• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 7
    Jul.  2019
    Turn off MathJax
    Article Contents
    Guo Xianzheng, Xie Wanhong, Zhou Hongbing, Tian Chengsheng, Li Jinchao, Kong Huilei, Yang Tao, Yao Xuegang, Jia Qunzi, 2019. Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance. Earth Science, 44(7): 2505-2518. doi: 10.3799/dqkx.2018.101
    Citation: Guo Xianzheng, Xie Wanhong, Zhou Hongbing, Tian Chengsheng, Li Jinchao, Kong Huilei, Yang Tao, Yao Xuegang, Jia Qunzi, 2019. Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance. Earth Science, 44(7): 2505-2518. doi: 10.3799/dqkx.2018.101

    Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance

    doi: 10.3799/dqkx.2018.101
    • Received Date: 2018-06-07
    • Publish Date: 2019-07-15
    • The Nagengkangqieer silver polymetallic deposit located in the East Kunlun orogenic belt is a newly discovered large-scale silver deposit in Qinghai Province. Orebodies of the deposit are mainly hosted in rhyolite porphyry. This paper presents zircon U-Pb dating and Lu-Hf isotopes, whole-rock major and trace elements for rhyolite porphyry in the Nagengkangqieer deposit. The LA-ICP-MS zircon U-Pb analyses for rhyolite porphyry show that rocks formed during the Late Triassic with ages of 217.4±3.1 Ma. The rhyolite porphyry has high contents of SiO2 (73.08%-75.78%), Al2O3 (14.05%-16.04%), with K2O+Na2O ranging from 4.31% to 4.77%, and K2O=4.20%-4.61%, belonging to the high-potassium calc-alkaline strong peralkaline volcanic rocks. These rocks are characterized by high silicon, aluminum and high-potassium, the Mg# values range from 45 to 54; and rhyolite porphyry is depleted in high field strength elements (HFSEs; e.g., Nb, Ta, P, and Ti), and enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th and K); εHf(t) values vary from -4.4 to -9.7, and the two-stage model age of TDM2 ranges from 1 533 Ma to 1 864 Ma. According to the petrology, geochemistry and regional tectonic background, we conclude that the rhyolite porphyry was predominantly derived from partial melting of the Paleoproterozoic-Mesoproterozoic continental crust and some mantle derived material, it formed in extension tectonic settings. The Nagengkangqieer silver polymetallic deposit reflects the Late Triassic mineralization, which is essential for future exploration of polymetallic deposit in the area where intrusive rocks or volcanic rocks in East Kunlun orogenic belt would be very obvious.

       

    • loading
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0
      Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2):224-256. https://doi.org/10.1007/bf00402114
      Bai, Y. N., Sun, F. Y., Qian, Y., et al., 2016. Zircon U-Pb Geochronology and Geochemistry of Pyroxene Diorite in Galinge Iron-Polymetallic Deposit, East Kunlun. Global Geology, 35(1):17-27 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201601003
      Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745
      Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4):312-324. https://doi.org/10.1016/j.epsl.2008.01.022
      Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Cao, J. H., Yuan, W. M., Hao, N. N., et al., 2015. Geochronology, Geochemistry and Geodynamic Implications of the Gouli Area Granites in East Kunlun Mountains. Geological Science and Technology Information, 34(2):42-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502006
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186:231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
      Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6
      Gagnevin, D., Daly, J. S., Horstwood, M. S. A., et al., 2011. In-Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Evidence for Magma Mixing and Mantle Metasomatism in the Tuscan Magmatic Province, Italy. Earth and Planetary Science Letters, 305(1-2):45-56. https://doi.org/10.1016/j.epsl.2011.02.039
      Greenough, J. D., 1988. Minor Phases in the Earth's Mantle:Evidence from Trace- and Minor-Element Patterns in Primitive Alkaline Magmas. Chemical Geology, 69(3-4):177-192. https://doi.org/10.1016/0009-2541(88)90033-2
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Guffanti, M., Clynne, M. A., Muffler, L. J. P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013. https://doi.org/10.1029/95jb03463
      Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062
      Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
      Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
      Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245:205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      Ingle, S., 2002. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43(7):1241-1257. https://doi.org/10.1093/petrology/43.7.1241
      Jiang, B., Zhang, D. Q., Wang, D. H., et al., 2015. A Preliminary Review of Metallogenic Regularity of Silver Deposits in China. Acta Geologica Sinica (English Edition), 89(3):1002-1020. https://doi.org/10.1111/1755-6724.12493
      John, D. A., Hofstra, A. H., Fleck, R. J., et al., 2003. Geologic Setting and Genesis of the Mule Canyon Low-Sulfidation Epithermal Gold-Silver Deposit, North-Central Nevada. Economic Geology, 98(2):425-463. https://doi.org/10.2113/gsecongeo.98.2.425
      Kouhestani, H., Ghaderi, M., Large, R. R., et al., 2017. Texture and Chemistry of Pyrite at Chah Zard Epithermal Gold-Silver Deposit, Iran. Ore Geology Reviews, 84:80-101. https://doi.org/10.1016/j.oregeorev.2017.01.002
      Li, M. T., Li, Z. Q., 2017. Constrains of S-Pb-C-O Isotope Compositions on the Origin of Nagengkangqieer Silver Deposit, the Eastern Kunlun Mountains, China. Acta Mineralogica Sinica, 37(6):771-781 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201706012.htm
      Li, Y. G., Wang, S. S., Liu, M. W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application. Acta Geological Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201512015
      Li, Z. C., Pei, X. Z., Liu, Z. Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geological Sinica, 87(8):1089-1103 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201308005
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Mao, J. W., Zhou, Z. H., Feng, C. Y., et al., 2012. A Preliminary Study of the Triassic Large-Scale Mineralization in China and Its Geodynamic Setting. Geology in China, 39(6):1437-1471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206001
      McCoy-West, A. J., Baker, J. A., Faure, K., et al., 2010. Petrogenesis and Origins of Mid-Cretaceous Continental Intraplate Volcanism in Marlborough, New Zealand:Implications for the Long-Lived HIMU Magmatic Mega-Province of the SW Pacific. Journal of Petrology, 51(10):2003-2045. https://doi.org/10.1093/petrology/egq046
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm
      Nelson, D. R., 1992. Isotopic Characteristics of Potassic Rocks:Evidence for the Involvement of Subducted Sediments in Magma Genesis. Lithos, 28(3-6):403-420. https://doi.org/10.1016/0024-4937(92)90016-r
      Oyhantçabal, P., Siegesmund, S., Wemmer, K., et al., 2007. Post-Collisional Transition from Calc-Alkaline to Alkaline Magmatism during Transcurrent Deformation in the Southernmost Dom Feliciano Belt (Braziliano-Pan-African, Uruguay). Lithos, 98(1-4):141-159. https://doi.org/10.1016/j.lithos.2007.03.001
      Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, Ⅰ-Type Granitoids. Geology, 21(9):825. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
      Seltmann, R., Porter, T. M., Pirajno, F., 2014. Geodynamics and Metallogeny of the Central Eurasian Porphyry and Related Epithermal Mineral Systems:A Review. Journal of Asian Earth Sciences, 79:810-841. https://doi.org/10.1016/j.jseaes.2013.03.030
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientica Sinica, 37(4):461-470 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201604010.htm
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262
      Wark, D. A., Hildreth, W., Spear, F. S., et al., 2007. Pre-Eruption Recharge of the Bishop Magma System. Geology, 35(3):235. https://doi.org/10.1130/g23316a.1
      Williams, H. M., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3):555-607. https://doi.org/10.1093/petrology/egg094
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, C. Y., Bai, G., Xu, L. M., 1993. Types and Distribution of Silver Ore Deposits in China. Mineralium Deposita, 28(4):223-239. https://doi.org/10.1007/bf02421573
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      Xia, R., Wang, C. M., Qing, M., et al., 2015. Molybdenite Re-Os, Zircon U-Pb Dating and Hf Isotopic Analysis of the Shuangqing Fe-Pb-Zn-Cu Skarn Deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews, 66:114-131. https://doi.org/10.1016/j.oregeorev.2014.10.024
      Xiong, F. H., Ma, C. Q., Jiang, H., et al., 2014. Geochronology and Geochemistry of Middle Devonian Mafic Dykes in the East Kunlun Orogenic Belt, Northern Tibet Plateau:Implications for the Transition from Prototethys to Paleotethys Orogeny. Geochemistry, 74(2):225-235. https://doi.org/10.1016/j.chemer.2013.07.004
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016
      Xu, Y. P., Xie, W. H., Yang, Y. F., et al., 2014. Geological Characteristics and Prospecting Perspective of NaGenKangQieEr Silver Deposit in Eastern Kunlun Mountain of Qinghai. Xinjiang Geology, 32(1):113-117 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201401020
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai- Tibet Plateau and Continental Dynamics:A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2):221-238 (in Chinese with English abstract).
      Yin, H. F., Zhang, K. X., 1998. Evolution and Characteristics of the Central Orogenic Belt. Earth Science, 23(5):437-442 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201807003
      Yu, J. C., Mo, X. X., Yu, X. H., et al., 2014. Petrogenesis and Geological Implications of the Late Triassic Potassic-Ultrapotassic Rocks in Changdu Block, Northern Segment of the Sanjiang Area. Acta Petrologica Sinica, 30(11):3334-3344 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411017
      Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2):100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      Zhang, D. X., Zeng, X. P., Wei, X. L., et al., 2017. Geochemistry and Tectonic Setting of Late Triassic Volcanics in Elashan Formation in South of Nalingelehe River, East Kunlun. Contributions to Geology and Mineral Resources Research, 32(2):245-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201702011
      Zhang, W., Zhou, H. W., Zhu, Y. H., et al., 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.520
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1/2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhu, D. C, Pan, G. T., Mo, X. X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm
      白宜娜, 孙丰月, 钱烨, 等, 2016.青海东昆仑尕林格铁多金属矿床辉石闪长岩U-Pb年代学及地球化学特征.世界地质, 35(1):17-27. doi: 10.3969/j.issn.1004-5589.2016.01.003
      曹建辉, 袁万明, 郝娜娜, 等, 2015.东昆仑沟里地区花岗岩年代学、岩石地球化学及其地球动力学意义.地质科技情报, 34(2):42-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201502006
      李敏同, 李忠权, 2017.东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征.矿物学报, 37(6):771-781. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706012.htm
      李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
      李佐臣, 裴先治, 刘战庆, 等, 2013.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义.地质学报, 87(8):1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005
      毛景文, 周振华, 丰成友, 等, 2012.初论中国三叠纪大规模成矿作用及其动力学背景.中国地质, 39(6): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
      莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016
      许远平, 谢万洪, 杨永峰, 等, 2014.青海东昆仑那更康切尔银矿地质特征及找矿远景浅析.新疆地质, 32(1):113-117. http://d.old.wanfangdata.com.cn/Periodical/xjdz201401020
      许志琴, 杨经绥, 李海兵, 等, 2006.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质, 33(2):221-238. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602001
      殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5):437-442. http://earth-science.net/WebPage/Article.aspx?id=696
      于峻川, 莫宣学, 喻学惠, 等, 2014. "三江"北段昌都陆块晚三叠世钾质-超钾质火山岩成因及地质意义.岩石学报, 30(11):3334-3344. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411017
      张得鑫, 曾小平, 魏小林, 等, 2017.东昆仑那陵格勒河南上三叠统鄂拉山组火山岩地球化学特征及构造环境.地质找矿论丛, 32(2):245-253. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201702011
      张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8):1334-1348. http://earth-science.net/WebPage/Article.aspx?id=3341
      朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (5922) PDF downloads(47) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return