• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 8
    Aug.  2017
    Turn off MathJax
    Article Contents
    Xu Zhongyi, Cheng Linsong, Cao Renyi, Fang Sidong, Wu Jiuzhu, Zhuang Yongtao, Ai Shuang, 2017. Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs. Earth Science, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108
    Citation: Xu Zhongyi, Cheng Linsong, Cao Renyi, Fang Sidong, Wu Jiuzhu, Zhuang Yongtao, Ai Shuang, 2017. Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs. Earth Science, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108

    Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs

    doi: 10.3799/dqkx.2017.108
    • Received Date: 2017-04-27
    • Publish Date: 2017-08-15
    • During the process of tight oil exploration, counter current imbibition effect is significantly different due to the presence of complex fracture network and flow characteristics in tight oil reservoirs. But at present, there is no proper model to simulate counter-current imbibition in fractured reservoir considering the characteristics of tight oil formation. In order to solve this problem, PEBI grids are used to match the complex fracture network, natural fractures and matrix are idealized as dual-porosity medium, rate of mass transfer of imbibition between matrix and fractures is treated as source or sink term in dual porosity model. A new semi analytical model for the calculation of mass transfer function of counter-current imbibition in the presence of complex fracture network is established by using radial integration boundary element method (RIBEM). In addition, to reflect the flow characteristics of tight oil, relative permeability and capillary pressure curve with the effect of boundary layer considered, and mixed wettability have also used in the mass transfer model. Besides, we show the capacity and practical application of the model with a field example from tight oil reservoir. From simulated results, it is concluded that counter-current imbibition plays an important role in improving the oil recovery and the existence of boundary layer reduces the contribution of imbibition to oil production dramatically.

       

    • loading
    • Aronofsky, J.S., Masse, L., Natanson, S.G., 1958.A Model for the Mechanism of Oil Recovery from the Porous Matrix due to Water Invasion in Fractured Reservoirs.Society of Petroleum Engineers, 213:17-19. http://www.onepetro.org/general/SPE-932-G
      Bagherinezhad, A., Pishvaie, M.R., 2014.A New Approach to Counter-Current Spontaneous Imbibition Simulation Using Green Element Method.Journal of Petroleum Science and Engineering, 119:163-168.doi: 10.1016/j.petrol.2014.05.004
      Cai, J.C., Yu, B.M., 2012.Advances in Studies of Spontaneous Imbibition in Porous Media.Advances in Mechanics, 42(6):735-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201206006.htm
      Cai, J.C., Guo, S.L., You, L.J., et al., 2013.Fractal Analysis of Spontaneous Imbibition Mechanism in Fractured-Porous Dual Media Reservoir.Acta Physica Sinica, 62(1):220-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201301035.htm
      Fang, S.D., Cheng, L.S., Ayala, L.F., 2017.A Coupled Boundary Element and Finite Element Method for the Analysis of Flow through Fractured Porous Media.Journal of Petroleum Science and Engineering, 152:375-390.doi: 10.1016/j.petrol.2017.02.020
      Hassan, S., 2004.Analysis Scaling and Simulation of Counter-Current Imbibition (Dissertation).London Imperial College, London.
      Jia, P., Cheng, L.S., Huang, S.J., et al., 2015.Transient Behavior of Complex Fracture Networks.Journal of Petroleum Science and Engineering, 132:1-17.doi: 10.1016/j.petrol.2015.04.041
      Kashchiev, D., Firoozabadi, A., 2003.Analytical Solutions for 1D Countercurrent Imbibition in Water-Wet Media.SPE Journal, 8(4):401-408.doi: 10.2118/87333-pa
      Li, Y., Lei, Q., Liu, X.G., 2011.Characteristics of Micro Scale Nonlinear Filtration.Petroleum Exploration & Development, 38(3):336-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201103018.htm
      Ma, S.X., Morrow, N.R., Zhang, X.Y., 1997.Generalized Scaling of Spontaneous Imbibition Data for Strongly Water-Wet Systems.Journal of Petroleum Science and Engineering, 18(3-4):165-178.doi: 10.1016/s0920-4105(97)00020-x
      Meng, Q., Liu, H.Q., Wang, J., 2017.A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, Fluid Viscosity and Wettability.Advances in Geo-Energy Research, 1(1):1-17.
      Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610009.htm
      Schechter, D.S., Zhou, D., Orr, F.M., 1994.Low IFT Drainage and Imbibition.Journal of Petroleum Science and Engineering, 11(4):283-300.doi: 10.1016/0920-4105(94)90047-7
      Tian, X.F., 2015.Non-Linear Flow Behavior and Application in Ultra-Low Permeability Reservoirs (Dissertation).China University of Petroleum, Beijing (in Chinese with English abstract).
      Tian, X.F., Cheng, L.S., Cao, R.Y., et al., 2016.Characteristics of Boundary Layer in Micro and Nano Throats of Tight Sandstone Oil Reservoirs.Chinese Journal of Computational Physics, 33(6):717-725 (in Chinese with English abstract).
      Wei, Q., Li, Z.P., Bai, R.T., et al., 2016.An Experimental Study on the Effect of Microscopic Pore Structure on Spontaneous Imbibition in Tight Sandstones.Petroleum Drilling Techniques, 44(5):109-116 (in Chinese with English abstract).
      Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 39(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      Xu, Z.Y., Cheng, L.S., Cao, R.Y., et al., 2017.Simulation of Counter-Current Imbibition in Single Matrix and Field Scale Using Radical Integral Boundary Element Method.Journal of Petroleum Science and Engineering, 156:125-133.doi: 10.1016/j.petrol.2017.05.016
      Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012.Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance.Acta Petrolei Sinica, 33(2):173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203
      蔡建超, 郭士礼, 游利军, 胡祥云, 2013.裂缝-孔隙型双重介质油藏渗吸机理的分形分析.物理学报, 62(1): 220-224. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201301035.htm
      蔡建超, 郁伯铭, 2012.多孔介质自发渗吸研究进展.力学进展, 42(6): 735-754. doi: 10.6052/1000-0992-11-096
      李洋, 雷群, 刘先贵, 2011.微尺度下的非线性渗流特征.石油勘探与开发, 38(3): 336-340. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103018.htm
      任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理.地球科学, 41(10): 1735-1744. http://earth-science.net/WebPage/Article.aspx?id=3375
      田虓丰, 2015. 超低渗透油藏非线性渗流特征与应用(博士学位论文). 北京: 中国石油大学.
      田虓丰, 程林松, 曹仁义, 等, 2016.致密油藏微纳米喉道中的边界层特征.计算物理, 33(6): 717-725. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201606011.htm
      韦青, 李治平, 白瑞婷, 等, 2016.微观孔隙结构对致密砂岩渗吸影响的试验研究.石油钻探技术, 5: 109-116. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201605024.htm
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 39(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      邹才能, 朱如凯, 吴松涛, 等, 2012.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 33(2): 173-187. doi: 10.7623/syxb201202001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (4954) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return