• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 7
    Jul.  2018
    Turn off MathJax
    Article Contents
    Zhang Weifeng, Xu Daliang, Peng Lianhong, Deng Xin, Liu Hao, Jin Xinbiao, Tan Jing, 2018. The Discovery and Geological Significance of the Neoproterozoic A1-Type Granite in the Pailou Area, Wudang Uplift. Earth Science, 43(7): 2389-2403. doi: 10.3799/dqkx.2018.179
    Citation: Zhang Weifeng, Xu Daliang, Peng Lianhong, Deng Xin, Liu Hao, Jin Xinbiao, Tan Jing, 2018. The Discovery and Geological Significance of the Neoproterozoic A1-Type Granite in the Pailou Area, Wudang Uplift. Earth Science, 43(7): 2389-2403. doi: 10.3799/dqkx.2018.179

    The Discovery and Geological Significance of the Neoproterozoic A1-Type Granite in the Pailou Area, Wudang Uplift

    doi: 10.3799/dqkx.2018.179
    • Received Date: 2018-06-25
    • Publish Date: 2018-07-15
    • As a typical case of the Neoproterozoic magmatism in South Qinling, the Pailou porphyritic monzogranite exposed in the western margin of Wudang uplift. Zircon U-Pb dating on the granite yields an age of 667.2±3.5 Ma. The granite shows sub-alkaline and metaluminous affinities, with Na2O+K2O and A/CNK values ranging 8.31%-8.47% and 0.89-0.94, respectively. The monzogranite enriched in LILEs (i.e. Rb, K, U and Pb) and HFSEs (i.e. Nb and Ti), and depleted in Sr, P, Ti and HREE. Due to the high content of Zr+Nb+Y+Ce and ratios of 10 000 Ga/Al and FeOT/(FeOT+MgO), as well as characteristic minerals of hastingsite and ferropargasite, the Pailou monzogranite displaying A1-type geochemical features. The zircon εHf(t) values of the study rocks mainly vary from -1.8 to +1.5, indicating that the magma likely to have been sourced from mantle metasomatized by asthenosphere, OIB-like melts, with minor crustal assimilation. Based on modal calculations of trace elements, the fractional crystallization of plagioclase and pyroxene has been proposed during magmatic evolution. Integrating the data obtained from studies on geology, geochronology, geochemistry and isotopic compositions, we propose that the Pailou magmatism was the product of norogenic magmatism and formed in tectonic setting of a back-arc rift setting that probably developed in relation to slab tearing during continued slab rollback.

       

    • loading
    • Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
      Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1/2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources?A Review.Lithos, 78(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Cawood, P.A., Wang, Y.J., Xu, Y.J., et al., 2013.Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere?Geology, 41(8):903-906. https://doi.org/10.1130/g34395.1
      Chappell, B.W., White, A.J.R., 1992.I-and S-Type granites in the Lachlan Fold Belt.Geological Society of America Special Papers, 272:1-26. https://doi.org/10.1017/S0263593300007720
      Chen, Y.X., Li, H., Sun, W.D., et al., 2016.Generation of Late Mesozoic Qianlishan A2-Type Granite in Nanling Range, South China:Implications for Shizhuyuan W-Sn Mineralization and Tectonic Evolution.Lithos, 266-267:435-452. https://doi.org/10.13039/501100001809
      Chen, Z.H., Lu, S.N., Li, H.K., et al., 2006.Constraining the Role of the Qinling Orogen in the Assembly and Break-Up of Rodinia:Tectonic Implications for Neoproterozoic Granite Occurrences.Journal of Asian Earth Sciences, 28(1):99-115. https://doi.org/10.1016/j.jseaes.2005.03.011
      Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      Douce, A.E.P., 1997.Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids.Geology, 25(8):743.https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2
      Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1/2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z
      Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      Ferrari, L., 2004.Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico.Geology, 32(1):77. https://doi.org/10.1130/g19887.1
      Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks.Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Jolivet, L., Menant, A., Sternai, P., et al., 2015.The Geological Signature of a Slab Tear below the Aegean.Tectonophysics, 659:166-182. https://doi.org/10.13039/501100000781
      King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623
      Ling, W.L., Duan, R.C., Liu, X.M., et al., 2010.U-Pb Dating of Detrital Zircons from the Wudangshan Group in the South Qinling and Its Geological Significance.Chinese Science Bulletin, 12:1153-1161 (in Chinese). http://cn.bing.com/academic/profile?id=cadd70455cb19bf4a5f9856355f39a7a&encoded=0&v=paper_preview&mkt=zh-cn
      Ling, W.L., Ren, B.F., Duan, R.C., et al., 2008.Timing of the Wudangshan, Yaolinghe Volcanic Sequences and Mafic Sills in South Qinling:U-Pb Zircon Geochronology and Tectonic Implication.Chinese Science Bulletin, 53(14):2192-2199. https://doi.org/10.1007/s11434-008-0269-6
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Mingram, B., Trumbull, R.B., Littman, S., et al., 2000.A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia:Evidence for Mixing of Crust and Mantle-Derived Components.Lithos, 54(1/2):1-22. https://doi.org/10.1016/s0024-4937(00)00033-5
      Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letter, 19:290-300. https://doi.org/10.1016/0012-821X(73)90129-5
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Pitcher, W. S., 1982. Granite Type and Tectonic Environment. In: Hsü, K., ed., Mountain Buiding Processes. Academic Press, London, 19-40.
      Qorbani, E., Bianchi, I., Bokelmann, G., 2015.Slab Detachment under the Eastern Alps Seen by Seismic Anisotropy.Earth and Planetary Science Letters, 409:96-108. https://doi.org/10.13039/501100002428
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L. ed., Treatise on Geochemistry 3. Elsevier, Amsterdam, 1-64.
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3/4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Turner, S., Sandiford, M., Foden, J., 1992.Some Geodynamic and Compositional Constraints on "Postorogenic" Magmatism.Geology, 20(10):931.https://doi.org/10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2
      Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
      Wang, L.J., Griffin, W.L., Yu, J.H., et al., 2013.U-Pb and Lu-Hf Isotopes in Detrital Zircon from Neoproterozoic Sedimentary Rocks in the Northern Yangtze Block:Implications for Precambrian Crustal Evolution.Gondwana Research, 23(4):1261-1272. https://doi.org/10.13039/501100001809
      Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2016.Late Neoproterozoic Magmatism in South Qinling, Central China:Geochemistry, Zircon U-Pb-Lu-Hf Isotopes and Tectonic Implications.Tectonophysics, 683:43-61. https://doi.org/10.1016/j.tecto.2016.05.050
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wilson, B.M., 2007.Igneous Petrogenesis:A Global Tectonic Approach.Springer Science & Business Media, London.
      Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussion on the Petrogensis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.06.001
      Wu, Y.B., Zheng, Y.F., 2013.Southward Accretion of the North China Block and the Tectonic Evolution of the Qinling-Tongbai-Hong'an Orogenic Belt.Chinese Science Bulletin, 58(23):2246-2250 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4ae062082edcf514c52ba6b7b8aae368&encoded=0&v=paper_preview&mkt=zh-cn
      Yang, B.H., Zhang, C.L., Li, L., 2011.Sr-Nd-Pb Isotopic Characteristics of the Granitoids in the Douling Complexes, Eastern Qinling, China and Its Geological Significance.Geological Bulletin of China, 30(2):439-447 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=71e8dbd95e76f65faedf806af348b4df&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, Y.Q., Zhang, J., Li, H.K., et al., 2013.Zircon U-Pb Geochronology of the Meta-Acidic Volcanic Rocks from the Wudangshan Group, Southern Qinling Mountains, Central China.Acta Geologica Sinica, 87(7):922-930 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2dcafcee7f4ca8ce85964a92230d689d&encoded=0&v=paper_preview&mkt=zh-cn
      Zhu, X.Y., Chen, F.K., Nie, H., et al., 2014.Neoproterozoic Tectonic Evolution of South Qinling, China:Evidence from Zircon Ages and Geochemistry of the Yaolinghe Volcanic Rocks.Precambrian Research, 245:115-130. https://doi.org/10.1016/j.precamres.2014.02.005
      Zhu, X.Y., Chen, F.K., Liu, B.X., et al., 2015.Geochemistry and Zircon Ages of Mafic Dikes in the South Qinling, Central China:Evidence for Late Neoproterozoic Continental Rifting in the Northern Yangtze Block.International Journal of Earth Sciences, 104(1):27-44. https://doi.org/10.1007/s00531-014-1056-z
      凌文黎, 段瑞春, 柳小明, 等, 2010.南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义.科学通报, 12:1153-1161. https://www.wenkuxiazai.com/doc/51938a3f0912a216147929fc-3.html
      吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm
      吴元保, 郑永飞, 2013.华北陆块古生代南向增生与秦岭-桐柏-红安造山带构造演化.科学通报, 58(23):2246-2250. http://www.oalib.com/paper/4980990
      杨斌虎, 张成立, 李雷, 2011.东秦岭陡岭杂岩花岗岩的Sr-Nd-Pb同位素特征及其地质意义.地质通报, 30(2):439-447. https://doi.org/10.3969/j.issn.1671-2552.2011.02.031
      张永清, 张健, 李怀坤, 等, 2013.南秦岭武当山群变质酸性火山岩锆石U-Pb年代学.地质学报, 87(7):922-930. https://doi.org/10.3969/j.issn.0001-5717.2013.07.002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(3)

      Article views (4106) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return