Citation: | Wang Chaoyong, Bao Yuan, Ju Yiwen, 2020. Micropore Structure Evolution of Organic Matters in Coal Measures due to Bioconversion Using FE-SEM, HIP and N2 Adsorption Experiments. Earth Science, 45(1): 251-262. doi: 10.3799/dqkx.2018.285 |
Bao, Y., Ju, Y. W., Wei, C. T., et al., 2015. Infrared Spectrum Studies of Hydrocarbon Generation and Structure Evolution of Peat Samples during Pyrolysis and Microbial Degradation. Spectroscopy and Spectral Analysis, 35(3): 603-608 (in Chinese with English abstract).
|
Bao, Y., Wei, C. T., Neupane, B., 2016. Generation and Accumulation Characteristics of Mixed Coalbed Methane Controlled by Tectonic Evolution in Liulin CBM Field, Eastern Ordos Basin, China. Journal of Natural Gas Science and Engineering, 28: 262-270. https://doi.org/10.1016/j.jngse.2015.11.033
|
Bao, Y., Wei, C. T., Wang, C. Y., 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201305013
|
Bao, Y., Wei, C. T., Wang, C. Y., et al., 2013. Geochemical Characteristics and Identification of Thermogenic CBM Generated during the Low and Middle Coalification Stages. Geochemical Journal, 47(4): 451-458. https://doi.org/10.2343/geochemj.2.0265
|
Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances.Ⅰ. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
|
Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
|
Cai, Y. D., Liu, D. M., Pan, Z. J., et al., 2013. Pore Structure and Its Impact on CH4 Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China. Fuel, 103: 258-268. https://doi.org/10.1016/j.fuel.2012.06.055
|
Flores, R.M., 2014. Coal and Coalbed Gas: Fueling the Future. Elsevier, Waltham.
|
Fripiat, J. J., Gatineau, L., van Damme, H., 1986. Multilayer Physical Adsorption on Fractal Surfaces. Langmuir, 2(5): 562-567. https://doi.org/10.1021/la00071a006
|
Fu, X. H., Deleqiati, J. N. T. Y., Zhu, Y. M., et al., 2016. Resources Characteristics and Separated Reservoirs' Drainage of Unconventional Gas in Coal Measures. Earth Science Frontiers, 23(3): 36-40 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201603005
|
Groen, J. C., Peffer, L. A. A., Pérez-Ramı́rez, J., 2003. Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60(1-3): 1-17. https://doi.org/10.1016/s1387-1811(03)00339-1
|
Guo, H. Y., Luo, Y., Ma, J. Q., et al., 2014. Analysis of Mechanism and Permeability Enhancing Effect via Microbial Treatment on Different-Rank Coals. Journal of China Society, 39(9): 1886-1891 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201409018
|
Ju, Y. W., Jiang, B., Hou, Q. L., et al., 2005. 13C NMR Spectra of Tectonic Coals and the Effects of Stress on Structural Components. Science in China (Series D), 35(9): 847-861 (in Chinese). doi: 10.1360%2F04yd0199
|
Katz, J. B., 2011. Microbial Processes and Natural Gas Accumulations. The Open Geology Journal, 5(1): 75-83. https://doi.org/10.2174/1874262901105010075
|
Klaver, J., Desbois, G., Urai, J. L., et al., 2012. BIB-SEM Study of the Pore Space Morphology in Early Mature Posidonia Shale from the Hils Area, Germany. International Journal of Coal Geology, 103: 12-25. https://doi.org/10.1016/j.coal.2012.06.012
|
Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7-16. https://doi.org/10.1016/j.petrol.2013.11.022
|
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
|
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
|
Lowell, S., Shields, J. E., Thomas, M. A., et al., 2004. Characterization of Porous Solid and Powders: Surface Area, Pore Size and Density. Springer, New York.
|
Martini, A. M., Budai, J. M., Walter, L. M., et al., 1996. Microbial Generation of Economic Accumulations of Methane within a Shallow Organic-Rich Shale. Nature, 383(6596): 155-158. https://doi.org/10.1038/383155a0
|
Meng, Q., Wang, X. F., Wang, X. Z., et al., 2017. Gas Geochemical Evidences for Biodegradation of Shale Gases in the Upper Triassic Yanchang Formation, Ordos Basin, China. International Journal of Coal Geology, 179: 139-152. https://doi.org/10.1016/j.coal.2017.05.018
|
Nie, B. S., Lun, J. Y., Wang, K. D., et al., 2018. Characteristics of Nanometer Pore Structure in Coal Reservoir. Earth Science, 43(5): 1755-1762 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805034
|
Okolo, G. N., Everson, R. C., Neomagus, H. W. J. P., et al., 2015. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel, 141: 293-304. https://doi.org/10.1016/j.fuel.2014.10.046
|
Rice, D. D., Claypool, G. E., 1981. Generation, Accumulation, and Resource Potential of Biogenic Gas. AAPG Bulletin, 65: 5-25. https://doi.org/10.1306/2f919765-16ce-11d7-8645000102c1865d
|
Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
|
Scott, A. R., Kaiser, W. R., Ayers, J. W. B., 1994. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico-Implications for Coalbed Gas Producibility. AAPG Bulletin, 78: 1186-1209. https://doi.org/10.1306/a25feaa9-171b-11d7-8645000102c1865d
|
Seaton, N. A., Walton, J. P. R. B., Quirke, N., 1989. A New Analysis Method for the Determination of the Pore Size Distribution of Porous Carbons from Nitrogen Adsorption Measurements. Carbon, 27(6): 853-861. https://doi.org/10.1016/0008-6223(89)90035-3
|
Shi, J. Q., Durucan, S., 2005. Gas Storage and Flow in Coalbed Reservoirs: Implementation of a Bidisperse Pore Model for Gas Diffusion in Coal Matrix. SPE Reservoir Evaluation & Engineering, 8(2): 169-175. https://doi.org/10.2118/84342-pa
|
Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
|
Song, Y., Jiang, B., Li, F. L., et al., 2018. Applicability of Fractal Models and Nanopores' Fractal Characteristics for Low-Middle Rank Tectonic Deformed Coals. Earth Science, 43(5): 1611-1622 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805022
|
Spitzer, Z., 1981. Mercury Porosimetry and Its Application to the Analysis of Coal Pore Structure. Powder Technology, 29(1): 177-186. https://doi.org/10.1016/0032-5910(81)85015-2
|
Strąpoć, D., Mastalerz, M., Dawson, K., et al., 2011. Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 39(1): 617-656. https://doi.org/10.1146/annurev-earth-040610-133343
|
Tian, H., Zhang, S. C., Liu, S. B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Science, 33(3): 419-427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
|
Wang, B. Y., Tai, C., Wu, L., et al., 2017a. Methane Production from Lignite through the Combined Effects of Exogenous Aerobic and Anaerobic Microflora. International Journal of Coal Geology, 173: 84-93. https://doi.org/10.1016/j.coal.2017.02.012
|
Wang, C. Y., Bao, Y., Wu, J., et al., 2017b. Pore Structure Differences between Underground and Outcrop of Palaeozoic Shales in the Upper Yangtze Platform, South China. Journal of Nanoscience and Nanotechnology, 17(9): 6803-6810. https://doi.org/10.1166/jnn.2017.14490
|
Yan, G. Y., Wei, C. T., Song, Y., et al., 2018. Quantitative Characterization of Shale Pore Structure Based on Ar-SEM and PCAS. Earth Science, 43(5): 1602-1610 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201805021
|
Yang, X. Q., Wu, R. W., Han, Z. Y., et al., 2017. Analysis of Methanogenic Community and Pathway of Coalbed Methane Fields in the Qinshui Basin Based on McrA Gene. Microbiology China, 44(4): 795-806 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201704005
|
Yao, Y. B, Liu, D. M., Huang, W. H., et al., 2006. Research on the Pore-Fractures System Properties of Coalbed Methane Reservoirs and Recovery in Huainan and Huaibei Coal-Fields. Journal of China Coal Society, 31(2):163-168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb200602007
|
Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2008. Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 73(1): 27-42. https://doi.org/10.1016/j.coal.2007.07.003
|
Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2009. Fractal Characterization of Seepage-Pores of Coals from China: An Investigation on Permeability of Coals. Computers & Geosciences, 35(6): 1159-1166. https://doi.org/10.1016/j.cageo.2008.09.005
|
Yin, Y., 1991. Adsorption Isotherm on Fractally Porous Materials. Langmuir, 7(2): 216-217. https://doi.org/10.1021/la00050a002
|
鲍园, 琚宜文, 韦重韬, 等, 2015.热解和生物降解对木本泥炭生烃与结构演化的红外光谱响应.光谱学与光谱分析, 35(3): 603-608. doi: 10.3964/j.issn.1000-0593(2015)03-0603-06
|
鲍园, 韦重韬, 王超勇, 2013.不同成因类型煤型气地球化学特征及其判识意义.地球科学, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
|
傅雪海, 德勒恰提·加纳塔依, 朱炎铭, 等, 2016.煤系非常规天然气资源特征及分隔合采技术.地学前缘, 23(3): 36-40. http://d.old.wanfangdata.com.cn/Periodical/dxqy201603005
|
郭红玉, 罗源, 马俊强, 等, 2014.不同煤阶煤的微生物增透效果和机理分析.煤炭学报, 39(9): 1886-1891. http://d.old.wanfangdata.com.cn/Periodical/mtxb201409018
|
琚宜文, 姜波, 侯泉林, 等, 2005.构造煤13C NMR谱及其结构成分的应力效应.中国科学(D辑), 35(9): 847-861. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200509005
|
聂百胜, 伦嘉云, 王科迪, 等, 2018.煤储层纳米孔隙结构及其瓦斯扩散特征.地球科学, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427
|
宋昱, 姜波, 李凤丽, 等, 2018.低-中煤级构造煤纳米孔分形模型适用性及分形特征.地球科学, 43(5): 1611-1622. doi: 10.3799/dqkx.2017.566
|
田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3): 419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
|
闫高原, 韦重韬, 宋昱, 等, 2018.基于Ar-SEM及PCAS页岩孔隙结构定量表征.地球科学, 43(5): 1602-1610. doi: 10.3799/dqkx.2017.525
|
杨秀清, 吴瑞薇, 韩作颖, 等, 2017.基于mcrA基因的沁水盆地煤层气田产甲烷菌群与途径分析.微生物学通报, 44(4): 795-806. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201704005
|
姚艳斌, 刘大锰, 黄文辉, 等, 2006.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报, 31(2):163-168. doi: 10.3321/j.issn:0253-9993.2006.02.007
|