wang Jiamin, 2016. Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications. Earth Science, 41(6): 982-998. doi: 10.3799/dqkx.2016.082
    Citation: Wang Xiaoxian, Zhang Jinjiang, Wang Jiamin, 2016. Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications. Earth Science, 41(6): 982-998. doi: 10.3799/dqkx.2016.082

    Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications

    doi: 10.3799/dqkx.2016.082
    • Received Date: 2015-12-16
    • Publish Date: 2016-06-15
    • Situated in the middle of Tethyan Himalaya, northern Himalayan granites not only better our understanding of melting behaviors and mechanism of the crust during the collisional orogenic processes, but also facilitate the investigation and evaluation of tectonic-magmatic evolution of the Himalayan orogen.In this paper, we present geochronological, geochemical and Sr-Nd isotopic data of the Paiku granites in the northern Himalaya.LA-MC-ICP-MS zircon U-Pb dating reveals that Paiku granites were crystallized from 23.9 Ma to 16.5 Ma and have experienced at least two episodes of anatexis at 22.3±0.6 Ma and 17.3±0.3 Ma, respectively. The age of 17.3±0.3 Ma probably represents the final crystallized timing.Bulk-rock major and trace elements analyses indicate that Paiku granites were characterized by high SiO2(71.87% to 75.56%), Al2O3(13.57% to 15.49%), K2O(3.34% to 4.59%), and high values of K2O/Na2O(1.02 to 1.39), A/CNK(1.21 to 1.23), and enrichment in Rb, Th, U, depletion in Ba, Nb, Sr, Zr and no or weak negative Eu anomalies ((La/Yb)N=10.76-16.60), and strong fractionation between LREE and HREE (δEu=0.76-0.97). These features demonstrate that Paiku granites belong to high potassium Calc-alkaline and peraluminous granites. The values of (87Sr/86Sr)i and εNd(t) range from 0.736 184 to 0.741 258 and from -14.6 to -14.3, and can compare well with the metasedimentary rock in the Greater Himalaya Crystalline complex (GHC). It is inferred that the Paiku granites were generated from partial melting of the GHC metasedimentary rocks. The granites show relatively high Sr, but low Rb and Rb/Sr which are nearly constant relative to large variations in Ba concentrations. These features are concordant with the trend of fluxed muscovite partial melting. Based on above evidences, we suggest the Paiku granites were derived from fluxed partial melting of the GHC metasedimentary rock, possibly related closely with the structural activity along the South Tibet detachment system (STDS).

       

    • loading
    • Ahmad, T., Harris, N., Bickle, M., et al., 2000.Isotopic Constraints on the Structural Relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya.Geological Society of America Bulletin, 112(3):467-477.doi:10.1130/0016-7606(2000)112 < 467:ICOTSR>2.0CO; 2
      Aikman, A.B., Harrison, T.M., Ding, L., 2008.Evidence for Early ( > 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet.Earth and Planetary Science Letters, 274(1-2):14-23.doi: 10.1016/j.epsl.2008.06.038
      Annen, C., Scaillet, B., Sparks, R.S.J., 2006.Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex:The Manaslu Leucogranite, Nepal Himalaya.Journal of Petrology, 47(1):71-95.doi: 10.1093/petrology/egi068
      Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement.Geology, 33(11):853-856.doi: 10.1130/G21806.1
      Black, L.P., Kamo, S.L., Allen, C.M., et al., 2003.TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochronology.Chemical Geology, 200(1-2):155-170.doi: 10.1016/S0009-2541(03)00165-7
      Brookfield, M.E., 1993.The Himalayan Passive Margin from Precambrian to Cretaceous Times.Sedimentary Geology, 84(1-4):1-35.doi: 10.1016/0037-0738(93)90042-4
      Catlos, E.J., Harrison, T.M., Manning, C.E., et al., 2002.Records of the Evolution of the Himalayan Orogen from in Situ Th-Pb Ion Microprobe Dating of Monazite:Eastern Nepal and Western Garhwal.Journal of Asian Earth Sciences, 20(5):459-479.doi: 10.1016/S1367-9120(01)00039-6
      Chambers, J., Parrish, R., Argles, T., et al., 2011.A Short-Duration Pulse of Ductile Normal Shear on the Outer South Tibetan Detachment in Bhutan:Alternating Channel Flow and Critical Taper Mechanics of the Eastern Himalaya.Tectonics, 30(2):TC2005-1-12.doi: 10.1029/2010TC002784.
      Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2007.Structural Insights into the Early Stages of Exhumation along an Orogen-Scale Detachment:The South Tibetan Detachment System, Dzakaa Chu Section, Eastern Himalaya.Journal of Structural Geology, 29(11):1781-1797.doi: 10.1016/j.jsg.2007.08.007
      Cottle, J.M., Jessup, M.J., Newell, D.L., et al., 2009.Geochronology of Granulitized Eclogite from the Ama Drime Massif:Implications for the Tectonic Evolution of the South Tibetan Himalaya.Tectonics, 28(1):TC1002-1-25.doi: 10.1029/2008TC002256.
      Daniel, C., Vidal, P., Fernandez, A., et al., 1987.Isotopic Study of the Manaslu Granite (Himalaya, Nepal):Inferences on the Age and Source of Himalayan Leucogranites.Contributions to Mineralogy and Petrology, 96(1):78-92.doi: 10.1007/BF00375529
      Davidson, C., Grujic, D.E., Hollister, L.S., et al., 1997.Metamorphic Reactions Related to Decompression and Synkinematic Intrusion of Leucogranite, High Himalayan Crystallines, Bhutan.Journal of Metamorphic Geology, 15(5):593-612.doi: 10.1111/j.1525-1314.1997.tb00638.x
      Edwards, M.A., Harrison, T.M., 1997.When Did the Roof Collapse?Late Miocene North-South Extension in the High Himalaya Revealed by Th-Pb Monazite Dating of the Khula Kangri Granite.Geology, 25(6):543-546.doi:10.1130/0091-7613(1997)025 < 0543:WDTRCL>2.3.CO; 2
      Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155.doi: 10.1016/j.gca.2014.01.003
      Gao, L.E., Zeng, L.S., Hou, K.J., et al., 2013.Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet.Chinese Science Bulletin, 58(28-29):3546-3563.doi: 10.1007/s11434-013-5792-4
      Gao, L.E., Zeng, L.S., Wang, L., et al., 2013.Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite within the Northern Himalayan Gneiss Domes, Southern Tibet.Acta Petrologica Sinica, 29(6):1995-2012 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306011.htm
      Guo, L., Zhang, J.J., Zhang, B., 2008.Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya.Progress in Natural Science, 18(7):851-860.doi: 10.1016/j.pnsc.2008.01.016
      Guo, Z.F., Wilson, M., 2012.The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting.Gondwana Research, 22(2):360-376.doi: 10.1016/j.gr.2011.07.027
      Harris, N.B.W., Ayres, M., Massey, J., 1995.Geochemistry of Granitic Melts Produced during the Incongruent Melting of Muscovite:Implications for the Extraction of Himalayan Leucogranite Magmas.Journal of Geophysical Research:Solid Earth, 100(B8):15767-15777.doi: 10.1029/94JB02623
      Harris, N.B.W., Massey, J., 1994.Decompression and Anatexis of Himalayan Metapelites.Tectonics, 13(6):1537-1546.doi: 10.1029/94TC01611
      Harris, N.B.W., Inger, S., 1992.Trace Element Modelling of Pelite-Derived Granites.Contributions to Mineralogy and Petrology, 110(1):46-56.doi: 10.1007/BF00310881
      Harrison, M.T., Grove, M., McKeegan, K.D., et al., 1999.Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19.doi:org/ 10.1093/petroj/40.1.3
      Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998.A Model for the Origin of Himalayan Anatexis and Inverted Metamorphism.Journal of Geophysical Research:Solid Earth, 103(B11):27017-27032.doi: 10.1029/98JB02468
      Harrison, T.M., Lovera, O.M., Grove, M., 1997.New Insights into the Origin of Two Contrasting Himalayan Granite Belts.Geology, 25(10):899-902.doi:10.1130/0091-7613(1997)025 < 0899:NIITOO > 2.3.CO; 2
      Inger, S., Harris, N., 1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya.Journal of Petrology, 34(2):345-368.doi: 10.1093/petrology/34.2.345
      Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69.doi: 10.1016/j.chemgeo.2004.06.017
      Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1-2):119-146.doi: 10.1016/S0009-2541(98)00197-1
      Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2).doi: 10.1029/2009TC002551
      Kawakami, T., Aoya, M., Wallis, S.R., et al., 2007.Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet:An Example of Shallow Extensional Tectonics in the Tethys Himalaya.Journal of Metamorphic Geology, 25(8):831-853.doi: 10.1111/j.1525-1314.2007.00731.x
      Kellett, D.A., Grujic, D., Warren, C., et al., 2010.Metamorphic History of a Syn-Convergent Orogen-Parallel Detachment:The South Tibetan Detachment System, Bhutan Himalaya.Journal of Metamorphic Geology, 28(8):785-808.doi: 10.1111/j.1525-1314.2010.00893.x
      King, J., Harris, N., Argles, T., et al., 2011.Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust Beneath Southern Tibet.Geological Society of America Bulletin, 123(1-2):218-239.doi: 10.1130/B30085.1
      Knesel, K.M., Davidson, J.P., 2002.Insights into Collisional Magmatism from Isotopic Fingerprints of Melting Reactions.Science, 296(5576):2206-2208.doi: 10.1126/science.1070622
      Larson, K.P., Godin, L., Davis, W.J., et al., 2010.Out-of-Sequence Deformation and Expansion of the Himalayan Orogenic Wedge:Insight from the Changgo Culmination, South Central Tibet.Tectonics, 29(4).doi: 10.1029/2008TC002393
      Le Fort, P., Cuney, M., Deniel, C., et al., 1987.Crustal Generation of the Himalayan Leucogranites.Tectonophysics, 134(1-3):39-57.doi: 10.1016/0040-1951(87)90248-4
      Le Fort. P., 1975.Himalayas:the Collided Range.Present Knowledge of the Continental Arc.In: Rodgers, J., ed., Tectonics and Mountain Ranges.Highwire Press, Redwood City, 1-44.
      Lederer, G.W., Cottle, J.M., Jessup, M.J., et al., 2013.Timescales of Partial Melting in the Himalayan Middle Crust:Insight from the Leo Pargil Dome, Northwest India.Contributions to Mineralogy and Petrology, 166(5):1415-1441.doi: 10.1007/s00410-013-0935-9
      Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316.doi: 10.1016/j.jsg.2004.02.013
      Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895.doi: 10.1029/1999TC001147
      Lee, J., McClelland, W., Wang, Y., et al., 2006.Oligocene-Miocene Crustal Flow Southern Tibet:Geochronology of Mabja Dome.Geological Society, London, Special Publications, 268:445-469.doi: 10.1144/GSL.SP.2006.268.01.21
      Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45-48.doi: 10.1130/G22842A.1
      Leloup, P.H., Mahéo, G., Arnaud, N., et al., 2010.The South Tibet Detachment Shear Zone in the Dinggye Area:Time Constraints on Extrusion Models of the Himalayas.Earth and Planetary Science Letters, 292(1-2):1-16.doi: 10.1016/j.epsl.2009.12.035
      Liu, X.B., Liu, X.H., Leloup, P.H., et al., 2012.Ductile Deformation within Upper Himalaya Crystalline Sequence and Geological Implications, in Nyalam Area, Southern Tibet.Chinese Science Bulletin, 57(26):3469-3481.doi: 10.1007/s11434-012-5228-6
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      Liu, Z.C., Wu, F.Y., Ji, W.Q., et al., 2014.Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model.Lithos, 208-209:118-136.doi: 10.1016/j.lithos.2014.08.022
      Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Centre, Berkeley. https://www.researchgate.net/publication/245539605_ISOPLOTEx_version_3._A_geochronological_toolkit_for_Microsoft_Excel
      Lugmair, G.W., Marti, K., 1978.Lunar Initial 143Nd/144Nd:Differential Evolution of the Lunar Crust and Mantle.Earth and Planetary Science Letters, 39(3):349-357.doi: 10.1016/0012-821X(78)90021-3
      Miller, C., Thöni, M., Frank, W., et al., 2001.The Early Palaozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine, 138(3):237-251.doi: 10.1017/S0016756801005283
      Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529-532.doi:10.1130/0091-7613(2003)031 < 0529:HACGIO>2.0.CO; 2
      Mitsuishi, M., Wallis, S.R., Aoya, M., et al., 2012.E-W Extension at 19 Ma in the Kung Co Area, S.Tibet:Evidence for Contemporaneous E-W and N-S Extension in the Himalayan Orogen.Earth and Planetary Science Letters, 325-326:10-20.doi: 10.1016/j.epsl.2011.11.013
      Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303019.htm
      Nabelek, P.I., Liu, M., 2004.Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens.Transactions of the Royal Society of Edinburgh: Earth Sciences, 95(1-2):73-85.doi: 10.1130/0-8137-2389-2.73
      Patiño Douce, A.E., Harris, N., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710.doi: 10.1093/petroj/39.4.689
      Pu, W., Zhao, K.D., Ling, H.F., et al., 2004.High Precision Nd Isotope Measurement by Triton TI Mass Spectrometry.Acta Geoscientica Sinica, 25(2):271-374 (in Chinese with English abstract). http://www.oalib.com/paper/1558714
      Qi, X.X., Zeng, L.S., Meng, X.J., et al., 2008.Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication.Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.oalib.com/paper/1471516#.WX7__fmEA0E
      Richards, A., Argles, T., Harris, N., et al., 2005.Himalayan Architecture Constrained by Isotopic Tracers from Clastic Sediments.Earth and Planetary Science Letters, 236(3-4):773-796.doi: 10.1016/j.epsl.2005.05.034
      Sachan, H.K., Kohn, M.J., Saxena, A., et al., 2010.The Malari Leucogranite, Garhwal Himalaya, Northern India:Chemistry, Age, and Tectonic Implications.Geological Society of America Bulletin, 122(11-12):1865-1876.doi: 10.1130/B30153.1
      Searle, M.P., Godin, L., 2003.The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal.The Journal of Geology, 111(5):505-523.doi: 10.1086/376763
      Searle, M.P., Parrish, R.R., Hodges, K.V., 1997.Shisha Pangma Leucogranite, South Tibetan Himalaya:Field Relations, Geochemistry, Age, Origin, and Emplacement.The Journal of Geology, 105(3):295-318.doi: 10.1086/515924
      Searle, M.P., Simpson, R.L., Law, R.D., et al., 2003.The Structural Geometry, Metamorphic and Magmatic Evolution of the Everest Massif, High Himalaya of Nepal-South Tibet.Journal of the Geological Society, 160(3):345-366.doi: 10.1144/0016-764902-126
      Steiger, R.H., Jäger, E., 1977.Subcommission on Geochronology:Convention on the Use of Decay Constants in Geo-and Cosmochronology.Earth and Planetary Science Letters, 36(3):359-362.doi: 10.1016/0012-821X(77)90060-7
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42:313-345.doi: 10.1144/GSL.SP.1989.042.01.19
      Visonà, D., Lombardo, B., 2002.Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet):Himalayan Leucogranite Genesis by Isobaric Heating?Lithos, 62(3-4):125-150.doi: 10.1016/S0024-4937(02)00112-3
      Wang, X.X., Zhang, J.J., Liu, J., et al., 2013.Middle-Miocene Transformation of Tectonic Regime in the Himalayan Orogen.Chinese Science Bulletin, 58(1):108-117.doi: 10.1007/s11434-012-5414-6
      Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262.doi: 10.1016/j.lithos.2012.07.011
      Wang, X.X., Zhang, J.J., Yan, S.Y., et al., 2015.Structural Characteristics and Active Time of the Kangmar Detachment, Southern Tibet.Geotectonica et Metallogenia, 39(2):250-259 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201502005.htm
      Wang, X.X., Zhang, J.J., Yang, X.Y., et al., 2011.Zircon SHRIMP U-Pb Ages, Hf Isotopic Features and Their Geological Significance of the Greater Himalayan Crystalline Complex Augen Gneiss in Gyirong Area, South Tibet.Earth Science Frontiers (China University of Geosciences(Beijing); Peking University), 18(2):127-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201102014.htm
      Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.doi: 10.1016/0012-821X(83)90211-X
      Wu, C., Nelson, K.D., Wortman, G., et al., 1998.Yadong Cross Structure and South Tibetan Detachment in the East Central Himalaya (89°-90°E).Tectonics, 17(1):28-45.doi: 10.1029/97TC03386
      Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). https://www.researchgate.net/publication/279331756_Himalayan_leucogranite_Petrogenesis_and_implications_to_orogenesis_and_plateau_uplift
      Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569.doi: 10.1007/BF03184122
      Wu, Z.H., Ye, P.S., Wang, C.M., et al., 2015.The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet.Earth Science, 40(10):1621-1642 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201510003.htm
      Xie, K.J., Zeng, L.S., Liu, J., et al., 2010.Late-Eocene Dala Adakitic Granite, Southern Tibet and Geological Implications.Acta Petrologica Sinica, 26(4):1016-1026 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201004003.htm
      Yan, D.P., Zhou, M.F., Robinson, P.T., et al., 2012.Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome, SE Tibet.International Geology Review, 54(6):615-632.doi: 10.1080/00206814.2010.548153
      Yang, X.S., Jin, Z.M., Ernst, E., et al., 2001.Experimental Study on Dehydration Melting of Natural Biotite-Plagioclase Gneiss from High Himalayas and Implications for Himalayan Crust Anatexis.Chinese Science Bulletin, 46(10):867-871.doi: 10.1007/BF02900441
      Yang, X.Y., Zhang, J.J., Qi, G.W., et al., 2009.Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System.Science in China (Series D), 52(8):1046-1058.doi: 10.1007/s11430-009-0111-2
      Yin, A., 2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation.Earth-Science Reviews, 76(1-2):1-131.doi: 10.1016/j.earscirev.2005.05.004
      Zeng, L.S., Asimow, P.D., Saleeby, J.B., 2005.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source.Geochimica et Cosmochimica Acta, 69(14):3671-3682.doi: 10.1016/j.gca.2005.02.035
      Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2014.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412:287-316.doi: 10.1144/SP412.8
      Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266.doi: 10.1016/j.epsl.2011.01.005
      Zeng, L.S., Liu, J., Gao, L.E., et al., 2009.Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(1):104-112.doi: 10.1007/s11434-008-0362-x
      Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212.doi: 10.1016/j.epsl.2004.09.031
      Zhang, H.F., Harris, N., Parrish, R., et al., 2005.Geochemistry of North Himalayan Leucogranites:Regional Comparison, Petrogenesis and Tectonic Implications.Earth Science, 30(3):275-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200503003.htm
      Zhang, J.J., 2007.A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet.Geological Bulletin of China, 26(6):639-649 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200706003.htm
      Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). https://www.researchgate.net/publication/281529136_Structure_and_kinematics_of_the_Yalashangbo_Dome_in_the_northern_Himalayan_Dome_Belt_China
      Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960.doi: 10.1016/j.gr.2011.11.004
      Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://www.researchgate.net/publication/281911273_New_division_of_tectonic-strata_superregion_in_China
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.Lhasa Terrane in Southern Tibet Came from Australia.Geology, 39(8):727-730.doi: 10.1130/G31895.1
      高利娥, 曾令森, 王莉, 等, 2013.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报.29(6): 1995-2012. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306011.htm
      莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3): 135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
      濮巍, 赵葵东, 凌洪飞, 等, 2004.新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定.地球学报, 25(2): 271-374. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200402032.htm
      戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7): 1501-1508. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807008.htm
      王晓先, 张进江, 闫淑玉, 等, 2015.藏南康马拆离断层的构造特征及其活动时代.大地构造与成矿学, 39(2): 250-259. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502005.htm
      王晓先, 张进江, 杨雄英, 等, 2011.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义.地学前缘, 18(2): 127-139. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102014.htm
      吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1): 1-36. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501001.htm
      吴中海, 叶培盛, 王成敏, 等, 2015.藏南安岗地堑的史前大地震遗迹、年龄及其地质意义.地球科学, 40(10): 1621-1642. http://earth-science.net/WebPage/Article.aspx?id=3166
      谢克家, 曾令森, 刘静, 等, 2010.西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义.岩石学报, 26(4): 1016-1026. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004003.htm
      张宏飞, Harris N, Parrish R, 等, 2005.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及构造意义.地球科学, 30(3): 275-288. http://earth-science.net/WebPage/Article.aspx?id=1410
      张进江, 2007.北喜马拉雅及藏南伸展构造综述.地质通报, 26(6): 639-649. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200706003.htm
      张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1): 16-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200701003.htm
      张克信, 潘桂堂, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2): 206-233. http://earth-science.net/WebPage/Article.aspx?id=3179
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (5147) PDF downloads(37) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return