• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 7
    Jul.  2017
    Turn off MathJax
    Article Contents
    Li Zhuo, Jiang Zhenxue, Tang Xianglu, Wang Pengfei, Huang Pu, Wang Guozhen, 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
    Citation: Li Zhuo, Jiang Zhenxue, Tang Xianglu, Wang Pengfei, Huang Pu, Wang Guozhen, 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090

    Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing

    doi: 10.3799/dqkx.2017.090
    • Received Date: 2016-11-08
    • Publish Date: 2017-07-15
    • The favorable facies classification for shale has not been established so far, and it is a key issue in shale gas evaluation to characterize the full scale pore size distribution by reasonable relating of different results. In this study, lithofacies classification is established based on TOC and XRD experiments on cores. There are 9 types of lithofacies, namely the Organic-rich siliceous shale (ORS), Organic-rich mixed shale (ORM), Organic-rich argillaceous shale (ORA), Organic-fair siliceous shale (OMS), Organic-fair mixed shale (OMM), Organic-fair argillaceous shale (OMA), Organic-poor siliceous shale (OPS), Organic-poor mixed shale (OPM), and Organic-poor argillaceous shale (OPA) develop in southeastern Chongqing. Low pressure nitrogen adsorption and high pressure mercury intrusion experiments are conducted to quantitatively characterize the full scale pore size distribution. It is found that spectrum of pore size distribution for ORS have multiple peaks at 2-3nm, 70-90nm and 200-300nm, and the peak shifts to the small pore size when the TOC value increases. Mesopores and macropores have the largest proportion in pore volumes, whereas mesopores and micropores take the largest part of the pore surface areas. The pore volume percentage of micropore, mesopore and marcropore is 12%, 53%, and 52% respectively, and the pore surface area percentage of micro pore, mesopore and marcropore is 47%, 57%, and 11% respectively. The volume of 200-400nm pore obviously increases when clay mineral content increases. The contribution to the surface area is over 90% for micropores and mesopores. The contribution to the pore volume is over 90% for mesopores and marcropores. The organic-rich siliceous shale, which has the largest pore volume and surface area, is the most favourable lithofacies for shale gas enrichment.

       

    • loading
    • Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116
      Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533.doi: 10.1306/06190606018
      Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052
      Chen, L., Jiang, Z.X., Xing, J.Y., et al., 2014.The Reservoir Characteristics and Evaluation of Xinchang Gas Field 28 Wells of Triassic Period Shale in West Sichuan Depression.Journal of Oil and Gas Technology, 36(5):25-31 (in Chinese with English abstract).
      Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2012.Structure Characteristics and Accumulation Significance of Nanopores in Longmaxi Shale Gas Reservoir in the Southern Sichuan Basin.Journal of China Coal Society, 37(3):438-444 (in Chinese with English abstract).
      Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103(1):606-616.doi: 10.1016/j.fuel.2012.06.119
      Dong, D.Z., Zou, C.N., Li, J.Z., 2011.Resource Potential, Exploration and Development Prospect of Shale Gas in the Whole World.Geological Bulletin of China, 30(2):324-336 (in Chinese with English abstract). https://www.researchgate.net/publication/279558165_Resource_potential_exploration_and_development_prospect_of_shale_gas_in_the_whole_world
      Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). https://www.researchgate.net/publication/260213494_Formation_and_enrichment_mode_of_Jiaoshiba_shale_gas_field_Sichuan_Basin
      Guo, X.S., 2014.Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China—Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract).
      Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068
      Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012.Experiments on Methane Adsorption of Common Clay Minerals in Shale.Earth Science, 37(5):1043-1050 (in Chinese with English abstract).
      Jiang, Z.X., Tang, X.L., Cheng, L.J., et al., 2015.Characterization and Origin of the Silurian Wufeng-Longmaxi Formation Shale Multiscale Heterogeneity in Southeastern Sichuan Basin, China.Interpretation, 3(2):SJ61-SJ74.doi: 10.1190/int-2014-0151.1
      Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059
      Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340.doi: 10.1306/10240808059
      Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927.doi: 10.1016/j.marpetgeo.2008.06.004
      Tang, X.L., Jiang, Z.X., Li, Z., et al., 2015.The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 23:464-473.doi: 10.1016/j.jngse.2015.02.031
      Wang, G.C., Carr, T.R., 2012.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers and Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011
      Wang, G.C., Ju, Y.W., Yan, Z.F., et al., 2015.Pore Structure Characteristics of Coal-Bearing Shale Using Fluid Invasion Methods:A Case Study in the Huainan-Huaibei Coalfield in China.Marine and Petroleum Geology, 62:1-13.doi: 10.1016/j.marpetgeo.2015.01.001
      Wang, S.J., Wang, L.S., Huang, J.L., et al., 2009.Accumulation Conditions of Shale Gas Reservoirs in Silurian of the Upper Yangtze Region.Natural Gas Industry, 29(5):45-50, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200905009.htm
      Wu, S.T., Zou, C., N., Zhu, R.K., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      Xiao, X.M., Song, Z.G., Zhu, Y.M., et al., 2013.Summary of Shale Gas Research in North American and Revelations to Shale Gas Exploration of Lower Paleozoic Strata in China South Area.Journal of China Coal Society, 38(5):721-727 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00001
      Xie, X.N., Li, H.J., Xiong, X., et al., 2008.Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan.Journal of Earth Science, 19(5):507-517.doi: 10.1016/s1002-0705(08)60056-4
      Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1823 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
      Zhao, J.Z., Wang, S., Li, Y.M., 2012.The Key Problems and Technology of Shale Gas Reservoir Fracturing.Natural Gas Industry, 32(4):46-49 (in Chinese with English abstract).
      陈磊, 姜振学, 邢金艳, 等, 2014.川西坳陷新场28井上三叠统须五段页岩气储层特征研究及评价.石油天然气学报, 36(5): 25-31. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201405006.htm
      陈尚斌, 朱炎铭, 王红岩, 等, 2012.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义.煤炭学报, 37(3): 438-444. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201203015.htm
      董大忠, 邹才能, 李建忠, 等, 2011.页岩气资源潜力与勘探开发前景.地质通报, 30(2): 324-336. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201505043.htm
      郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03
      郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7): 1209-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
      吉利明, 邱军利, 张同伟, 等, 2012.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学, 37(5): 1043-1050. http://www.earth-science.net/WebPage/Article.aspx?id=2308
      王社教, 王兰生, 黄金亮, 等, 2009.上扬子区志留系页岩气成藏条件.天然气工业, 29(5): 45-50, 137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106012.htm
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      肖贤明, 宋之光, 朱炎铭, 等, 2013.北美页岩气研究及对我国下古生界页岩气开发的启示.煤炭学报, 38(5): 721-727. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305002.htm
      杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
      赵金洲, 王松, 李勇明, 2012.页岩气藏压裂改造难点与技术关键.天然气工业, 32(4): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (4526) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return