Citation: | Yan Gaoyuan, Wei Chongtao, Song Yu, Zhang Junjian, Yang Hao, 2018. Quantitative Characterization of Shale Pore Structure Based on Ar-SEM and PCAS. Earth Science, 43(5): 1602-1610. doi: 10.3799/dqkx.2017.525 |
Bernard, S., Wirth, R., Schreiber, A., et al., 2012.Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin).International Journal of Coal Geology, 103(23):3-11. https://www.deepdyve.com/lp/elsevier/formation-of-nanoporous-pyrobitumen-residues-during-maturation-of-the-Jv1b5X6E05
|
Bu, H.L., Ju, Y.W., Tan, J.Q., et al., 2015.Fractal Characteristics of Pores in Non-Marine Shales from the Huainan Coalfield, Eastern China.Journal of Natural Gas Science and Engineering, 24:166-177. doi: 10.1016/j.jngse.2015.03.021
|
Chalmers, G.R.L., Bustin, R.M., 2007.The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada.International Journal of Coal Geology, 70(1-3):223-239.doi: 10.1016/j.coal.2006.05.001
|
Chen, Y.Y., Zou, C.N., Mastalerz, M., et al., 2015.Porosity and Fractal Characteristics of Shale across a Maturation Gradient.Natural Gas Geoscience, 26(9):1646-1656 (in Chinese with English abstract). https://www.researchgate.net/publication/283185370_Fractal_Characteristics_of_Shales_Across_a_Maturation_Gradient
|
Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103(1):606-616. https://experts.griffith.edu.au/publication/nc789a060666a40e7a2f5ed09c1bc71db
|
Curtis, J.B., 2002.Fractured Shale Gas System.AAPG Bulletin, 86(11):1921-1938.
|
Curtis, M.E., Cardott, B.J., Sondergeld, C.H., et al., 2012.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103(23):26-31. https://www.deepdyve.com/lp/elsevier/development-of-organic-porosity-in-the-woodford-shale-with-increasing-Za2BGY1yl2
|
Fu, C.Q., Zhu, Y.M., Chen, S.B., 2016.Pore Structure and Fractal Features of Hetang Formation Shale in Western Zhejiang.Journal of China University of Mining & Technology, 45(1):77-86 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201601011
|
Gensterblum, Y., Ghanizadeh, A., Cuss, R.J., et al., 2015.Gas Transport and Storage Capacity in Shale Gas Reservoirs-A Review.Part A:Transport Processes.Journal of Unconventional Oil and Gas Resources, 12:87-122. doi: 10.1016/j.juogr.2015.08.001
|
Javadpour, F., Fisher, D., Unsworth, M., 2007.Nanoscale Gas Flow in Shale Gas Sediments.Journal of Canadian Petroleum Technology, 46 (10):55-61. https://www.researchgate.net/profile/Farzam_Javadpour/publication/250092811_Nanoscale_Gas_Flow_in_Shale_Gas_Sediments/links/0a85e53402e5b435ea000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
|
Jiao, K., Yao, S.P., Liu, C., et al., 2014.The Characterization and Quantitative Analysis of Nanopores in Unconventional Gas Reservoirs Utilizing FESEM-FIB and Image Processing:An Example from the Lower Silurian Longmaxi Shale, Upper Yangtze Region, China.International Journal of Coal Geology, 128-129:1-11. doi: 10.1016/j.coal.2014.03.004
|
Klaver, J., Desbois, G., Littke, R., et al., 2016.BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany.International Journal of Coal Geology, 158:78-89. doi: 10.1016/j.coal.2016.03.003
|
Liu, C., Shi, B., Zhou, J., et al., 2011.Quantification and Characterization of Microporosity by Image Processing, Geometric Measurement and Statistical Methods:Application on SEM Images of Clay Materials.Applied Clay Science, 54 (1):97-106. https://doi.org/10.1016/j.clay.2011.07.022
|
Liu, C., Tang, C.S., Shi, B., et al., 2013.Automatic Quantification of Crack Patterns by Image Processing.Computers & Geosciences, 57(4):77-80. http://www.sciencedirect.com/science/article/pii/S0098300413001088
|
Loucks, R.G., Reed, R.M., 2014.Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks.GCAGS, 10(3):51-60. http://www.searchanddiscovery.com/abstracts/html/2014/90196gcags/abstracts/91.html
|
Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79 (12):848-861. doi: 10.2110/jsr.2009.092
|
Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96 (6):1071-1098. https://doi.org/10.1306/08171111061
|
Mendhe, V.A., Mishra, S., Khangar, R.G., et al., 2017.Organo-Petrographic and Pore Facets of Permian Shale Beds of Jharia Basin with Implications to Shale Gas Reservoir.Journal of Earth Science, 28(5):897-916. doi: 10.1007/s12583-017-0779-8
|
Modica, C.J., Lapierre, S.G., 2012.Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation:Example from the Mowry Shale in the Powder River Basin of Wyoming.AAPG Bulletin, 96(1):87-108. https://doi.org/10.1306/04111110201
|
Qin, Y., Jiang, B., Wang, J.Y., et al., 2008.Coupling Control of Tectonic Dynamical Conditions to Coalbed Methane Reservoir Formation in the Qinshui Basin, Shanxi, China.Acta Geologica Sinica, 82(10):1355-1362 (in Chinese with English abstract). https://www.researchgate.net/publication/290024378_Coupling_control_of_tectonic_dynamical_conditions_to_coalbed_methane_reservoir_formation_in_the_Qinshui_Basin_Shanxi_China
|
Qin, Y., Zhang, D.M., Fu, X.H., et al., 1999.A Discussion on Correlation of Modern Tectonic Stress Field to Physical Properties of Coal Reservoirs in Central and Southern Qinshui Basin.Geological Review, 45(6):576-583 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199906005.htm
|
Sezer, G.I., Ramyar, K., Karasu, B., et al., 2008.Image Analysis of Sulfate Attack on Hardened Cement Paste.Materials and Design, (29):224-231. https://doi.org/10.1016/j.matdes.2006.12.006
|
Shao, L.Y., Xiao, Z.H., He, Z.P., et al., 2006.Palaeogeography and Coal Accumulation for Measures of the Carboniferous-Permian in Qinshui Basin, Southeastern Shanxi Province.Journal of Palaeogeography, 8(1):43-52 (in Chinese with English abstract). http://www.researchgate.net/publication/303234205_Palaeogeography_and_coal_accumulation_for_coal_measures_of_the_Carboniferous-Permian_in_Qinshui_Basin_southeastern_Shanxi_Province
|
Soroushian, P., Elzafraney, M., 2005.Morphological Operations, Planar Mathematical Formulations, and Stereological Interpretations for Automated Image Analysis of Concrete Microstructure.Cement and Concrete Composites, 27(7-8):823-833. https://doi.org/10.1016/j.cemconcomp.2004.07.008
|
Strąpoć, D., Mastalerz, M., Schimmelmann, A., et al., 2010.Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian-Mississippian), Eastern Illinois Basin.AAPG Bulletin, 94(11):1713-1740. https://doi.org/10.1306/06301009197
|
Sun, M.D., Yu, B.S., Hu, Q.H., et al., 2016.Nanoscale Pore Characteristics of the Lower Cambrian Niutitang Formation Shale:A Case Study from Well Yuke #1 in the Southeast of Chongqing, China.International Journal of Coal Geology, 154-155(5):16-29. http://europepmc.org/abstract/MED/25184155
|
Wang, B.Y., Hu, B., Bai, J.P., et al., 2015.Coal-Accumulating Environments of the Upper Carboniferous-Lower Permian Taiyuan Formation in Southeastern Qinshui Basin, Shanxi Province.Journal of Palaeogeography, 17(5):677-688 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201505009
|
Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093
|
Wang, Y., Zhu, Y.M., Wang, H.Y., et al., 2015.Nanoscale Pore Morphology and Distribution of Lacustrine Shale Reservoirs:Examples from the Upper Triassic Yanchang Formation, Ordos Basin.Journal of Energy Chemistry, 24 (4):512-519. doi: 10.1016/j.jechem.2015.06.004
|
Wei, C.T., Qin, Y., Man, L., 2005.Numerical Simulation Research on the Overpressure Hisrory of Upper Main Coal Seam in Central-South Qinshui Basin.Natural Gas Industry, 25(1):81-84, 10 (in Chinese with English abstract). https://www.researchgate.net/publication/298161512_Numerical_simulation_research_on_the_overpressure_history_of_upper_main_coal_seam_in_central-south_Qinshui_Basin
|
Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservior Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). https://www.onepetro.org/download/conference-paper/SPE-177012-MS?id=conference-paper%2FSPE-177012-MS
|
Xiong, C.R., Tang, H.M., Liu, B.C., et al., 2007.Using SEM Photos to Gain the Pore Structure Parameters of Soil Samples.Earth Science, 32(3):415-419 (in Chinese with English abstract). https://www.researchgate.net/publication/292007821_Using_SEM_photos_to_gain_the_pore_structural_parameters_of_soil_samples
|
Yang, R., He, S., Yi, Q.H., et al., 2016.Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry.Marine and Petroleum Geology, 70:27-45. doi: 10.1016/j.marpetgeo.2015.11.019
|
Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.088
|
Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales
|
Zhang, X., Liu, C.L., Zhu, Y.M., et al., 2015.The Characterization of a Marine Shale Gas Reservoir in the Lower Silurian Longmaxi Formation of the Northeastern Yunnan Province, China.Journal of Natural Gas Science and Engineering, 27:321-335. doi: 10.1016/j.jngse.2015.08.070
|
陈燕燕, 邹才能, Mastalerz, M., 等, 2015.页岩微观孔隙演化及分形特征研究.天然气地球科学, 26(9):1646-1656. http://www.oalib.com/paper/5025081
|
付常青, 朱炎铭, 陈尚斌, 2016.浙西荷塘组页岩孔隙结构及分形特征研究.中国矿业大学学报, 45(1):77-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601012.htm
|
秦勇, 姜波, 王继尧, 等, 2008.沁水盆地煤层气构造动力条件耦合控藏效应.地质学报, 82(10):1355-1362. doi: 10.3321/j.issn:0001-5717.2008.10.007
|
秦勇, 张德民, 傅雪海, 等, 1999.山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨.地质论评, 45(6):576-583. http://www.oalib.com/paper/4887212
|
邵龙义, 肖正辉, 何志平, 等, 2006.晋东南沁水盆地石炭二叠纪含煤岩系古地理及聚煤作用研究.古地理学报, 8(1):43-52. http://edu.wanfangdata.com.cn/Periodical/Detail/gdlxb200601005
|
王保玉, 胡斌, 白建平, 等, 2015.山西沁水盆地东南部上石炭统-下二叠统太原组聚煤环境.古地理学报, 17(5):677-688. doi: 10.7605/gdlxb.2015.05.056
|
王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603
|
韦重韬, 秦勇, 满磊, 2005.沁水盆地中南部上主煤层超压史数值模拟研究.天然气工业, 25(1):81-84, 10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200501023
|
吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11):1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
|
熊承仁, 唐辉明, 刘宝琛, 等, 2007.利用SEM照片获取土的孔隙结构参数.地球科学, 32(3):415-419. http://www.earth-science.net/WebPage/Article.aspx?id=3469
|
杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
|
张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11):1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189
|