• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 8
    Aug.  2018
    Turn off MathJax
    Article Contents
    Zhang Linkui, Zhang Zhi, Li Guangming, Dong Suiliang, Xia Xiangbiao, Liang Wei, Fu Jiangang, Cao Huawen, 2018. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8): 2664-2683. doi: 10.3799/dqkx.2018.141
    Citation: Zhang Linkui, Zhang Zhi, Li Guangming, Dong Suiliang, Xia Xiangbiao, Liang Wei, Fu Jiangang, Cao Huawen, 2018. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8): 2664-2683. doi: 10.3799/dqkx.2018.141

    Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya

    doi: 10.3799/dqkx.2018.141
    • Received Date: 2018-03-10
    • Publish Date: 2018-08-15
    • The structure assemblage, rock composition, and kinematics characteristics of metamorphic deformation of the newly discovered Cuonadong dome are not clear currently, which seriously hinders the restoration of its evolutionary process and the anatomy of the coupled relationship between the formation of plutonium and mineralization. Based on the detailed field geological survey, the newly discovered magmatic rocks in dome were additionally collected for chronological study in this paper. The results show that the Cuonadong dome is divided into three structural layers of upper (margin)-middle (mantle)-lower (core) by upper and lower detachment faults. The core rock assemblages are primarily composed of granite gneiss, leucogranite, and a little migmatite, with a large amount of intruded pegmatite veins. The mantle rock assemblage is a set of strongly metamorphic and deformable schist with interlayer carbonate. This rock assemblage has Barrovian metamorphism confirmed by mineral assemblages from the core to the margin of kyanite+staurolite+garnet+biotite→taurolite+garnet+biotite→garnet+cordierite+biotite→chlorite+biotite; The margin is primarily comprised of slightly metamorphic Triassic-Jurassic sedimentary rocks, which is constituted of sericite chlorite sand slate and a small amount of phyllite. The dome from early to late has experienced N-S trending thrusting, N-S extension and E-W extension, and the formation of the dome is primarily associated with the N-S extension. There are five episodes of magmatism in the dome at ~500 Ma (gneiss), 140 Ma (diabase), 26 Ma (deformed two-mica granite/pegmatite), 18 Ma (weakly oriented two-mica granite), 16.8-15.9 Ma (garnet-tourmaline-bearing granite). The study shows that the formation of the Cuonadong dome is the result of the combined effect of the early extension and detachment and the late magmatic diapir, and the movement of the South Tibetan detachment system during the Eocene-Oligocene is the primal factor.

       

    • loading
    • Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001.Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation.Nature, 414(6865):738-742. https://doi.org/10.1038/414738a
      Burg, J.P., Guiraud, M., Chen, G.M., et al., 1984.Himalayan Metamorphism and Deformations in the North Himalayan Belt (Southern Tibet, China).Earth and Planetary Science Letters, 69(2):391-400.https://doi.org/10.1016/0012-821x(84)90197-3 doi: 10.1016/0012-821X(84)90197-3
      Chardon, D., Choukroune, P., Jayananda, M., 1998.Sinking of the Dharwar Basin (South India):Implications for Archaean Tectonics.Precambrian Research, 91(1-2):15-39.https://doi.org/10.1016/s0301-9268(98)00037-0 doi: 10.1016/S0301-9268(98)00037-0
      Chen, Z., Liu, Y., Hodges, K.V., et al., 1990.The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang(Tibet).Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552
      Debon, F., Fort, P.L., Sheppard, S.M.F., et al., 1986.The Four Plutonic Belts of the Transhimalaya-Himalaya:A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section.Journal of Petrology, 27(1):219-250. https://doi.org/10.1093/petrology/27.1.219
      Duan, J.L., Tang, J.X., Lin, B., 2016.Zinc and Lead Isotope Signatures of the Zhaxikang Pb-Zn Deposit, South Tibet:Implications for the Source of the Ore-Forming Metals.Ore Geology Reviews, 78:58-68. https://doi.org/10.1016/j.oregeorev.2016.03.019
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2016.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences, 106(5):1581-1596.https://doi.org/10.1007/s00531-016-1368-2
      Gao, L.E., Gao, J.H., Zhao, L.H., et al., 2017.The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization.Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201708005.htm
      Gao, L.E., Zeng, L.S., Hou, K.J., et al., 2013a.Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet.Chinese Science Bulletin, 58(27):2810-2822 (in Chinese).
      Gao, L.E., Zeng, L.S., Wang, L., et al., 2013b.Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite within the Northern Himalayan Gneiss Domes, Southern Tibet.Acta Petrologica Sinica, 29(6):1995-2012 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010
      Gao, L.E., Zeng, L.S., 2014.Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet.Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003
      Gao, L.E., Zeng, L.S., Xie, K.J., 2012.Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet.Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4
      Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty-Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196.https://doi.org/10.1111/j.1751-908x.2002.tb00886.x doi: 10.1111/ggr.2002.26.issue-2
      Gu, P.Y., He, S.P., Li, R.S., et al., 2013.Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet.Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Depsits, 25(6):629-651 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175040
      Hu, G.Y., Zeng, L.S., Gao, L.E., et al., 2011.Lanthanide Kinked Shape, Similar to Tetrad Effect, Observed in Sub-Volcanic Rocks from Qiaga, Southern Tibet, China.Geological Bulletin of China, 30(1):82-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201101008
      Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000.Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints.Tectonics, 19(5):872-895.https://doi.org/10.1029/1999tc001147 doi: 10.1029/1999TC001147
      Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
      Lee, J., McClelland, W., Wang, Y., et al., 2006.Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome.Geological Society, London, Special Publications, 268(1):445-469.https://doi.org/10.1144/gsl.sp.2006.268.01.21 doi: 10.1144/GSL.SP.2006.268.01.21
      Lee, J., Whitehouse, M.J., 2007.Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages.Geology, 35(1):45-48.https://doi.org/10.1130/g22842a.1 doi: 10.1130/G22842A.1
      Leech, M.L., 2008.Does the Karakoram Fault Interrupt Mid-Crustal Channel Flow in the Western Himalaya? Earth and Planetary Science Letters, 276(3):314-322.https://doi.org/10.1016/j.epsl.2008.10.006 http://www.sciencedirect.com/science/article/pii/S0012821X08006651
      Li, D.W., Liu, D.M., Liao, Q.N., et al., 2003.Definition and Significance of the Lhagoi Kangri Metamorphic Core Complexes in Sa'gya, Southern Tibet.Regional Geology of China, 22(5):303-307 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200305002
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Lin, B., Tang, J.X., Zheng, W.B., et al., 2014.Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet).Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017
      Lin, B., Tang, J.X., Zheng, W.B., et al., 2016.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet.Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      Liu, Y.M., Li, C., Xie, C.M., et al., 2016.Cambrian Granitic Gneiss within the Central Qiangtang Terrane, Tibetan Plateau:Implications for the Early Palaeozoic Tectonic Evolution of the Gondwanan Margin.International Geology Review, 58(9):1043-1063. https://doi.org/10.1080/00206814.2016.1141329
      Liu, Z., Zhou, Q., Lai, Y., et al., 2015.Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya:Implications for the Break-Up of Eastern Gondwana.Lithos, 236-237:190-202.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.09.006
      Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet.Lithos, 240-243:337-354.https://doi.org/10.13039/501100001809 doi: 10.1016/j.lithos.2015.11.026
      Liu, Z.H., Pan, B.W., Li, P.C., et al., 2017.Ductile Shear Zone in High-Grade Metamorphic Rocks and Its Rheomorphic Mechanism in the Daqing Mountain Area, Inner Mongolia.Earth Science, 42(12):2105-2116 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.135 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712001
      Quigley, M.C., Liang, J.Y., Gregory, C., et al., 2008.U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet.Tectonophysics, 446(1-4):97-113. https://doi.org/10.1016/j.tecto.2007.11.004
      Siddoway, C.S., Richard, S.M., Fanning, C.M., et al., 2004.Origin and Emplacement of a Middle Cretaceous Gneiss Dome, Fosdick Mountains, West Antarctica.Geological Society of America Special Papers, 380:267-294.https://doi.org/10.1130/0-8137-2380-9.267 http://www.researchgate.net/publication/285724603_Origin_and_emplacement_of_a_middle_Cretaceous_gneiss_dome_Fosdick_Mountains_West_Antarctica
      Smit, M.A., Hacker, B.R., Lee, J., 2014.Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya.Geology, 42(7):591-594.https://doi.org/10.1130/g35524.1 doi: 10.1130/G35524.1
      Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2017.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang.Mineralium Deposita, 53(3):435-458.https://doi.org/10.1007/s00126-017-0752-6
      Tirel, C., Brun, J.P., Burov, E., 2004.Thermomechanical Modeling of Extensional Gneiss Domes.Geological Society of America Special Papers, 380(1):67-78.https://doi.org/10.1130/0-8137-2380-9.67 http://www.researchgate.net/publication/282757213_Thermomechanical_modeling_of_extensional_gneiss_domes
      Vanderhaeghe, O., 2004.Structural Development of the Naxos Migmatite Dome.Geological Society of America Special Papers, 380:211-227.https://doi.org/10.1130/0-8137-2380-9.211 http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1130/0-8137-2380-9.211
      Wang, X.X., Zhang, J.J., Santosh, M., et al., 2012.Andean-Type Orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana.Lithos, 154:248-262. https://doi.org/10.1016/j.lithos.2012.07.011
      Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.082 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006
      Wu, Z.H., Ye, P.S., Wu, Z.H., et al., 2014.LA-ICP-MS Zircon U-Pb Ages of Tectonic-Thermal Events in the Yalaxiangbo Dome of Tethys Himalayan Belt.Geologcal Bulletin of China, 33(5):595-605 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201405001
      Xie, Y.L., Li, L.M., Wang, B.G., et al., 2017.Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link.Ore Geology Reviews, 80:891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007
      Yan, D.P., Zhou, M.F., Robinson, P.T., et al., 2012.Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome, SE Tibet.International Geology Review, 54(6):615-632. https://doi.org/10.1080/00206814.2010.548153
      Zeng, L.S., Gao, L.E., Tang, S.H., et al., 2014.Eocene Magmatism in the Tethyan Himalaya, Southern Tibet.Geological Society, London, Special Publications, 412(1):287-316.https://doi.org/10.1144/sp412.8 http://adsabs.harvard.edu/abs/2015GSLSP.412..287Z
      Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zeng, L.S., Liu, J., Gao, L.E., et al., 2009.Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(3):373-381 (in Chinese with English abstract). doi: 10.1007-s11434-008-0362-x/
      Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      Zhang, L. K., Li, G. M., Cao, H. W., 2018. Zircon U-Pb Geochronology and Hf Isotope Compositions of the Granitic Gneiss from Cuonadong Dome in Tethys Himalaya, Tibet and Its Geological Significance. Geology in China, in Press.
      Zhang, J.Y., Liao, Q.A., Li, D.W., 2003.Geochemical Features of the High Himalayan Leucogranites of Dingjie Area, Tibet:Implication for Magma Sources.Geological Science and Technology Information, 22(3):9-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200303002.htm
      Zhang, S.Z., Li, F.Q., Li, Y., et al., 2014.Early Ordovician Strongly Peraluminous Granite in the Middle Section of the Yarlung Zangbo Junction Zone and Its Geological Significance.Science China Earth Sciences, 57(4):630-643. https://doi.org/10.1007/s11430-013-4721-3
      Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017a.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes.Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract).
      Zhang, Z., Song, J.L., Tang, J.X., et al., 2017b.Petrogenesis, Diagenesis and Mineralization Ages ofGalale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.523
      Zhou, Q., Li, W.C., Qing, C.S., et al., 2017.Origin and Tectonic Implications of theZhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions.Mineralium Deposita, 53(4):585-600.https://doi.org/10.13039/501100001809 doi: 10.1007/s00126-017-0760-6
      Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009.The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia.Geology, 37(7):583-586.https://doi.org/10.1130/g30001a.1 doi: 10.1130/G30001A.1
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007.Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction.Journal of Asian Earth Sciences, 29(2-3):320-335. https://doi.org/10.1016/j.jseaes.2005.12.004
      Zhu, D.C., Xia, Y., Qiu, B.B., et al., 2013.Why do We Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet? Acta Petrologica Sinica, 29(11):3659-3670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2012.02.002
      高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005
      高利娥, 曾令森, 侯可军, 等, 2013a.藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用.科学通报, 58(27):2810-2822. http://www.cqvip.com/QK/94252X/201327/47435601.html
      高利娥, 曾令森, 王莉, 等, 2013b.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报, 29(6):1995-2012. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010
      辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      胡古月, 曾令森, 高利娥, 等, 2011.藏南隆子地区恰嘎流纹质次火山岩稀土元素类似四分组效应.地质通报, 30(1):82-94. doi: 10.3969/j.issn.1671-2552.2011.01.008
      李德威, 刘德民, 廖群安, 等, 2003.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因.地质通报, 22(5):303-307. doi: 10.3969/j.issn.1671-2552.2003.05.002
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍钨锡多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017
      林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      刘正宏, 潘博文, 李鹏川, 等, 2017.内蒙古大青山高级变质岩韧性剪切带及其流变机制.地球科学, 42(12):2105-2116.https://doi.org/10.3799/dqkx.2017.135 http://earth-science.net/WebPage/Article.aspx?id=3710
      王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998.https://doi.org/10.3799/dqkx.2016.082 http://earth-science.net/WebPage/Article.aspx?id=3311
      吴珍汉, 叶培盛, 吴中海, 等, 2014.特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据.地质通报, 33(5):595-605. doi: 10.3969/j.issn.1671-2552.2014.05.001
      曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000253269
      张金阳, 廖群安, 李德威, 2003.西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究.地质科技情报, 22(3):9-14. doi: 10.3969/j.issn.1000-7849.2003.03.002
      张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      张林奎, 李光明, 曹华文, 等, 2018. 西藏特提斯喜马拉雅错那洞穹隆花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 中国地质, 待刊.
      张志, 张林奎, 李光明, 等, 2017a.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705015
      张志, 宋俊龙, 唐菊兴, 等, 2017b.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880.https://doi.org/10.3799/dqkx.2017.523 http://earth-science.net/WebPage/Article.aspx?id=3584
      朱弟成, 夏瑛, 裘碧波, 等, 2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报, 29(11):3659-3670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (5487) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return