• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 9
    Sep.  2018
    Turn off MathJax
    Article Contents
    Gong Lin, Chen Huayong, Wang Yunfeng, Zhao Liandang, Xiao Bing, 2018. Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit: Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China. Earth Science, 43(9): 2929-2942. doi: 10.3799/dqkx.2018.145
    Citation: Gong Lin, Chen Huayong, Wang Yunfeng, Zhao Liandang, Xiao Bing, 2018. Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit: Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China. Earth Science, 43(9): 2929-2942. doi: 10.3799/dqkx.2018.145

    Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit: Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China

    doi: 10.3799/dqkx.2018.145
    • Received Date: 2018-04-10
    • Publish Date: 2018-09-15
    • Mineral composition of biotite is a significant indicator of revealing the crystallization conditions, petrogenesis, mineralization and evaluation of ore-bearing potential in porphyry copper deposit systems. This study utilizes electron microprobe analyses (EPMA) to determine the mineral composition of biotite in Yuhai and Sanchakou porphyry copper deposits, Xinjiang. The EPMA data shows that the characteristics of biotite are rich in magnesium and poor in iron in ore-bearing intrusions; whereas those in ore-barren intrusions are rich in iron and poor in magnesium. The biotite is mainly composed of re-equilibrated Mg-biotite in ore-bearing intrusions and is primary Fe-biotite in ore-barren intrusions. The host rocks of all the biotite are I-type granite and are formed during subduction. The ore-bearing magma was derived from the mixing of mantle and crust, however, the ore-barren magma was mainly generated from crust with involvement of juvenile crustal components during formation. The crystallization temperature and pressure of biotites are 529-677℃ and 1.1-2.8 kbar, and they formed in the condition of high oxygen fugacity. In addition, the Mg/Fe and Fe2+/(Fe2++Mg2+) of biotites may be used as a tool to discriminate between the ore-bearing and ore-barren intrusions in porphyry copper systems.

       

    • loading
    • Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
      Afshooni, S.Z., Mirnejad, H., Esmaeily, D., et al., 2013.Mineral Chemistry of Hydrothermal Biotite from the Kahang Porphyry Copper Deposit (NE Isfahan), Central Province of Iran.Ore Geology Reviews, 54:214-232. https://doi.org/10.1016/j.oregeorev.2013.04.004
      Bao, B., Webster, J.D., Zhang, D.H., et al., 2016.Compositions of Biotite, Amphibole, Apatite and Silicate Melt Inclusions from the Tongchang Mine, Dexing Porphyry Deposit, SE China:Implications for the Behavior of Halogens in Mineralized Porphyry Systems.Ore Geology Reviews, 79:443-462. https://doi.org/10.1016/j.oregeorev.2016.05.024
      Beane, R.E., 1974.Biotite Stability in the Porphyry Copper Environment.Economic Geology, 69(2):241-256. https://doi.org/10.2113/gsecongeo.69.2.241
      Boomeri, M., Nakashima, K., Lentz, D.R., 2010.The Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran:A Mineralogical Analysis of the Igneous Rocks and Alteration Zones Including Halogen Element Systematics Related to Cu Mineralization Processes.Ore Geology Reviews, 38(4):367-381. https://doi.org/10.1016/j.oregeorev.2010.09.001
      Bora, S., Kumar, S., 2015.Geochemistry of Biotites and Host Granitoid Plutons from the Proterozoic Mahakoshal Belt, Central India Tectonic Zone:Implication for Nature and Tectonic Setting of Magmatism.International Geology Review, 57(11-12):1686-1706. https://doi.org/10.1080/00206814.2015.1032372
      Cao, M.J., Qin, K.Z., Li, G.M., et al., 2017.Mineralogical Evidence for Crystallization Conditions and Petrogenesis of Ilmenite-Series I-Type Granitoids at the Baogutu Reduced Porphyry Cu Deposit (Western Junggar, NW China):Mössbauer Spectroscopy, EPM and LA-(MC)-ICPMS Analyses.Ore Geology Reviews, 86:382-403. https://doi.org/10.1016/j.oregeorev.2017.02.033
      Deer, W.A., Howie, R.A., Zussman, J., 1992.An Introduction to the Rock-Forming Minerals (Second Edition).Longman Scientific and Technical, London.
      Einali, M., Alirezaei, S., Zaccarini, F., 2014.Chemistry of Magmatic and Alteration Minerals in the Chahfiruzeh Porphyry Copper Deposit, South Iran:Implications for the Evolution of the Magmas and Physicochemical Conditions of the Ore Fluids.Turkish Journal of Earth Sciences, 23(2):147-165. https://doi.org/10.3906/yer-1301-1
      Foster, M.D., 1960.Interpretation of the Composition of Trioctahedral Micas.United States Geological Survey, Professional Paper, Washington D.C..
      Fu, J.B., 1981.Chemical Composition of Biotite in Porphyry Copper Deposits.Geology and Exploration, 9(1):16-19 (in Chinese with English abstract).
      Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498
      Idrus, A., Kolb, J., Meyer, F.M., 2007.Chemical Composition of Rock-Forming Minerals in Copper-Gold-Bearing Tonalite Porphyries at the Batu Hijau Deposit, Sumbawa Island, Indonesia:Implications for Crystallization Conditions and Fluorine-Chlorine Fugacity.Resource Geology, 57(2):102-113. https://doi.org/10.1111/j.1751-3928.2007.00010.x
      Kesler, S.E., Issigonis, M.J., Brownlow, A.H., et al., 1975.Geochemistry of Biotites from Mineralized and Barren Intrusive Systems.Economic Geology, 70(3):559-567. https://doi.org/10.2113/gsecongeo.70.3.559
      Lackey, J.S., Romero, G.A., Bouvier, A.S., et al., 2012.Dynamic Growth of Garnet in Granitic Magmas.Geology, 40(2):171-174. https://doi.org/10.1130/g32349.1
      Lang, Z.J., Shi, B., Li, T.D., 1992.Genesis of Copper Deposit in Sanchakou, Hami, Xinjiang.Xinjiang Geology, 10(3):244-252 (in Chinese with English abstract).
      Li, J.X., Li, G.M., Qin, K.Z., et al., 2012.Mineralogy and Mineral Chemistry of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Arc, Northern Tibet.Resource Geology, 62(1):19-41. https://doi.org/10.1111/j.1751-3928.2011.00178.x
      Li, X.W., Mo, X.X., Scheltens, M., et al., 2016.Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau.Journal of Earth Science, 27(4):545-570. https://doi.org/10.1007/s12583-016-0713-5
      Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EPMA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ402.004.htm
      Mao, J.W., Goldfarb, R.J., Wang, Y.T., et al., 2005.Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China:Characteristics and Geodynamic Setting.Episodes, 28(1):23-30. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027203778/
      Miller, C.F., Stoddard, E.F., Bradfish, L.J., et al., 1981.Composition of Plutonic Muscovite:Genetic Implications.Canadian Mineralogist, 19(1):25-34.
      Nachit, H., Ibhi, A., Abia, E.H., et al., 2005.Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites.Comptes Rendus Geoscience, 337(16):1415-1420. https://doi.org/10.1016/j.crte.2005.09.002
      Parsapoor, A., Khalili, M., Tepley, F., et al., 2015.Mineral Chemistry and Isotopic Composition of Magmatic, Re-Equilibrated and Hydrothermal Biotites from Darreh-Zar Porphyry Copper Deposit, Kerman (Southeast of Iran).Ore Geology Reviews, 66:200-218. https://doi.org/10.1016/j.oregeorev.2014.10.015
      Qin, K.Z., Zhang, L.C., Ding, K.S., et al., 2009.Mineralization Type, Petrogenesis of Ore-Bearing Intrusions and Mineralogical Characteristics of Sanchakou Copper Deposits in Eastern Tianshan.Acta Petrologica Sinica, 25(4):845-861 (in Chinese with English abstract).
      Selby, D., Nesbitt, B.E., 2000.Chemical Composition of Biotite from the Casino Porphyry Cu-Au-Mo Mineralization, Yukon, Canada:Evaluation of Magmatic and Hydrothermal Fluid Chemistry.Chemical Geology, 171(1-2):77-93. https://doi.org/10.1016/s0009-2541(00)00248-5
      Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003.Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator? The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381
      Sun, W.D., Huang, R.F., Li, H., et al., 2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews, 65:97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      Tang, P., Tang, J.X., Zheng, W.B., et al., 2017.Progress in Study of Mineral Chemistry of Magmatic and Hydrothermal Biotites.Mineral Deposits, 36(4):935-950 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704010
      Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1):47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x
      Wang, C., Chen, B., Ma, X.H., et al., 2015.Petrogenesis of Early and Late Paleozoic Plutons in Sanchakou Area of East Tianshan and Their Implications for Evolution of Kangur Suture Zone.Journal of Earth Sciences and Environment, 37(5):52-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201505004
      Wang, J.B., Wang, Y.W., He, Z.J., 2006.Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China.Geology in China, 33(3):461-469 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603001.htm
      Wang, X.L., Zhou, J.C., Wan, Y.S., et al., 2013.Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China:Hf and O Isotopes in Zircon.Earth and Planetary Science Letters, 366(2):71-82. https://doi.org/10.1016/j.eps1.2013.02.011
      Wang, Y.H., Zhang, F.F., 2016.Petrogenesis of Early Silurian Intrusions in the Sanchakou Area of Eastern Tianshan, Northwest China, and Tectonic Implications:Geochronological, Geochemical, and Hf Isotopic Evidence.International Geology Review, 58(10):1294-1310. https://doi.org/10.1080/00206814.2016.1152516
      Wang, Y.H., Zhang, F.F., Liu, J.J., 2016.The Genesis of the Ores and Intrusions at the Yuhai Cu-Mo Deposit in Eastern Tianshan, NW China:Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics.Ore Geology Reviews, 77:312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003
      Wang, Y.F., Chen, H.Y., Han, J.S., et al., 2018.Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan:Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China.Journal of Asian Earth Sciences, 153:282-306. https://doi.org/10.1016/j.jseaes.2017.05.022
      Wones, D., Eugster, H., 1965.Stability of Biotite-Experiment Theory and Application.American Mineralogist, 50(9):1228-1272.
      Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      Xu, K.Q., Sun, N., Wang, D.Z., et al., 1982.Genetic Series of Granitic Rocks in Southeastern China.Acta Petrologica Mineralogica et Analytica, 1(2):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS198202000.htm
      Yu, J.H., Zhao, L., Zhou, X., 2004.Mineralogical Characteristics and Origin of Garnet-Bearing Ⅰ-Type Granitoids in Southeastern Fujian Province.Geological Journal of China Universities, 10(3):364-377 (in Chinese with English abstract).
      Zhang, L., Chen, Z.Y., Tian, Z.J., et al., 2017.Chemical Composition of Biotite and Chlorite in the Uranium-Bearing and Barren Granites, Northern Guangdong Province, South China:Implications for Uranium Mineralization.Earth Science Frontiers, 24(5):62-75 (in Chinese with English abstract).
      Zhang, W., Lentz, D.R., Thorne, K.G., et al., 2016.Geochemical Characteristics of Biotite from Felsic Intrusive Rocks around the Sisson Brook W-Mo-Cu Deposit, West-Central New Brunswick:An Indicator of Halogen and Oxygen Fugacity of Magmatic Systems.Ore Geology Reviews, 77:82-96. https://doi.org/10.1016/j.oregeorev.2016.02.004
      Zhang, Z.W., Zang, Y.S., Wang, Y.L., et al., 2016.Zircon SHRIMP U-Pb Age of the Yuhai Porphyry Copper Deposit in Eastern Tianshan Mountains of Xinjiang and Its Tectonic Implications.Acta Geoscientica Sinica, 37(1):59-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201601006.htm
      Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xintian-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.557
      Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract).
      Zhu, C., Sverjensky, D.A., 1992.F-Cl-OH Partitioning between Biotite and Apatite.Geochimica et Cosmochimica Acta, 56(9):3435-3467. https://doi.org/10.1016/0016-7037(92)90390-5
      Zhu, Y.F., An, F., Feng, W.Y., et al., 2016.Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region.Journal of Earth Science, 27(3):491-506. https://doi.org/10.1007/s12583-016-0673-7
      傅金宝, 1981.斑岩铜矿中黑云母的化学组成特征.地质与勘探, 9(1):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000365294
      郎智君, 师波, 李天德, 1992.新疆哈密三岔口铜矿成因探讨.新疆地质, 10(3):244-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003368488
      林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2):155-162. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ402.004.htm
      秦克章, 张连昌, 丁奎首, 等, 2009.东天山三岔口铜矿床类型、赋矿岩石成因与矿床矿物学特征.岩石学报, 25(4):845-861. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904010
      唐攀, 唐菊兴, 郑文宝, 等, 2017.岩浆黑云母和热液黑云母矿物化学研究进展.矿床地质, 36(4):935-950. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704010
      王超, 陈斌, 马星华, 等, 2015.东天山三岔口地区早、晚古生代岩体成因及其对康古尔缝合带演化的意义.地球科学与环境学报, 37(5):52-70. doi: 10.3969/j.issn.1672-6561.2015.05.004
      王京彬, 王玉往, 何志军, 2006.东天山大地构造演化的成矿示踪.中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      徐克勤, 孙鼐, 王德滋, 等, 1982.华南两类不同成因花岗岩岩石学特征.岩矿测试, 1(2):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003571839
      于津海, 赵蕾, 周旋, 2004.闽东南含石榴子石Ⅰ型花岗岩的矿物学特征及成因.高校地质学报, 10(3):364-377. doi: 10.3969/j.issn.1006-7493.2004.03.007
      张龙, 陈振宇, 田泽瑾, 等, 2017.粤北产铀与不产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系.地学前缘, 24(5):62-75. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705007
      张照伟, 臧遇时, 王亚磊, 等, 2016.新疆东天山玉海斑岩铜矿锆石SHRIMP U-Pb年龄及构造意义.地球学报, 37(1):59-68. http://d.old.wanfangdata.com.cn/Periodical/dqxb201601007
      周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10):1647-1657. http://earth-science.net/WebPage/Article.aspx?id=3671
      周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (5406) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return