• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 9
    Sep.  2018
    Turn off MathJax
    Article Contents
    Wang Chuanyi, Wang Qisong, Shu Sunping, Zhang Jing, 2018. Temporal and Spatial Evolution of Ore-Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt. Earth Science, 43(9): 3126-3140. doi: 10.3799/dqkx.2018.134
    Citation: Wang Chuanyi, Wang Qisong, Shu Sunping, Zhang Jing, 2018. Temporal and Spatial Evolution of Ore-Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt. Earth Science, 43(9): 3126-3140. doi: 10.3799/dqkx.2018.134

    Temporal and Spatial Evolution of Ore-Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt

    doi: 10.3799/dqkx.2018.134
    • Received Date: 2018-03-24
    • Publish Date: 2018-09-15
    • The Jinwozi gold deposit is located in the central Beishan area, southern margin of the subduction-collision zone between the Late Paleozoic Tarim and Kazakhstan plates. The ore genesis of the Jinwozi gold deposit belongs to the orogenic type.However, the temporal and spatial evolution of ore-forming fluid and the metallogenic mechanism remain relatively unclear. The fluid inclusions in quartz from different mineralization stages and depths were analyzed by petrography, microscopic temperature measurement and laser Raman spectrum in this paper.The hydrothermal ore-forming process can be divided into three stages according to mineral assemblages and crosscutting relationships among the veins, from early to late, i.e., pyrite-quartz stage (early stage); quartz-pyrite-polymetallic sulfide stage (middle stage); quartz-carbonate stage (late stage). The gold mineralization mainly occurs in the middle stage.Two types of fluid inclusions are identified based on petrography and laser Raman spectroscopy:NaCl-H2O inclusions (W-type) and CO2-H2O-NaCl inclusions (C-type). Both of the two fluid inclusion types can be observed in the early stage and middle stage quartz; while only the W-type inclusions occur in the late stage.The homogenization temperatures of early stage fluid inclusions range from 200℃ and 300℃, with salinities of 1.4%-14.8% NaCleqv. The fluid inclusions of middle stage are homogenized between 160℃ and 260℃, with salinities of 0.4%-14.5% NaCleqv; and in late stage they are 120-180℃ and of 0.2%-7.6% NaCleqv, respectively.From early to late stage, the ore-forming fluid system evolved from a CO2-H2O-NaCl system to a NaCl-H2O system, with the homogenization temperature and salinities decreasing gradually. The results show that the ore-forming fluid system has evolved from the mesothermal, medium-low salinity, CO2-rich metamorphic water to the mesothermal-epithermal, low salinity and CO2-poor meteoric water. From the shallow to deep of the orebody, the homogenization temperature and salinity firstly increase and then decrease, which might be caused by the multi-superposition of ore-forming fluids. The homogenization temperature and ore-forming depth increase gradually from southwest to northeast area at Jinwozi gold deposit, which indicates that the northeastern intrusion may be a heat source center. Therefore, it is prospected that there will be a good metallogenic potential in the northeastern mining area. The physicochemical and hydrogen-oxygen isotopic data of fluid inclusions show that fluid mixing might be the dominant mechanism of gold deposition.

       

    • loading
    • Ao, S.J., Xiao, W.J., Han, C.M., et al., 2010.Geochronology and Geochemistry of Early Permian Mafic-ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids.Gondwana Research, 18(2-3):466-478. https://doi.org/10.1016/j.gr.2010.01.004
      Ao, S.J., Xiao, W.J., Han, C.M., et al., 2012.Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China:Implications for the Architecture of the Southern Altaids.Geological Magazine, 149(4):606-625. https://doi.org/10.1017/s0016756811000884
      Bodnar, R.J., 1993.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions.Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a
      Brown, P.E., Lamb, W.M., 1989.P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies.Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
      Chai, P., Sun, J.G., Hou, Z.Q., et al., 2016.Geological, Fluid Inclusion, H-O-S-Pb Isotope, and Ar-Ar Geochronology Constraints on the Genesis of the Nancha Gold Deposit, Southern Jilin Province, Northeast China.Ore Geology Reviews, 72:1053-1071. https://doi.org/10.1016/j.oregeorev.2015.09.027
      Chen, B.L., Wu, G.G., Ye, D.J., et al., 2003.An Analysis of Ore-Controlling Structures in the Jinwozi Gold Orefield, Beishan Area, Gansu and Xinjiang.Acta Geoscientica Sinica, 24(4):305-310(in Chinese with English abstract). http://www.oalib.com/paper/1558468
      Chen, F.W., Li, H.Q., Cai, H., et al., 1999.The Origin of the Jinwozi Gold Deposit in Eastern Xinjiang—Evidencce from Isotope Geochronology.Geological Review, 45(3):247-254(in Chinese with English abstract). https://www.researchgate.net/publication/286872301_Mineralization_age_of_the_Hongshan_gold_deposit_East_Tianhan_Xinjiang
      Chen, H.Y., Chen, Y.J., Baker, M.J., 2012a.Evolution of Ore-Forming Fluids in the Sawayaerdun Gold Deposit in the Southwestern Chinese Tianshan Metallogenic Belt, Northwest China.Journal of Asian Earth Sciences, 49:131-144. https://doi.org/10.1016/j.jseaes.2011.05.011
      Chen, H.Y., Chen, Y.J., Baker, M.J., 2012b.Isotopic Geochemistry of the Sawayaerdun Orogenic-Type Gold Deposit, Tianshan, Northwest China:Implications for Ore Genesis and Mineral Exploration.Chemical Geology, 310-311:1-11. https://doi.org/10.1016/j.chemgeo.2012.03.026
      Chen, Y.J., 2006.Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential.Geology in China, 33(6):1181-1196(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200606001
      Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica, 23(9):2085-2108(in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GDKL200711002057.htm
      Chen, Y.J., Pirajno, F., Sui, Y.H., 2004.Isotope Geochemistry of the Tieluping Silver-Lead Deposit, Henan, China:A Case Study of Orogenic Silver-Dominated Deposits and Related Tectonic Setting.Mineralium Deposita, 39(5-6):560-575. https://doi.org/10.1007/s00126-004-0429-9
      Collins, P.L.F., 1979.Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity.Economic Geology, 74(6):1435-1444. https://doi.org/10.2113/gsecongeo.74.6.1435
      Deng, X.H., Chen, Y.J., Santosh, M., et al., 2017.U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit:Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China.Ore Geology Reviews, 80:332-351. https://doi.org/10.1016/j.oregeorev.2016.05.013
      Deng, X.H., Santosh, M., Yao, J.M., et al., 2014.Geology, Fluid Inclusions and Sulphur Isotopes of the Zhifang Mo Deposit in Qinling Orogen, Central China:A Case Study of Orogenic-Type Mo Deposits.Geological Journal, 49(4-5):515-533. https://doi.org/10.1002/gj.2559
      Guy, A., Schulmann, K., Clauer, N., et al., 2014.Late Paleozoic-Mesozoic Tectonic Evolution of the Trans-Altai and South Gobi Zones in Southern Mongolia Based on Structural and Geochronological Data.Gondwana Research, 25(1):309-337. https://doi.org/10.1016/j.gr.2013.03.014
      Jiang, S.H., 2004.Magmatism and Gold Metallogeny in Beishan Mt., Northwestern China (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Li, D.F., Zhang, L., Chen, H.Y., et al., 2014.Ore Genesis of the Unusual Talate Pb-Zn(-Fe) Skarn-Type Deposit, Altay, NW China:Constraints from Geology, Geochemistry and Geochronology.Geological Journal, 49(6):599-616. https://doi.org/10.1002/gj.2570
      Liu, B., Duan, G.X., 1987.The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity≤25wt%) and Their Applications.Acta Mineralogica Sinica, 7(4):345-352(in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2014/V35/I5/867
      Liu, W., Li, X.J., Deng, J., 2003.Sources of Ore-Forming Fluids and Metallic Materials in the Jinwozi Lode Gold Deposit, Eastern Tianshan Mountains of China.Science China Earth Sciences, 46(S1):135-153. https://doi.org/10.1360/03dz9034
      Miao, L.C., Zhu, M.S., Zhang, F.Q., et al., 2014.Tectonic Setting of Mesozoic Magmatism and Associated Metallogenesis in Beishan Area.Geology in China, 41(4):1190-1204(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201404013
      Niu, L., Li, P., Ka, H.E., et al., 2014.Geological Characteristics and Mineralization Conditions of the Jinwozi Gold Deposit, Xinjiang.Geology and Exploration, 50(1):8-17(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201401002
      Pan, X.F., Liu, W., 2006.Fluid Inclusions Characteristics and Ore-Forming Evolution of Jinwozi Gold Deposit.Acta Petrologica Sinica, 22(1):253-263(in Chinese with English abstract). http://www.scirp.org/journal/PaperInformation.aspx?PaperID=61398
      Pan, X.F., Liu, W., Hou, Z.Q., 2014.Ore-Forming Fluids as Sampled by Sulfide- and Quartz-Hosted Fluid Inclusions in the Jinwozi Lode Gold Deposit, Eastern Tianshan Mountains of China.Resource Geology, 64(3):183-208. https://doi.org/10.1111/rge.12036
      Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074
      Wang, M.F., Cao, X.Z., Zhao, Y.X., et al., 2009.Fulid Inclusion Characteristics of the Jinwozi Gold Deposit and the Prospecting Significance.Contributions to Geology and Mineral Resources Research, 24(4):276-281(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912014004696
      Wang, Q.L., Chen, W., Han, D., et al., 2008.The Age and Mechanism of Formation of the Jinwozi Gold Deposit, Xinjiang.Geology in China, 35(2):286-292(in Chinese with English abstract). https://www.researchgate.net/publication/287846237_The_age_and_mechanism_of_formation_of_the_Jinwozi_gold_deposit_Xinjiang
      Wang, Y.H., Xue, C.J., Zhang, F.F., et al., 2015.SHRIMP Zircon U-Pb Geochronology, Geochemistry and H-O-Si-S-Pb Isotope Systematics of the Kanggur Gold Deposit in Eastern Tianshan, NW China:Implication for Ore Genesis.Ore Geology Reviews, 68:1-13. https://doi.org/10.1016/j.oregeorev.2015.01.009
      Xiao, W.J., Mao, Q.G., Windley, B.F., et al., 2010.Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage.American Journal of Science, 310(10):1553-1594. https://doi.org/10.2475/10.2010.12
      Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008
      Yue, S.W., Deng, X.H., Bagas, L., 2014.Geology, Isotope Geochemistry, and Ore Genesis of the Yindonggou Ag-Au(-Pb-Zn) Deposit, Hubei Province, China.Geological Journal, 49(4-5):442-462. https://doi.org/10.1002/gj.2561
      Zhang, J., Chen, Y.J., Su, Q.W., et al., 2016.Geology and Genesis of the Xiaguan Ag-Pb-Zn Orefield in Qinling Orogen, Henan Province, China:Fluid Inclusion and Isotope Constraints.Ore Geology Reviews, 76:79-93. https://doi.org/10.1016/j.oregeorev.2016.01.003
      Zhang, L., Chen, H.Y., Chen, Y.J., et al., 2012a.Geology and Fluid Evolution of the Wangfeng Orogenic-Type Gold Deposit, Western Tian Shan, China.Ore Geology Reviews, 49:85-95. https://doi.org/10.1016/j.oregeorev.2012.09.002
      Zhang, W.J., 2015.The Metallogenic Characteristics and Deep Prediction of Jinwozi Gold Deposit in Hami, Xinjiang Province (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract).
      Zhang, W.S., Cao, X.Z., Xu, B.J., 2010.Thrusting Nappe Structure and Its Controlling on Mineralization in Jinwozi Orefield in Hami, Xinjiang.Geological Science and Technology Information, 29(6):29-34(in Chinese with English abstract).
      Zhang, W., Pease, V., Wu, T.R., et al., 2012b.Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)—Its Age and Tectonic Significance.Lithos, 142-143:148-160. https://doi.org/10.1016/j.lithos.2012.02.021
      Zhang, Z.J., Chen, H.Y., Hu, M.Y., et al., 2014.Isotopic Geochemistry of the Jinwozi Gold Deposit in the Eastern Tianshan Orogen, NW China:Implications for the Ore Genesis.Geological Journal, 49(6):574-583. https://doi.org/10.1002/gj.2593
      Zheng, Y., Zhang, L., Chen, H.Y., et al., 2014.CO2-Rich Fluid from Metamorphic Devolatilization of the Triassic Orogeny:An Example from the Qiaxia Copper Deposit in Altay, NW China.Geological Journal, 49(6):617-634. https://doi.org/10.1002/gj.2536
      Zheng, Y., Zhang, L., Chen, Y.J., et al., 2012.Geology, Fluid Inclusion Geochemistry, and 40Ar/39Ar Geochronology of the Wulasigou Cu Deposit, and Their Implications for Ore Genesis, Altay, Xinjiang, China.Ore Geology Reviews, 49:128-140. https://doi.org/10.1016/j.oregeorev.2012.09.005
      Zhou, X.B., Li, J.F., Wang, K.Y., et al., 2016.Geochemical Characteristics of Ore-Forming Fluid in Huanggoushan Gold Deposit, Jilin Province.Earth Science, 41(1):121-130 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.009
      陈柏林, 吴淦国, 叶得金, 等, 2003.甘-新北山金窝子金矿田构造控矿解析.地球学报, 24(4): 305-310. doi: 10.3321/j.issn:1006-3021.2003.04.003
      陈富文, 李华芹, 蔡红, 等, 1999.新疆东部金窝子金矿成因讨论——同位素地质年代学证据.地质论评, 45(3): 247-254. doi: 10.3321/j.issn:0371-5736.1999.03.004
      陈衍景, 2006.造山型矿床、成矿模式及找矿潜力.中国地质, 33(6): 1181-1196. doi: 10.3969/j.issn.1000-3657.2006.06.001
      陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9): 2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
      江思宏, 2004.北山地区岩浆活动与金的成矿作用(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213422.htm
      刘斌, 段光贤, 1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报, 7(4): 345-352. doi: 10.3321/j.issn:1000-4734.1987.04.010
      苗来成, 朱明帅, 张福勤, 2014.北山地区中生代岩浆活动与成矿构造背景分析.中国地质, 41(4): 1190-1204. doi: 10.3969/j.issn.1000-3657.2014.04.013
      牛亮, 李鹏, 卡哈尔, 等, 2014.新疆金窝子金矿田地质特征及成矿条件分析.地质与勘探, 50(1): 8-17. doi: 10.3969/j.issn.1001-1986.2014.01.002
      潘小菲, 刘伟, 2006.北山金窝子金矿床流体包裹体特征及成矿流体演化.岩石学报, 22(1): 253-263. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601025
      王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6): 941-956. http://earth-science.net/WebPage/Article.aspx?id=3589
      王敏芳, 曹新志, 赵渊新, 等, 2009.北山金窝子金矿床流体包裹体特征及找矿意义.地质找矿论丛, 24(4): 276-281. http://d.old.wanfangdata.com.cn/Periodical/dzzklc200904003
      王清利, 陈文, 韩丹, 等, 2008.新疆金窝子金矿床形成时代研究及成因机制讨论.中国地质, 35(2): 286-292. doi: 10.3969/j.issn.1000-3657.2008.02.012
      熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1): 105-120. http://earth-science.net/WebPage/Article.aspx?id=3224
      张文璟, 2015.新疆金窝子金矿床成矿特征及深部预测(硕士学位论文).西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1015802591.htm
      张旺生, 曹新志, 徐伯骏, 2010.新疆哈密金窝子矿田逆冲推覆构造及其控矿作用.地质科技情报, 29(6): 29-34. doi: 10.3969/j.issn.1000-7849.2010.06.005
      周向斌, 李剑锋, 王可勇, 等, 2016.吉林荒沟山金矿床成矿流体特征.地球科学, 41(1): 121-130. http://earth-science.net/WebPage/Article.aspx?id=3225
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (5156) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return