• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 2
    Feb.  2017
    Turn off MathJax
    Article Contents
    Hong Hanlie, Fang Qian, Wang Chaowen, Gong Nina, Zhao Lulu, 2017. Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province. Earth Science, 42(2): 161-172. doi: 10.3799/dqkx.2017.013
    Citation: Hong Hanlie, Fang Qian, Wang Chaowen, Gong Nina, Zhao Lulu, 2017. Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province. Earth Science, 42(2): 161-172. doi: 10.3799/dqkx.2017.013

    Constraints of Parent Magma on Altered Clay Minerals: A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province

    doi: 10.3799/dqkx.2017.013
    • Received Date: 2016-11-15
    • Publish Date: 2017-02-15
    • The study on the influence of sedimentary environments on the altered clay mineralogy facilitates accurate stratigraphical correlation using volcanic ashes as marked beds. However, the relationships among the stacking ordering, illite layer contents, parent magma and environmental condition are still poorly known. A case study on altered vocalnic materials near the Permian-Triassic boundary in the Xinmin section, Guizhou province was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), geochemical analysis, and oxygen isotope analysis methods. Results show that all the four volcanic ash layers contain two phases of mixed-layered illite/smectite (I/S) with R3 structure and varied layer contents, and clay mineral aggregates were found having replaced the volcaniclastic particles or have grown on the surfaces of volcaniclastic particles. It can be inferred that clay minerals formed in sedimentary to early diagenesis periods since the materials preserve argillaceous texture when clay minerals were produced. The number of Fe3+ atoms are 0.16 and 0.17 respectively in the samples XM-5-1 and XM-5-2, and 0.14 in both samples XM-5-3 and XM-5-4, indicating that parent magmas of the latter ones were more of meta acid compared with the former two. It is indicative of more intense alteration of the latter two volcanic ash layers, together with the apparent Eu negative anomaly and less K2O contents. Oxygen isotopic composition of the volcanic ashes ranges narrowly from 17.3‰ to 18.1‰, consistent with the equilibrium value between smectite and ocean water at 25 ℃, suggesting that chemical composition of the Xinmin clay minerals is related to conditions of submarine diagenesis alteration since the clay mineralogy of different volcanic ash layer depends on its parent magma and degree of diagenesis alteration.

       

    • loading
    • Agha, M.A., Ferrell, R.E., Hart, G.F., et al., 2013.Mineralogy of Egyptian Bentonitic Clays Ⅱ:Geologic Origin.Clays and Clay Minerals, 61(6):551-565.doi: 10.1346/ccmn.2013.0610608
      Cadrin, A.A.J., Kyser, T.K., Caldwell, W.G.E., et al., 1996.Isotopic and Chemical Compositions of Bentonites as Paleoenvironmental Indicators of the Cretaceous Western Interior Seaway.Palaeogeography, Palaeoclimatology, Palaeoecology, 119(3-4):301-320.doi: 10.1016/0031-0182(95)00015-1
      Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5(6):375-383.doi: 10.1038/ngeo1475
      Christidis, G.E., 1998.Comparative Study of the Mobility of Major and Trace Elements during Alteration of an Andesite and a Rhyolite to Bentonite, in the Islands of Milos and Kimolos, Aegean, Greece.Clays and Clay Minerals, 46(4):379-399.doi: 10.1346/ccmn.1998.0460403
      Christidis, G.E., Huff, W.D., 2009.Geological Aspects and Genesis of Bentonites.Elements, 5(2):93-98.doi: 10.2113/gselements.5.2.93
      Deconinck, J.F., Crasquin, S., Bruneau, L., et al., 2014.Diagenesis of Clay Minerals and K-Bentonites in Late Permian/Early Triassic Sediments of the Sichuan Basin (Chaotian Section, Central China).Journal of Asian Earth Sciences, 81:28-37.doi: 10.1016/j.jseaes.2013.11.018
      Eberl, D.D., Blum, A.E., Serravezza, M., 2011.Anatomy of a Metabentonite:Nucleation and Growth of Illite Crystals and their Coalescence into Mixed-Layer Illite/smectite.American Mineralogist, 96(4):586-593.doi: 10.2138/am.2011.3682
      Fang, Q., Hong, H.L., Chen, Z.Q., et al., 2016.Microbial Proliferation Coinciding with Volcanism during the Permian-Triassic Transition:New, Direct Evidence from Volcanic Ashes, South China.Palaeogeography, Palaeoclimatology, Palaeoecology.doi:10.1016/j.palaeo.2016.06.026
      Ferrage, E., Vidal, O., Mosser-Ruck, R., et al., 2010.A Reinvestigation of Smectite Illitization in Experimental Hydrothermal Conditions:Results from X-Ray Diffraction and Transmission Electron Microscopy.American Mineralogist, 96(1):207-223.doi: 10.2138/am.2011.3587
      Gao, Q.L., Chen, Z.Q., Zhang, N., et al., 2015.Ages, Trace Elements and Hf-Isotopic Compositions of Zircons from Claystones around the Permian-Triassic Boundary in the Zunyi Section, South China:Implications for Nature and Tectonic Setting of the Volcanism.Journal of Earth Science, 26(6):872-882.doi: 10.1007/s12583-015-0589-9
      Gao, W.P., Hong, H.L., Yin, K., et al., 2013.Fine Structure and Their Genetic Significance of Clay Minerals from the Permian-Triassic Boundary, Huaxi Area, Guizhou Province.Earth Science, 38(6):37-46 (in Chinese with English abstract). https://www.researchgate.net/publication/287549463_Fine_structure_and_their_genetic_significance_of_clay_minerals_from_the_Permian-Triassic_boundary_Huaxi_Area_Guizhou_Province
      Grim, R.E., Güven, N., 1978.Bentonites:Geology, Mineralogy, Properties and Uses.Elsevier, Amsterdam, 256.
      Hong, H.L., Churchman, G.J., Yin, K., et al., 2014.Randomly Interstratified Illite-Vermiculite from Weathering of Illite in Red Earth Sediments in Xuancheng, Southeastern China.Geoderma, 214-215:42-49.doi:10.1016/j.geoderma.2013.10.004
      Hong, H.L., Xie, S.C., Lai, X.L., 2011.Volcanism in Association with the Prelude to Mass Extinction and Environment Change across the Permian-Triassic Boundary (PTB), Southern China.Clays and Clay Minerals, 59(5):478-489.doi: 10.1346/ccmn.2011.0590505
      Hu, Z.W., Huang, S.J., Gao, X.Y., et al., 2008.Clay Minerals in the Clay beds near the Permian/Triassic Boundary at Huaying Mountain, Eastern Sichuan, China:Their Types and Origin.Geological Bulletin of China, 27(3):374-379(in Chinese with English abstract). https://www.researchgate.net/publication/286878321_Clay_minerals_in_the_clay_beds_near_the_PermianTriassic_boundary_at_Huaying_Mountain_eastern_Sichuan_China_their_types_and_origin
      Huff, W.D., 2016.K-Bentonites:A Review.American Mineralogist, 101(1):43-70.doi: 10.2138/am-2016-5339
      Kamo, S.L., Czamanske, G.K., Amelin, Y., et al., 2003.Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian-Triassic Boundary and Mass Extinction at 251 Ma.Earth and Planetary Science Letters, 214(1-2):75-91.doi: 10.1016/s0012-821x(03)00347-9
      Korte, C., Kozur, H.W., 2010.Carbon-Isotope Stratigraphy across the Permian-Triassic Boundary:A Review.Journal of Asian Earth Sciences, 39(4):215-235.doi: 10.1016/j.jseaes.2010.01.005
      Lanson, B., Sakharov, B.A., Claret, F., et al., 2009.Diagenetic Smectite-To-Illite Transition in Clay-Rich Sediments:A Reappraisal of X-Ray Diffraction Results Using the Multi-Specimen Method.American Journal of Science, 309(6):476-516.doi: 10.2475/06.2009.03
      Liao, Z.W., Hu, W.X., Wang, X.L., et al., 2016.Volcanic Origin of Clay Stone near the Permian-Triassic Boundary in the Deep Water Environment of the Lower Yangtze Region and Its Implications for LPME.Acta Geologica Sinica, 90(4):785-800(in Chinese with English abstract).
      Libbey, R.B., Longstaffe, F.J., Flemming, R.L., 2013.Clay Mineralogy, Oxygen Isotope Geochemistry, and Water/Rock Ratio Estimates, Te Mihi Area, Wairakei Geothermal Field, New Zealand.Clays and Clay Minerals, 61(3):204-217.doi: 10.1346/ccmn.2013.0610304
      Lu, Q., Lei, X.R., Liu, H.F., 1991.Genetic Types and Crystallochemical Classification of Irregular Illite/Smectite Interstratified Clay Minerals.Acta Mineralogica Sinica, 11(2):97-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199102000.htm
      MacRae, N.D., Nesbitt, H.W., Kronberg, B.I., 1992.Development of a Positive Eu Anomaly during Diagenesis.Earth and Planetary Science Letters, 109(3-4):585-591.doi: 10.1016/0012-821x(92)90116-d
      McCarty, D.K., Sakharov, B.A., Drits, V.A., 2009.New Insights into Smectite Illitization:A Zoned K-Bentonite Revisited.American Mineralogist, 94(11-12):1653-1671.doi: 10.2138/am.2009.3260
      Middleton, A.W., Uysal, I.T., Golding, S.D., 2015.Chemical and Mineralogical Characterization of Illite-Smectite:Implications for Episodic Tectonism and Associated Fluid Flow, Central Australia.Geochimica et Cosmochimica Acta, 148:284-303.doi: 10.1016/j.gca.2014.09.035
      Reynolds, Jr.R.C., Hower, J., 1970.The Nature of Interlayering in Mixed-Layer Illite-Montmorillonites.Clays and Clay Minerals, 18(1):25-36.doi: 10.1346/ccmn.1970.0180104
      Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334(60-61):1367-1372.doi: 10.1126/science.1213454
      Sheppard, S.M.F., Gilg, H.A., 1996.Stable Isotope Geochemistry of Clay Minerals.Clay Minerals, 31(1):1-24.doi: 10.1180/claymin.1996.031.1.01
      Taylor, S.R., McLennan, S.C., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, Oxford, 312.
      Tian, L., Tong, J.N., Bottjer, D., et al., 2015.Rapid Carbonate Depositional Changes Following the Permian-Triassic Mass Extinction:Sedimentary Evidence from South China.Journal of Earth Science, 26(2):166-180.doi: 10.1007/s12583-015-0523-1
      Uysal, I.T., Mutlu, H., Altunel, E., et al, 2006.Clay Mineralogical and Isotopic (K-Ar, δ18O, δD) Constraints on the Evolution of the North Anatolian Fault Zone, Turkey.Earth and Planetary Science Letters, 243(1):181-194.
      Xie, S.C., Pancost, R.D., Wang, Y.B., et al., 2010.Cyanobacterial Blooms Tied to Volcanism during the 5 m.y.Permo-Triassic Biotic Crisis.Geology, 38(5):447-450.doi: 10.1130/g30769.1
      Yan, C.B., Jiang, H.S., Lai, X.L., et al., 2015.The Relationship between the "Green-BeanRock" Layers and Conodont Chiosella timorensisand Implications on Defining the Early-Middle Triassic Boundary in the Nanpanjiang Basin, South China.Journal of Earth Science, 26(2):236-245.doi: 10.1007/s12583-015-0535-x
      Yin, H.F., Jiang, H.S., Xia, W.C., et al., 2014.The End-Permian Regression in South China and its Implication on Mass Extinction.Earth-Science Reviews, 137:19-33.doi: 10.1016/j.earscirev.2013.06.003
      Zhang, N., Jiang, H.S., Zhong, W.L., et al., 2014.Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China.Journal of Earth Science, 25(5):779-786.doi: 10.1007/s12583-014-0472-0
      Zhang, S.X., Feng, Q.L, Gu, S.Z., et al., 2006.Clay Stone around Deep Water Permian-Triassic Boundary from Guizhou and Guangxi Region.Geological Science and Technology Information, 25(1):9-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200601001.htm
      Zhang, S.X., Yu, J.X., Yang, P.Q., et al., 2004.Study on Clayrocks of the Neritic, Littoral and Marine-Terrigenous Facies across the Permian-Triassic Boundary in the Eastern Yunnan and Weastern Guizhou, South China.Journal of Mineralogy and Petrology, 24(4):81-86(in Chinese with English abstract). https://www.researchgate.net/publication/293253054_Study_on_clayrocks_of_the_neritic_littoral_and_marine-terrigenous_facies_across_the_Permian-Triassic_boundary_in_the_Eastern_Yunnan_and_Western_Guizhou_South_China
      Zhao, T.Y., Feng, Q.L., Liu, R., et al., 2013.Volcanics Characteristics and LA-ICP-MS Zircon U-Pb Ages of Clay Rocks along Dongpan Section of Guangxi.Geological Bulletin of China, 32(9):1402-1409(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201309009.htm
      高文鹏, 洪汉烈, 殷科, 等, 2013.贵州花溪P-T界线附近粘土矿物结构及成因意义.地球科学, 38(6): 37-46. http://www.earth-science.net/WebPage/Article.aspx?id=2795
      胡作维, 黄思静, 郜晓勇, 等, 2008.川东华蓥山二叠系/三叠系界线附近粘土层中粘土矿物的类型及成因.地质通报, 27(3): 374-379. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200803011.htm
      廖志伟, 胡文瑄, 王小林, 等, 2016.下扬子PTB界线深水相区粘土岩的火山成因研究及其对LPME的指示意义.地质学报, 90(4): 785-800. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604014.htm
      陆琦, 雷新荣, 刘惠芳, 1991.不规则伊/蒙混层粘土矿物成因类型及晶体化学分类.矿物学报, 11(2): 97-104. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199102000.htm
      张素新, 冯庆来, 顾松竹, 等, 2006.黔桂地区深水相二叠系-三叠系界线附近黏土岩研究.地质科技情报, 25(1): 9-13. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200601001.htm
      张素新, 喻建新, 杨逢清, 等, 2004.黔西滇东地区浅海、滨海及海陆交互相二叠系-三叠系界线附近粘土岩研究.矿物岩石, 24(4): 81-86. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200404015.htm
      赵天宇, 冯庆来, 刘嵘, 等, 2013.广西东攀剖面粘土岩的火山岩特征及LA-ICP-MS锆石U-Pb年龄.地质通报, 32(9): 1402-1409. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201309009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (5072) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return