• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 12
    Dec.  2017
    Turn off MathJax
    Article Contents
    Zheng Guizhou, Le Xiaodong, Wang Hongping, Hua Weihua, 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552
    Citation: Zheng Guizhou, Le Xiaodong, Wang Hongping, Hua Weihua, 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552

    Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network

    doi: 10.3799/dqkx.2017.552
    • Received Date: 2017-01-24
    • Publish Date: 2017-12-15
    • The inversion of water depth from remote sensing imagery is an important technology of depth measurement. In this paper, on the basis of radiometric calibration and atmospheric correction, BP(back propagation)and RBF(radial basis function) neural networks were built to retrieve water depth from WorldView-02 high-resolution satellite imagery in Mischief reef. Band 1 to band 8 of satellite imagery were used as the input data of the neural networks. Then, they were converted from input layer to hidden layer and from the hidden layer to output layer with tansig, logsig, Gaussian and purelin functions. Finally, the accuracy of the two models was evaluated by R2 (coefficient of determination), MAE(mean absolute error), RMSE(root mean square error) and the regression analysis between retrieved water depth and ground measured water depth. The results show that RBF neural network has simpler model structure, and lower requirement of samples. Besides, its retrieval accuracy reaches 0.995. Therefore, RBF neural network is more suitable for the inversion of water depth.

       

    • loading
    • Ceyhun, Ö., Yalcin, A., 2010.Remote Sensing of Water Depths in Shallow Waters via Artificial Neural Networks.Estuarine Coastal and Shelf Science, 89(1):89-96. doi: 10.1016/j.ecss.2010.05.015
      Anctil, F., Coulibaly, P., 2004.Wavelet Analysis of the Interannual Variability in Southern Québec Streamflow.Journal of Climate, 17(1):163-173.doi:10.1175/1520-0442(2004)017<0163:WAOTIV>2.0.CO;2
      Dang, F.X., Ding, Q., 2003.The Use of Multi-Band Satellite Data to Study Shallow Water Depth Inversion.Marine Science Bulletin, 22(3):55-60(in Chinese).
      Deng, Z.D., Ye, X., Guan, H.J., et al., 2013.Remote Sensing of Water Depth Based on RBF Neural Network.Journal of PLA University of Science and Technology (Natural Science Edition), 14(1):101-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JFJL201301020.htm
      Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract). doi: 10.1186/s40677-017-0078-9
      Gao, G.D., Zhang, W.X, Mu, G.Y., 2011.A Comparative Study on RBF Network and BP Network in the Model of Salinity.Marine Science Bulletin, 30(1):12-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB201101003.htm
      Gao, W., Liu, X.G., Peng, P., Chen, Q.H., 2010.An Improved Method of High-Resolution Remote Sense Image Segmentation.Earth Science, 35(3):421-425 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201003020.htm
      Han, X.Q., Su, Y., Li, J., et al., 2012.Atmospheric Correction and Verification of the SPOT Remote Sensing Image in Coastal Zones.Geographical Research, 31(11):2007-2016(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201211010.htm
      Huang, W.Q., Wu, D., Yang, Y., et al., 2003.Multi-Spectral Remote Sensing Water Depth Retrieval Technique in Shallow Sea.Ocean Technology, 32(2):43-46(in Chinese with English abstract).
      Liu, M.T., Zhang, C.C., Tian, Z.Z., et al., 2016.RBF Neural Networks Based-Study on Data Fusion for Measurement of Sediment Concentration of Yellow River.Water Resources and Hydropower Engineering, 46(1):126-130(in Chinese with English abstract).
      López-Serrano, P.M., Corral-Rivas, J.J., et al., 2016.Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data.Remote Sensing, 8(5):369.doi: 10.3390/rs8050369
      Lyzenga, D.R., 1978.Passive Remote Sensing Techniques for Mapping Water Depth and Botton Features.Applied Optics, 17(3):379-383.doi: 10.1364/AO.17.000379
      Ma, H.Z., Liu, S.M., 2016.The Potential Evaluation of Multisource Remote Sensing Data for Extracting Soil Moisture Based on the Method of BP Neural Network.Canadian Journal of Remote Sensing, 42(2):117-124. doi: 10.1080/07038992.2016.1160773
      Poupardin, A., Idier, D., De Michele, M., et al., 2015.Water Depth Inversion from a Single SPOT-5 Dataset.IEEE Transactions on Geoscience and Remote Sensing, 54(4):2329-2342.doi: 10.1109/TGRS.2015.2499379
      Su, H.B., Liu, H.X., Wu, Q.S., 2015.Prediction of Water Depth From Multispectral Satellite Imagery-The Regression Kriging Alternative.IEEE Geoscience and Remote Sensing Letters, 12(12):2511-2515.doi: 10.1109/LGRS.2015.2489678
      Wang, J.J., Tian, Q.J., 2007.Study on Shallow Coastal Water Depth Derived Method Based on Hyperspectral Remote Sensing.Scientia Geographica Sinica, 27(6):843-848(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200706019.htm
      Wang, Y.J., Zhang, P.Q., Dong, W.J., et al., 2007.Study on Remote Sensing of Water Depths Based on BP Artifical Neural Network.Marine Science Bulletin, 9(1):26-35.
      Yu, R.H., Xu, Y.P., Liu, T.X., et al., 2009.Reversing Water Depth in Shallow Lake of Arid Area Using Multi-Spectral Remote Sensing Information.Advances in Water Science, 20(1):111-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200901019.htm
      Yu, Y.F., Yang, J.Z., Chen, S.B., et al., 2015.Lithologic Classification from Remote Sensing Images Based on Spectral Index.Earth Science, 40(8):1415-1419(in Chinese with English abstract). https://www.researchgate.net/publication/285601688_Lithologic...
      Zhou, P., Li, N., Huo, H.Y., 2015.The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data.Earth Science, 40(8):1310-1318(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqkx201508004.aspx
      Zhu, Y., Zhao, Q., Zhou, X, D., 2013.Remote Sensing Water Depth Inversion Based on Chaotic Immune Optimization RBF Network.Computer Engineering, 39(5):187-191(in Chinese with English abstract). http://www.ecice06.com/EN/abstract/abstract24779.shtml
      党福星, 丁谦, 2003.利用多波段卫星数据进行浅海水深反演方法研究.海洋通报, 22(3):55-60. http://www.cqvip.com/QK/92854X/200303/7858666.html
      邓正栋, 叶欣, 关洪军, 等, 2013.基于RBF神经网络的水深遥感研究.解放军理工大学学报:自然科学版, 14(1):101-106. http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201301019
      冯杭建, 周爱国, 俞建君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. http://www.earth-science.net/WebPage/Article.aspx?id=3259
      高国栋, 张文孝, 慕光宇, 2011.RBF网络和BP网络在海水盐度建模中的比较研究.海洋通报, 30(1):12-15. http://www.cqvip.com/QK/92854X/201101/37179382.html
      高伟, 刘修国, 彭攀, 等, 2010.一种改进的高分辨率遥感影像分割方法.地球科学, 35(3):421-425. http://www.earth-science.net/WebPage/Article.aspx?id=1978
      韩晓庆, 苏艺, 李静, 等, 2012.海岸带地区SPOT卫星影像大气校正方法比较及精度验证.地理研究, 31(11):2007-2016. http://www.oalib.com/paper/4252438
      黄文骞, 吴迪, 杨杨, 等, 2013.浅海多光谱遥感水深反演技术.海洋技术, 32(2):43-46. http://www.cnki.com.cn/Article/CJFDTotal-HYJS201302011.htm
      刘明堂, 张成才, 田壮壮, 等, 2015.基于RBF神经网络的黄河含沙量测量数据融合研究.水利水电技术, 46(1):126-130. doi: 10.3969/j.issn.1000-0860.2015.01.029
      王晶晶, 田庆久, 2007.海岸带浅海水深高光谱遥感反演方法研究.地理科学, 27(6):843-848. http://www.oalib.com/paper/4168021
      于瑞宏, 许有鹏, 刘廷玺, 等, 2009.应用多光谱遥感信息反演干旱区浅水湖泊水深.水科学进展, 20(1):111-117. http://www.wenkuxiazai.com/doc/a1fc38186529647d2628528f.html
      于亚凤, 杨金中, 陈圣波, 等, 2015.基于光谱指数的遥感影像岩性分类.地球科学, 40(8):1415-1419. http://www.earth-science.net/WebPage/Article.aspx?id=3144
      周萍, 李娜, 霍红元, 2015.基于Hymap模拟的星载高光谱数据质量评价.地球科学, 40(8):1310-1318. http://www.earth-science.net/WebPage/Article.aspx?id=3147
      朱玉, 赵卿, 周兴东, 2013.基于混沌免疫优化RBF网络的遥感水深反演.计算机工程, 39(5):187-191. http://www.cqvip.com/QK/95200X/201305/45778853.html
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (6655) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return