• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 41 Issue 6
    Jun.  2016
    Turn off MathJax
    Article Contents
    Yang Yongfei, Wang Chenchen, Yao Jun, Hu Rongrong, Sun Hai, Zhao Jianlin, 2016. A New Method for Microscopic Pore Structure Analysis in Shale Matrix. Earth Science, 41(6): 1067-1073. doi: 10.3799/dqkx.2016.088
    Citation: Yang Yongfei, Wang Chenchen, Yao Jun, Hu Rongrong, Sun Hai, Zhao Jianlin, 2016. A New Method for Microscopic Pore Structure Analysis in Shale Matrix. Earth Science, 41(6): 1067-1073. doi: 10.3799/dqkx.2016.088

    A New Method for Microscopic Pore Structure Analysis in Shale Matrix

    doi: 10.3799/dqkx.2016.088
    • Received Date: 2015-11-14
    • Publish Date: 2016-06-15
    • It is important to quantitatively characterize the microscopic structures of organic and inorganic shale pores making up shale matrix, since shale gas and oil show different transport mechanisms in them. In this paper, the typical shale organic pore and inorganic pore images are obtained from scanning electron microscope (SEM) respectively, and it is found that the image with relatively larger inorganic pores has a lower resolution, while the image with relatively smaller organic pores has a higher resolution. Then, image processing and Markov chain Monte Carlo (MCMC) method are used to reconstruct the corresponding inorganic pore digital rock and organic pore digital rock, and local superposition method is introduced to construct the shale matrix pore digital rock including inorganic pores and organic pores. At last, the structure properties are compared and analyzed among the three inorganic pore, organic pore and matrix pore digital rocks. Results show that the constructed shale matrix pore digital rock with local superposition method could describe the inorganic pore and organic pore structures simultaneously. In addition the inorganic pores have a poor connection while the organic pores have a better connection, and a higher local porosity and local permeability, which is important to the fluid flow in shale rocks.A reliable research platform is established for different pore structure analysis and gas & oil transport simulation in nanoscopic pores of shale rocks in this study.

       

    • loading
    • Bai, B., Elgmati, M., Zhang, H., et al., 2013.Rock Characterization of Fayetteville Shale Gas Plays.Fuel, 105:645-652.doi: 10.1016/j.fuel.2012.09.043
      Blunt, M.J., 1998.Physically-Based Network Modeling of Multiphase Flow in Intermediate-Wet Porous Media.Journal of Petroleum Science and Engineering, 20(3-4):117-125.doi: 10.1016/S0920-4105(98)00010-2
      Bryant, S., Blunt, M., 1992.Prediction of Relative Permeability in Simple Porous Media.Physical Review A, 46(4):2004-2011.doi: 10.1103/physreva.46.2004
      Dunsmuir, J.H., Ferguson, S.R., D'Amico, K.L., et al., 1991.X-Ray Microtomography: A New Tool for the Characterization of Porous Media.SPE Annual Technical Conference and Exhibition, Dallas. https://www.researchgate.net/publication/264051414_Lattice-Boltzmann_simulation_of_microscale_CH4_flow_in_porous_rock_subject_to_force-induced_deformation
      Fredrich, J.T., Menendez, B., Wong, T.F., 1995.Imaging the Pore Structure of Geomaterials.Science, 268(5208):276-279.doi: 10.1126/science.268.5208.276
      Hazlett, R.D., 1997.Statistical Characterization and Stochastic Modeling of Pore Networks in Relation to Fluid Flow.Mathematical Geology, 29(6):801-822.doi: 10.1007/BF02768903
      Jiang, Z., van Dijke, M.I.J., Wu, K., et al., 2012.Stochastic Pore Network Generation from 3D Rock Images.Transport in Porous Media, 94(2):571-593.doi: 10.1007/s11242-011-9792-z
      Li, J.J., Shi, Y.L., Zhang, X.W., et al., 2014.Control Factors of Enrichment and Producibility of Shale Oil:A Case Study of Biyang Depression.Earth Science, 39(7):848-857 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2888
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      Okabe, H., Blunt, M.J., 2004.Prediction of Permeability for Porous Media Reconstructed Using Multiple-Point Statistics.Physical Review E, 70(6):066135.doi: 10.1103/physreve.70.066135
      Quiblier, J.A., 1984.A New Three-Dimensional Modeling Technique for Studying Porous Media.Journal of Colloid and Interface Science, 98(1):84-102.doi: 10.1016/0021-9797(84)90481-8
      Rushing, J.A.K.E., Newsham, K.E., Blasingame, T.A., 2008.Rock Typing: Keys to Understanding Productivity in Tight Gas Sands.Unconventional Reservoirs Conference, Keystone, Colorado. https://www.researchgate.net/publication/279449296_Rock_Typing_of_Tight_Gas_Sands_A_Case_Study_in_Lance_and_Mesaverde_Formations_From_Jonah_Field
      Sisk, C., Diaz, E., Walls, J., et al., 2010.3D Visualization and Classification of Pore Structure and Pore Filling in Gas Shales.SPE Annual Technical Conference and Exhibition, Florence.
      Sun, H., Yao, J., Zhang, L., et al., 2014.A Computing Method of Shale Permeability Based on Pore Structures.Journal of China University of Petroleum (Edition of Natural Science), 38(2):92-98 (in Chinese with English abstract). https://www.researchgate.net/publication/286940331_A_computing_method_of_shale_permeability_based_on_pore_structures
      Tomutsa, L., Silin, D.B., Radmilovic, V., 2007.Analysis of Chalk Petrophysical Properties by Means of Submicron-Scale Pore Imaging and Modeling.SPE Reservoir Evaluation and Engineering, 10(3):285-293.doi: 10.2118/99558-pa
      van Dijke, M.I.J., Piri, M., 2007.Introduction to Special Section on Modeling of Pore-Scale Processes.Water Resources Research, 43(12): W12S01.doi: 10.1029/2007WR006332
      Wang, C., Yao, J., Wu, K., et al., 2014.Organic and Inorganic Pore Structure Analysis in Shale Matrix with Superposition Method.Unconventional Resources Technology Conference, Denver.[doi: 10.15530/urtec-2014-1922283]
      Wildenschild, D., Sheppard, A.P., 2013.X-Ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems.Advances in Water Resources, 51:217-246.doi: 10.1016/j.advwatres.2012.07.018
      Wu, K., Ma, Q.F., Feng, Q.L., et al., 2012.Middle Permian Pore Characteristics and Shale Gas Exploration Significance from the Gufeng Formation in Jianshi, Western Hubei.Earth Science, 37(Suppl.2):175-183 (in Chinese with English abstract). https://www.researchgate.net/publication/278398900_MPG-pore_structure2015
      Wu, K.J., Nunan, N., Crawford, J.W., et al., 2004.An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure.Soil Science Society of America Journal, 68(2):346-351.doi: 10.2136/sssaj2004.3460
      Wu, K.J., van Dijke, M.I.J., Couples, G.D., et al., 2006.3D Stochastic Modelling of Heterogeneous Porous Media-Applications to Reservoir Rocks.Transport in Porous Media, 65(3):443-467.doi: 10.1007/s11242-006-0006-z
      Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3188
      Xiong, C.R., Tang, H.M., Liu, B.C., et al., 2007.Using SEM Photos to Gain the Pore Structural Parameters of Soil Samples.Earth Science, 32(3):415-419 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3469
      Yang, Y.F., Yao, J., Wang, C.C., et al., 2015.New Pore Space Characterization Method of Shale Matrix Formation by Considering Organic and Inorganic Pores.Journal of Natural Gas Science and Engineering, 27(2):496-503.doi: 10.1016/j.jngse.2015.08.017
      Yao, J., Sun, H., Huang, Z.Q., et al., 2013.Key Mechanical Problems in the Development of Shale Gas Reservoirs.Scientia Sinica:Physica, Mechanica & Astronomica, 43(12):1527-1547 (in Chinese with English abstract).
      Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in:Acustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=3189
      Zhao, J.P., Sun, J.M., Jiang, L.M., et al., 2014.Effects of Cementation on Elastic Property and Permeability of Reservoir Rocks.Earth Science, 39(6):769-774 (in Chinese with English abstract). http://earth-science.net/WebPage/Article.aspx?id=2883
      李吉君, 史颖琳, 章新文, 等, 2014.页岩油富集可采主控因素分析:以泌阳凹陷为例.地球科学, 39(7): 848-857. http://earth-science.net/WebPage/Article.aspx?id=2888
      孙海, 姚军, 张磊, 等, 2014.基于孔隙结构的页岩渗透率计算方法.中国石油大学学报(自然科学版), 38(2): 92-98. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201402014.htm
      吴勘, 马强分, 冯庆来, 2012.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义.地球科学, 37(增刊2): 175-183. https://www.researchgate.net/publication/279038133_Components_and_processes_affecting_producibility_and_commerciality_of_shale_resource_systems
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      熊承仁, 唐辉明, 刘宝琛, 等, 2007.利用SEM照片获取土的孔隙结构参数.地球科学, 32(3): 415-419. http://earth-science.net/WebPage/Article.aspx?id=3469
      姚军, 孙海, 黄朝琴, 等, 2013.页岩气藏开发中的关键力学问题.中国科学:物理学、力学、天文学, 43(12): 1527-1547. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201312002.htm
      张林晔, 李钜源, 李政, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://earth-science.net/WebPage/Article.aspx?id=3189
      赵建鹏, 孙建孟, 姜黎明, 等, 2014.岩石颗粒胶结方式对储层岩石弹性及渗流性质的影响.地球科学, 39(6): 769-774. http://earth-science.net/WebPage/Article.aspx?id=2883
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (7227) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return