• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 6
    Jun.  2017
    Turn off MathJax
    Article Contents
    Zhang Daohan, Wei Junhao, Fu Lebing, Wang Dazhao, 2017. Formation, Modification and Analytical Techniques of Melt Inclusion, and Their Applications in Economic Geology. Earth Science, 42(6): 990-1007. doi: 10.3799/dqkx.2017.079
    Citation: Zhang Daohan, Wei Junhao, Fu Lebing, Wang Dazhao, 2017. Formation, Modification and Analytical Techniques of Melt Inclusion, and Their Applications in Economic Geology. Earth Science, 42(6): 990-1007. doi: 10.3799/dqkx.2017.079

    Formation, Modification and Analytical Techniques of Melt Inclusion, and Their Applications in Economic Geology

    doi: 10.3799/dqkx.2017.079
    • Received Date: 2017-01-10
    • Publish Date: 2017-06-15
    • Melt inclusion has been widely used in the research of volcanic and some magmatic systems, and now gradually applied to economic geology because of its absolute advantage over whole-rock analysis in preserving the primary metal and volatile composition of ore-forming magmas. In this paper, we firstly present melt inclusion formation and post-entrapment modification on its composition, then summarize the commonly used analytical techniques for melt inclusion studies, and finally take porphyry Cu-(Mo-Au) and porphyry Mo systems as examples to introduce its applications in economic geology, including determination of ore-forming metals, volatile composition, and fluid-melt partition coefficients. Considering the facts that most melt inclusions have been modified to a certain degrees after their entrapment, and that the modification mechanism for most rock-forming minerals has not been well understood, attention has to be paid to the melt inclusion data and associated interpretation.With the improvement of analytical methods, such ambiguous post-entrapment modification mechanism may be resolved in the near future, and in turn it can promote the applications of melt inclusion. The successful applications of melt inclusion in porphyry Cu-(Mo-Au) and porphyry Mo systems confirm that melt inclusion has been an important and powerful tool in studying ore-forming metals and volatile evolution in ore-forming magma systems in comparison with whole-rock study.

       

    • loading
    • Anderson, A.T., 1974.Evidence for a Picritic, Volatile-Rich Magma beneath Mt Shasta, California.Journal of Petrology, 15(2):243-267.doi: 10.1093/petrology/15.2.243
      Anderson, A.T., Wright, T.L., 1972.Phenocrysts and Glass Inclusions and Their Bearing on Oxidation and Mixing of Basaltic Magmas, Kilauea Volcano, Hawaii.American Mineralogist, 57:188-216. http://www.researchgate.net/publication/284143492_Phenocrysts_and_glass_inclusions_and_their_bearing_on_oxidation_and_mixing_of_basaltic_magmas_Kilauea_Volcano_Hawaii
      Audétat, A., 2010.Source and Evolution of Molybdenum in the Porphyry Mo(-Nb) Deposit at Cave Peak, Texas.Journal of Petrology, 51(8):1739-1760.doi: 10.1093/petrology/egq037
      Audétat, A., 2015.Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado.Journal of Petrology, 56(8):1519-1546.doi: 10.1093/petrology/egv044
      Audétat, A., Dolejš, D., Lowenstern, J.B., 2011.Molybdenite Saturation in Silicic Magmas:Occurrence and Petrological Implications.Journal of Petrology, 52(5):891-904.doi: 10.1093/petrology/egr008
      Audétat, A., Günther, D., Heinrich, C.A., 2000.Magmatic-Hydrothermal Evolution in a Fractionating Granite:A Microchemical Study of the Sn-W-F-Mineralized Mole Granite (Australia).Geochimicaet Cosmochimica Acta, 64(19):3373-3393.doi: 10.1016/S0016-7037(00)00428-2
      Audétat, A., Lowenstern, J.B., 2014.Melt Inclusions.In:Scott, S.D., ed., Geochemistry of Mineral Deposits.Treatise on Geochemistry.Elsevier, London, 143-173.
      Audétat, A., Pettke, T., 2006.Evolution of a Porphyry-Cu Mineralized Magma System at Santa Rita, New Mexico (USA).Journal of Petrology, 47(10):2021-2046.doi: 10.1093/petrology/egl035
      Audétat, A., Pettke, T., Dolejš, D., 2004.Magmatic Anhydrite and Calcite in the Ore-Forming Quartz-Monzodiorite Magma at Santa Rita, New Mexico (USA):Genetic Constraints on Porphyry-Cu Mineralization.Lithos, 72(3-4):147-161.doi: 10.1016/j.lithos.2003.10.003
      Audétat, A., Pettke, T., Heinrich, C.A., et al., 2008.The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions.Economic Geology, 103(5):877-908.doi: 10.2113/gsecongeo.103.5.877
      Audétat, A., Simon, A.C., 2012.Magmatic Controls on Porphyry Cu Genesis.In:Hedenquist, J.W., Harris, M., Camus, F., eds., Geology and Genesis of Major Copper Deposits and Districts of the World:A Tribute to Richard Sillitoe:SEG Special Publication 16, Society of Economic Geologists, Littleton.
      Baker, D.R., 2008.The Fidelity of Melt Inclusions as Records of Melt Composition.Contributions to Mineralogy and Petrology, 156(3):377-395.doi: 10.1007/s00410-008-0291-3
      Blundy, J., Cashman, K., 2008.Petrologic Reconstruction of Magmatic System Variables and Processes.Reviews in Mineralogy and Geochemistry, 69(1):179-239.doi: 10.2138/rmg.2008.69.6
      Bodnar, R.J., Student, J.J., 2006.Melt Inclusions in Plutonic Rocks:Petrography and Microthermometry.In:Webster, J.D., ed., Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Montreal, 1-25.
      Carten, R.B., Geraghty, E.P., Walker, B.M., et al., 1988.Cyclic Development of Igneous Features and Their Relationship to High-Temperature Hydrothermal Features in the Henderson Porphyry Molybdenum Deposit, Colorado.Economic Geology, 83(2):266-296.doi: 10.2113/gsecongeo.83.2.266
      Carten, R.B., White, W.H., Stein, H.J., 1993.High-Grade Granite-Related Molybdenum Systems:Classification and Origin.Geological Association of Canada Special Paper, 40:521-554. https://www.researchgate.net/publication/279597436_High-grade_granite-related_molybdenum_systems_classification_and_origin
      Danyushevsky, L.V., Della-Pasqua, F.N., Sokolov, S., 2000.Re-Equilibration of Melt Inclusions Trapped by Magnesian Olivine Phenocrysts from Subduction-Related Magmatism:Petrological Implications.Contributions to Mineralogy and Petrology, 138(1):68-83.doi: 10.1007/PL00007664
      Danyushevsky, L.V., McNeill, A.W., Sobolev, A.V., 2002.Experimental and Petrological Studies of Melt Inclusions in Phenocrysts from Mantle-Derived Magmas:An Overview of Techniques, Advantages and Complications.Chemical Geology, 183(1):5-24.doi: 10.1016/S0009-2541(01)00369-2
      Devine, J.D., Gardner, J.E., Brack, H.P., et al., 1995.Comparison of Microanalytical Methods for Estimating H2O Contents of Silicic Volcanic Glasses.American Mineralogist, 80(3):319-328.doi: 10.2138/am-1995-3-413
      Dietrich, A., Lehmann, B., Wallianos, A., 2000.Bulk Rock and Melt Inclusion Geochemistry of Bolivian Tin Porphyry Systems.Economic Geology, 95(2):313-326.doi: 10.2113/gsecongeo.95.2.313
      Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23(in Chinese with English abstract). https://www.researchgate.net/publication/284686858_Geochronology_and_geochemistry_of_the_Bolong_porphyry_Cu-Au_deposit_Tibet_and_its_mineralizing_significance
      Duan, X., Sun, H., Yang, W., et al., 2014.Melt-Peridotite Interaction in the Shallow Lithospheric Mantle of the North China Craton:Evidence from Melt Inclusions in the Quartz-Bearing Orthopyroxene-Rich Websterite from Hannuoba.International Geology Review, 56(4):448-472.doi: 10.1080/00206814.2013.873357
      Fu, L.B., Wei, J.H., Zhang, D.H., et al., 2015.A Review of LA-ICP-MS Analysis for Individual Fluid Inclusions and Its Applications in Ore Deposits.Journal of Central South University (Science and Technology), 46(10):3832-3840 (in Chinese with English abstract). https://www.researchgate.net/publication/290319451_A_review_of_LA-ICPMS_analysis_for_individual_fluid_inclusions_and_its_applications_in_ore_deposits
      Gaetani, G.A., O'Leary, J.A., Schimizu, N., et al., 2012.Rapid Reequilibration of H2O and Oxygen Fugacity in Olivine-Hosted Melt Inclusions.Geology, 40(10):915-918.doi: 10.1130/G32992.1
      Gaetani, G.A., Watson, E.B., 2002.Modeling the Major-Element Evolution of Olivine-Hosted Melt Inclusions.Chemical Geology, 183(1):25-41.doi: 10.1016/S0009-2541(01)00370-9
      Giordano, D., Russell, J.K., Dingwell, D.B., 2008.Viscosity of Magmatic Liquids:A Model.Earth and Planetary Science Letters, 271(1-4):123-134.doi: 10.1016/j.epsl.2008.03.038
      Halter, W.E., Heinrich, C.A., Pettke, T., 2005.Magma Evolution and the Formation of Porphyry Cu-Au Ore Fluids:Evidence from Silicate and Sulfide Melt Inclusions.Mineralium Deposita, 39(8):845-863.doi: 10.1007/s00126-004-0457-5
      Halter, W.E., Pettke, T., Heinrich, C.A., et al., 2002.Major to Trace Element Analysis of Melt Inclusions by Laser-Ablation ICP-MS:Methods of Quantification.Chemical Geology, 183(1-4):63-86.doi: 10.1016/S0009-2541(01)00372-2
      Halter, W.E., Pettke, T., Heinrich, C.A., 2004.Laser-Ablation ICP-MS Analysis of Silicate and Sulfide Melt Inclusions in an Andesitic Complex I:Analytical Approach and Data Evaluation.Contributions to Mineralogy and Petrology, 147(4):385-396.doi: 10.1007/s00410-004-0562-6
      Hattori, K., 1993.High-Sulfur Magma, a Product of Fluid Discharge from Underlying Mafic Magma:Evidence from Mount Pinatubo, Philippines.Geology, 21(12):1083-1086.doi:10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2
      Heinrich, C.A., Pettke, T., Halter, W.E., et al., 2003.Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry.Geochimica et Cosmochimica Acta, 67(18):3473-3497.doi: 10.1016/S0016-7037(03)00084-X
      Hinton, R.W., 1995.Ion Microprobe Analysis in Geology.In:Potts, P.J., John, F.W., Stephen, J.B., et al., eds., Microprobe Techniques in the Earth Sciences.Chapman and Hall, London.
      Hou, Z.Q., Li, Q.Y., Gao, Y.F., et al., 2015.Lower-Crustal Magmatic Hornblendite in North China Craton:Insight into the Genesis of Porphyry Cu Deposits.Economic Geology, 110(7):1879-1904.doi: 10.2113/econgeo.110.7.1879
      Hou, Z.Q., Meng, X.J., Qu, X.M., et al., 2005.Copper Ore Potential of Adakitic Intrusives in Gangdese Porphyry Copper Belt:Constrains from Rock Phase and Deep Melting Process.Mineral Deposits, 24(2):108-121(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200502002.htm
      Humphreys, M.C.S., Kearns, S.L., Blundy, J.D., 2006.SIMS Investigation of Electron-Beam Damage to Hydrous, Rhyolitic Glasses:Implications for Melt Inclusion Analysis.American Mineralogist, 91(4):667-679.doi: 10.2138/am.2006.1936
      Layne, G., 2006.Applications of Secondary Ion Mass Spectrometry to the Determination of Traditional and Non-Traditional Light Stable Isotopes in Silicate Melt Inclusions.In:Webster, J.D., ed., Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Montreal.
      Lerchbaumer, L., Audétat, A., 2013.The Metal Content of Silicate Melts and Aqueous Fluids in Subeconomically Mo Mineralized Granites:Implications for Porphyry Mo Genesis.Economic Geology, 108(5):987-1013.doi: 10.2113/econgeo.108.5.987
      Li, H.Y., Xu, Y.G., Ryan, J.G., et al., 2016.Olivine and Melt Inclusion Chemical Constraints on the Source of Intracontinental Basalts from the Eastern North China Craton:Discrimination of Contributions from the Subducted Pacific Slab.Geochimica et Cosmochimica Acta, 178:1-19.doi: 10.1016/j.gca.2015.12.032
      Li, S.H., Li, J.K., Chou, I.M., et al., 2017.The Formation of the Yichun Ta-Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions.Journal of Asian Earth Sciences, 137:180-193.doi: 10.1016/j.jseaes.2016.11.016
      Liu, J.Q., Ren, Z.Y., Nichols, A.R.L., et al., 2015.Petrogenesis of Late Cenozoic Basalts from North Hainan Island:Constraints from Melt Inclusions and Their Host Olivines.Geochimica et Cosmochimica Acta, 152:89-121.doi: 10.1016/j.gca.2014.12.023
      Liu, Y.S., Hu, Z.C., Li, M., et al., 2013.Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples.Chinese Science Bulletin, 58(36):3863-3878.doi: 10.1007/s11434-013-5901-4
      Loucks, R.R., 2014.Distinctive Composition of Copper-Ore-Forming Arc Magmas.Australian Journal of Earth Sciences, 61(1):5-16.doi: 10.1080/08120099.2013.865676
      Lowenstern, J.B., 1994.Dissolved Volatile Concentrations in an Ore-Forming Magma.Geology, 22(10):893-896.doi:10.1130/0091-7613(1994)022<0893:DVCIAO>2.3.CO;2
      Lowenstern, J.B.1995.Application of Silicate-Melt Inclusions to the Study of Magmatic Volatiles.In:Thompson, J.F.H., ed., Magmas, Fluids and Ore Deposition.Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Ottawa.
      Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusions.Science Press, Beijing (in Chinese).
      Luhr, J.F., 2008.Primary Igneous Anhydrite:Progress since Its Recognition in the 1982 El Chichón Trachyandesite.Journal of Volcanology and Geothermal Research, 175(4):394-407.doi: 10.1016/j.jvolgeores.2008.02.016
      Keith, J.D., Whitney, J.A., Hattori, K., et al., 1997.The Role of Magmatic Sulfides and Mafic Alkaline Magmas in the Bingham and Tintic Mining District, Utah.Journal of Petrology, 38(12):1679-1690.doi: 10.1093/petroj/38.12.1679
      Kent, A.J.R., 2008.Melt Inclusions in Basaltic and Related Volcanic Rocks.Reviews in Mineralogy and Geochemistry, 69(1):273-331.doi: 10.2138/rmg.2008.69.8
      Kohut, E., Nielsen, R.L., 2004.Melt Inclusion Formation Mechanisms and Compositional Effects in High-An Feldspar and High-Fo Olivine in Anhydrous Mafic Silicate Liquids.Contributions to Mineralogy and Petrology, 147(6):684-704.doi: 10.1007/s00410-004-0576-0
      Kuzmin, D.V., Sobolev, A.V., 2004.Boundary Layer Contribution to the Composition of Melt Inclusions in Olivine.Geochimica et Cosmochimica Acta, 68:A544. http://www.researchgate.net/publication/283992803_Boundary_layer_contribution_to_the_composition_of_melt_inclusions_in_olivine
      Mason, P.R.D., Nikogosian, I.K., van Bergen, M.J., 2008.Major and Trace Element Analysis of Melt Inclusions by Laser Ablation ICP-MS.In:Sylvester, P.J., ed., Laser Ablation ICP-MS in the Earth Sciences; Current Practices and Outstanding Issues, Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Vancouver.
      Mercer, C.N., Hofstra, A.H., Todorov, T.I., et al., 2015.Pre-Eruptive Conditions of the Hideaway Park Topaz Rhyolite:Insights into Metal Source and Evolution of Magma Parental to the Henderson Porphyry Molybdenum Deposit, Colorado.Journal of Petrology, 56(4):645-679.doi: 10.1093/petrology/egv010
      Metrich, N., Wallace, P.J., 2008.Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions.Reviews in Mineralogy and Geochemistry, 69(1):363-402.doi: 10.2138/rmg.2008.69.10
      Morgan, G.B., London, D., 2005.Effect of Current Density on the Electron Microprobe Analysis of Alkali Aluminosilicate Glasses.American Mineralogist, 90(7):1131-1138.doi: 10.2138/am.2005.1769
      Mustard, R., Ulrich, T., Kamenetsky, V.S., et al., 2006.Gold and Metal Enrichment in Natural Granitic Melts during Fractional Crystallization.Geology, 34(2):85-88.doi: 10.1130/G22141.1
      Naumov, V.B., Kamenetsky, V.S., 2006.Silicate and Salt Melts in the Genesis of the Industrial'noe Tin Deposit:Evidence from Inclusions in Minerals.Geochemistry International, 44(12):1181-1190.doi: 10.1134/S0016702906120032
      Newcombe, M.E., Fabbrizio, A., Zhang, Y., et al., 2014.Chemical Zonation in Olivine-Hosted Melt Inclusions.Contributions to Mineralogy and Petrology, 168(1):1-26.doi: 10.1007/s00410-014-1030-6
      Nielsen, R.L., Michael, P.J., Sours-Page, R., 1998.Chemical and Physical Indicators of Compromised Melt Inclusions.Geochimica et Cosmochimica Acta, 62(5):831-839.doi: 10.1016/S0016-7037(98)00024-6
      Pettke, T., 2006.In-Situ Laser-Ablation-ICP-MS Chemical Analysis of Melt Inclusion and Prospects for Constraining Subduction Zone Magmas.In:Webster, J.D., ed., Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Montreal.
      Pettke, T., Halter, W.E., Webster, J.D., et al., 2004.Accurate Quantification of Melt Inclusion Chemistry by LA-ICP-MS:A Comparison with EMP and SIMS and Advantages and Possible Limitations of These Methods.Lithos, 78(4):333-361.doi: 10.1016/j.lithos.2004.06.011
      Portnyagin, M., Almeev, R., Matveev, S., et al., 2008.Experimental Evidence for Rapid Water Exchange between Melt Inclusions in Olivine and Host Magma.Earth and Planetary Science Letters, 272(3-4):541-552.doi: 10.1016/j.epsl.2008.05.020
      Richards, J.P., 2005.Cumulative Factors in the Generation of Giant Calc-Alkaline Porphyry Cu Deposits.In:Porter, T.M., ed., Super Porphyry Copper and Gold Deposits:A Global Perspective.PGC Publishing, Adelaide.
      Roedder, E., 1979.Origin and Significance of Magmatic Inclusions.Bulletin de Mineralogie, 102(5-6):487-510. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB198500004.htm
      Schiano, P., Bourdon, B., 1999.On the Preservation of Mantle Information in Ultramafic Nodules:Glass Inclusions within Minerals versus Interstitial Glasses.Earth and Planetary Science Letters, 169(1-2):173-188.doi: 10.1016/S0012-821X(99)00074-6
      Severs, M.J., Azbej, T., Thomas, J.B., et al., 2007.Experimental Determination of H2O Loss from Melt Inclusions during Laboratory Heating:Evidence from Raman Spectroscopy.Chemical Geology, 237(3-4):358-371.doi: 10.1016/j.chemgeo.2006.07.008
      Shinohara, H., Kazahaya, K., Lowenstern, J.B., 1995.Volatile Transport in a Convecting Magma Column:Implications for Porphyry Mo Mineralization.Geology, 23(12):1091-1094.doi:10.1130/0091-7613(1995)023<1091:VTIACM>2.3.CO;2
      Sillitoe, R.H., 2010.Porphyry Copper Systems.Economic Geology, 105(1):3-41.doi: 10.2113/gsecongeo.105.1.3
      Sorby, H.C., 1858.On the Microscopical, Structure of Crystals, Indicating the Origin of Minerals and Rocks.Quarterly Journal of the Geological Society, 14(1-2):453-500.doi: 10.1144/GSL.JGS.1858.014.01-02.44
      Stavast, W.J.A., Keith, J.D., Christiansen, E.H., et al., 2006.The Fate of Magmatic Sulfides during Intrusion or Eruption, Bingham and Tintic Districts, Utah.Economic Geology, 101(2):329-345.doi: 10.2113/gsecongeo.101.2.329
      Steinberger, I., Hinks, D., Driesner, T., et al., 2013.Source Plutons Driving Porphyry Copper Ore Formation:Combining Geomagnetic Data, Thermal Constraints, and Chemical Mass Balance to Quantify the Magma Chamber beneath the Bingham Canyon Deposit.Economic Geology, 108(4):605-624.doi: 10.2113/econgeo.108.4.605
      Stern, C.R., Funk, J.A., Skewes, M.A., et al., 2007.Magmatic Anhydrite in Plutonic Rocks at the El Teniente Cu-Mo Deposit, Chile, and the Role of Sulfurand Copper-Rich Magmas in Its Formation.Economic Geology, 102(7):1335-1344.doi: 10.2113/gsecongeo.102.7.1335
      Student, J.J., Bodnar, R.J., 1999.Synthetic Fluid Inclusions XIV:Coexisting Silicate Melt and Aqueous Fluid Inclusions in the Haplogranite-H2O-NaCl-KCl System.Journal of Petrology, 40(10):1509-1525.doi: 10.1093/petroj/40.10.1509
      Student, J.J., Bodnar, R.J., 2004.Silicate Melt Inclusions in Porphyry Copper Deposits:Identification and Homogenization Behavior.Canadian Mineralogist, 42(5):1583-1599.doi: 10.2113/gscanmin.42.5.1583
      Sun, H., Xiao, Y., Gao, Y., et al., 2013.Fluid and Melt Inclusions in the Mesozoic Fangcheng Basalt from North China Craton:Implications for Magma Evolution and Fluid/Melt-Peridotite Reaction.Contributions to Mineralogy and Petrology, 165(5):885-901.doi: 10.1007/s00410-012-0840-7
      Thomas, R., Webster, J.D., Davidson, P., 2006a.Understanding Pegmatite Formation:The Melt and Fluid Inclusion Approach.In:Webster, J.D., ed., Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series.Mineralogical Association of Canada, Montreal.
      Thomas, R., Kamenetsky, V.S., Davidson, P., 2006b.Laser Raman Spectroscopic Measurements of Water in Unexposed Glass Inclusions.American Mineralogist, 91(2-3):467-470.doi: 10.2138/am.2006.2107
      Vasyukova, O., Williams-Jones, A.E., 2014.Fluoride-Silicate Melt Immiscibility and Its Role in REE Ore Formation:Evidence from the Strange Lake Rare Metal Deposit, Québec-Labrador, Canada.Geochimica et Cosmochimica Acta, 139:110-130.doi: 10.1016/j.gca.2014.04.031
      Vasyukova, O., Williams-Jones, A.E., 2016.The Evolution of Immiscible Silicate and Fluoride Melts:Implications for REE Ore-Genesis.Geochimica et Cosmochimica Acta, 172:205-224.doi: 10.1016/j.gca.2015.09.018
      Wallace, P.J., Edmonds, M., 2011.The Sulfur Budget in Magmas:Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions.Reviews in Mineralogy and Geochemistry, 73(1):215-246.doi: 10.2138/rmg.2011.73.8
      Xia, L.Q., 2002.Melt Inclusions in Magmatic Rocks.Earth Science Frontiers, 9(2):403-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200202031.htm
      Xiao, B., Qin, K.Z., Li, G.M., et al., 2012.Highly Oxidized Magma and Fluid Evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit, Southern Tibet, China.Resource Geology, 62(1):4-18.doi: 10.1111/j.1751-3928.2011.00177.x
      Zajacz, Z., Halter, W., 2007.LA-ICPMS Analyses of Silicate Melt Inclusions in Co-Precipitated Minerals:Quantification, Data Analysis and Mineral/Melt Partitioning.Geochimica et Cosmochimica Acta, 71(4):1021-1040.doi: 10.1016/j.gca.2006.11.001
      Zajacz, Z., Halter, W.E., Pettke, T., et al., 2008.Determination of Fluid/Melt Partition Coefficients by LA-ICP-MS Analysis of Co-Existing Fluid and Silicate Melt Inclusions:Controls on Element Partitioning.Geochimica et Cosmochimica Acta, 72(8):2169-2197.doi: 10.1016/j.gca.2008.01.034
      Zajacz, Z., Hanley, J.J., Heinrich, C.A., et al., 2009.Diffusive Reequilibration of Quartz-Hosted Silicate Melt and Fluid Inclusions:Are All Metal Concentrations Unmodified? Geochimica et Cosmochimica Acta, 73(10):3013-3027.doi: 10.1016/j.gca.2009.02.023
      Zhang, C.L., Liu, Y.S., Gao, S., et al., 2011.Chemical Compositions of Phenocryst-Hosted Melt Inclusions from the Sihetun Basalt:Implications for the Magma Evolution.Geochimica, 40(2):109-125 (in Chinese with English abstract). https://www.researchgate.net/publication/285160417_Chemical_compositions_of_phenocryst-hosted_melt_inclusions_from_the_Sihetun_basalt_Implications_for_the_magma_evolution_in_Chinese
      Zhang, D.H., Audétat, A., 2017a.What Caused the Formation of the Giant Bingham Canyon Porphyry Cu-Mo-Au Deposit? Insights from Melt Inclusions and Magmatic Sulfides.Economic Geology, 112(2):221-244.doi: 10.2113/econgeo.112.2.221
      Zhang, D.H., Audétat, A., 2017b.Chemistry, Mineralogy and Crystallization Conditions of Porphyry Mo-Forming Magmas at Urad-Henderson and Silver Creek, Colorado, USA.Journal of Petrology (in press). https://www.researchgate.net/profile/Daohan_Zhang
      Zhang, L., Audétat, A., 2016.Diffusional Modification of Cu Concentrations in Melt Inclusions.EMPG Abstract 2016, ETH Zürich.
      Zhang, L., Ren, Z.Y., Nichols, A.R.L., et al., 2014.Lead Isotope Analysis of Melt Inclusions by LA-MC-ICP-MS.Journal of Analytical Atomic Spectrometry, 29:1393-1405.doi: 10.1039/C4JA00088A
      丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409
      付乐兵, 魏俊浩, 张道涵, 等, 2015.单个流体包裹体成分LA-ICP-MS分析与矿床学应用进展.中南大学学报(自然科学版), 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037
      侯增谦, 孟祥金, 曲晓明, 等, 2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质, 24(2):108-121. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200502002.htm
      卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
      夏林圻, 2002.岩浆岩中的熔体包裹体.地学前缘, 9(2):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202031.htm
      张春来, 刘勇胜, 高山, 等, 2011.四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示.地球化学, 40(2):109-125. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (5863) PDF downloads(117) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return