• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Wang Chaoyong, Bao Yuan, Ju Yiwen, 2020. Micropore Structure Evolution of Organic Matters in Coal Measures due to Bioconversion Using FE-SEM, HIP and N2 Adsorption Experiments. Earth Science, 45(1): 251-262. doi: 10.3799/dqkx.2018.285
    Citation: Wang Chaoyong, Bao Yuan, Ju Yiwen, 2020. Micropore Structure Evolution of Organic Matters in Coal Measures due to Bioconversion Using FE-SEM, HIP and N2 Adsorption Experiments. Earth Science, 45(1): 251-262. doi: 10.3799/dqkx.2018.285

    Micropore Structure Evolution of Organic Matters in Coal Measures due to Bioconversion Using FE-SEM, HIP and N2 Adsorption Experiments

    doi: 10.3799/dqkx.2018.285
    • Received Date: 2018-08-14
    • Publish Date: 2020-01-15
    • Micropore structure characterization of organic matters in the coal measures due to bioconversion is of great significance in understanding reservoir reformation by microorganism and revealing the storage and enrichment mechanism of biogenic gas in the coal measures. Pore structure evolution of organic matters in the coal measures degraded by microbe was analyzed using field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion porosimetry (MIP), low-pressure N2 gas adsorption pycnometry and fractal dimension FHH theory in this study. Considering the measuring range of pore size distribution (PSD) and combining the characteristics of microbial ecology, the pore structure type of coal and shale in coal measures is divided into three types. They are micropore (PSD>5 μm), micro-nanopore (5 μm-100 nm), and nanopore (2-100 nm). The PSD and micropore pore volume (PV) of coal and shale samples increase, and the specific surface area (SSA) and micro-nanopore and nanopore PV decrease after bioconversion. The surface fractal diameter (D1) and pore structure fractal diameter (D2) of coal and shale samples decrease after bioconversion, showing that the inner surface of pore becomes smooth and pore structure gets simple due to microbial action. The reformation of pore structure due to bioconversion is benefitial to the migration and enrichment of free gas in the coal measures.

       

    • loading
    • Bao, Y., Ju, Y. W., Wei, C. T., et al., 2015. Infrared Spectrum Studies of Hydrocarbon Generation and Structure Evolution of Peat Samples during Pyrolysis and Microbial Degradation. Spectroscopy and Spectral Analysis, 35(3): 603-608 (in Chinese with English abstract).
      Bao, Y., Wei, C. T., Neupane, B., 2016. Generation and Accumulation Characteristics of Mixed Coalbed Methane Controlled by Tectonic Evolution in Liulin CBM Field, Eastern Ordos Basin, China. Journal of Natural Gas Science and Engineering, 28: 262-270. https://doi.org/10.1016/j.jngse.2015.11.033
      Bao, Y., Wei, C. T., Wang, C. Y., 2013. Geochemical Characteristics and Identification Significance of Coal Type Gas in Various Geneses. Earth Science, 38(5): 1037-1046 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201305013
      Bao, Y., Wei, C. T., Wang, C. Y., et al., 2013. Geochemical Characteristics and Identification of Thermogenic CBM Generated during the Low and Middle Coalification Stages. Geochemical Journal, 47(4): 451-458. https://doi.org/10.2343/geochemj.2.0265
      Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances.Ⅰ. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
      Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
      Cai, Y. D., Liu, D. M., Pan, Z. J., et al., 2013. Pore Structure and Its Impact on CH4 Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China. Fuel, 103: 258-268. https://doi.org/10.1016/j.fuel.2012.06.055
      Flores, R.M., 2014. Coal and Coalbed Gas: Fueling the Future. Elsevier, Waltham.
      Fripiat, J. J., Gatineau, L., van Damme, H., 1986. Multilayer Physical Adsorption on Fractal Surfaces. Langmuir, 2(5): 562-567. https://doi.org/10.1021/la00071a006
      Fu, X. H., Deleqiati, J. N. T. Y., Zhu, Y. M., et al., 2016. Resources Characteristics and Separated Reservoirs' Drainage of Unconventional Gas in Coal Measures. Earth Science Frontiers, 23(3): 36-40 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201603005
      Groen, J. C., Peffer, L. A. A., Pérez-Ramı́rez, J., 2003. Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60(1-3): 1-17. https://doi.org/10.1016/s1387-1811(03)00339-1
      Guo, H. Y., Luo, Y., Ma, J. Q., et al., 2014. Analysis of Mechanism and Permeability Enhancing Effect via Microbial Treatment on Different-Rank Coals. Journal of China Society, 39(9): 1886-1891 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201409018
      Ju, Y. W., Jiang, B., Hou, Q. L., et al., 2005. 13C NMR Spectra of Tectonic Coals and the Effects of Stress on Structural Components. Science in China (Series D), 35(9): 847-861 (in Chinese). doi: 10.1360%2F04yd0199
      Katz, J. B., 2011. Microbial Processes and Natural Gas Accumulations. The Open Geology Journal, 5(1): 75-83. https://doi.org/10.2174/1874262901105010075
      Klaver, J., Desbois, G., Urai, J. L., et al., 2012. BIB-SEM Study of the Pore Space Morphology in Early Mature Posidonia Shale from the Hils Area, Germany. International Journal of Coal Geology, 103: 12-25. https://doi.org/10.1016/j.coal.2012.06.012
      Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7-16. https://doi.org/10.1016/j.petrol.2013.11.022
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Lowell, S., Shields, J. E., Thomas, M. A., et al., 2004. Characterization of Porous Solid and Powders: Surface Area, Pore Size and Density. Springer, New York.
      Martini, A. M., Budai, J. M., Walter, L. M., et al., 1996. Microbial Generation of Economic Accumulations of Methane within a Shallow Organic-Rich Shale. Nature, 383(6596): 155-158. https://doi.org/10.1038/383155a0
      Meng, Q., Wang, X. F., Wang, X. Z., et al., 2017. Gas Geochemical Evidences for Biodegradation of Shale Gases in the Upper Triassic Yanchang Formation, Ordos Basin, China. International Journal of Coal Geology, 179: 139-152. https://doi.org/10.1016/j.coal.2017.05.018
      Nie, B. S., Lun, J. Y., Wang, K. D., et al., 2018. Characteristics of Nanometer Pore Structure in Coal Reservoir. Earth Science, 43(5): 1755-1762 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805034
      Okolo, G. N., Everson, R. C., Neomagus, H. W. J. P., et al., 2015. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel, 141: 293-304. https://doi.org/10.1016/j.fuel.2014.10.046
      Rice, D. D., Claypool, G. E., 1981. Generation, Accumulation, and Resource Potential of Biogenic Gas. AAPG Bulletin, 65: 5-25. https://doi.org/10.1306/2f919765-16ce-11d7-8645000102c1865d
      Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      Scott, A. R., Kaiser, W. R., Ayers, J. W. B., 1994. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico-Implications for Coalbed Gas Producibility. AAPG Bulletin, 78: 1186-1209. https://doi.org/10.1306/a25feaa9-171b-11d7-8645000102c1865d
      Seaton, N. A., Walton, J. P. R. B., Quirke, N., 1989. A New Analysis Method for the Determination of the Pore Size Distribution of Porous Carbons from Nitrogen Adsorption Measurements. Carbon, 27(6): 853-861. https://doi.org/10.1016/0008-6223(89)90035-3
      Shi, J. Q., Durucan, S., 2005. Gas Storage and Flow in Coalbed Reservoirs: Implementation of a Bidisperse Pore Model for Gas Diffusion in Coal Matrix. SPE Reservoir Evaluation & Engineering, 8(2): 169-175. https://doi.org/10.2118/84342-pa
      Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
      Song, Y., Jiang, B., Li, F. L., et al., 2018. Applicability of Fractal Models and Nanopores' Fractal Characteristics for Low-Middle Rank Tectonic Deformed Coals. Earth Science, 43(5): 1611-1622 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805022
      Spitzer, Z., 1981. Mercury Porosimetry and Its Application to the Analysis of Coal Pore Structure. Powder Technology, 29(1): 177-186. https://doi.org/10.1016/0032-5910(81)85015-2
      Strąpoć, D., Mastalerz, M., Dawson, K., et al., 2011. Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 39(1): 617-656. https://doi.org/10.1146/annurev-earth-040610-133343
      Tian, H., Zhang, S. C., Liu, S. B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Science, 33(3): 419-427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
      Wang, B. Y., Tai, C., Wu, L., et al., 2017a. Methane Production from Lignite through the Combined Effects of Exogenous Aerobic and Anaerobic Microflora. International Journal of Coal Geology, 173: 84-93. https://doi.org/10.1016/j.coal.2017.02.012
      Wang, C. Y., Bao, Y., Wu, J., et al., 2017b. Pore Structure Differences between Underground and Outcrop of Palaeozoic Shales in the Upper Yangtze Platform, South China. Journal of Nanoscience and Nanotechnology, 17(9): 6803-6810. https://doi.org/10.1166/jnn.2017.14490
      Yan, G. Y., Wei, C. T., Song, Y., et al., 2018. Quantitative Characterization of Shale Pore Structure Based on Ar-SEM and PCAS. Earth Science, 43(5): 1602-1610 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201805021
      Yang, X. Q., Wu, R. W., Han, Z. Y., et al., 2017. Analysis of Methanogenic Community and Pathway of Coalbed Methane Fields in the Qinshui Basin Based on McrA Gene. Microbiology China, 44(4): 795-806 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201704005
      Yao, Y. B, Liu, D. M., Huang, W. H., et al., 2006. Research on the Pore-Fractures System Properties of Coalbed Methane Reservoirs and Recovery in Huainan and Huaibei Coal-Fields. Journal of China Coal Society, 31(2):163-168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb200602007
      Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2008. Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 73(1): 27-42. https://doi.org/10.1016/j.coal.2007.07.003
      Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2009. Fractal Characterization of Seepage-Pores of Coals from China: An Investigation on Permeability of Coals. Computers & Geosciences, 35(6): 1159-1166. https://doi.org/10.1016/j.cageo.2008.09.005
      Yin, Y., 1991. Adsorption Isotherm on Fractally Porous Materials. Langmuir, 7(2): 216-217. https://doi.org/10.1021/la00050a002
      鲍园, 琚宜文, 韦重韬, 等, 2015.热解和生物降解对木本泥炭生烃与结构演化的红外光谱响应.光谱学与光谱分析, 35(3): 603-608. doi: 10.3964/j.issn.1000-0593(2015)03-0603-06
      鲍园, 韦重韬, 王超勇, 2013.不同成因类型煤型气地球化学特征及其判识意义.地球科学, 38(5): 1037-1046. doi: 10.3799/dqkx.2013.101
      傅雪海, 德勒恰提·加纳塔依, 朱炎铭, 等, 2016.煤系非常规天然气资源特征及分隔合采技术.地学前缘, 23(3): 36-40. http://d.old.wanfangdata.com.cn/Periodical/dxqy201603005
      郭红玉, 罗源, 马俊强, 等, 2014.不同煤阶煤的微生物增透效果和机理分析.煤炭学报, 39(9): 1886-1891. http://d.old.wanfangdata.com.cn/Periodical/mtxb201409018
      琚宜文, 姜波, 侯泉林, 等, 2005.构造煤13C NMR谱及其结构成分的应力效应.中国科学(D辑), 35(9): 847-861. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200509005
      聂百胜, 伦嘉云, 王科迪, 等, 2018.煤储层纳米孔隙结构及其瓦斯扩散特征.地球科学, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427
      宋昱, 姜波, 李凤丽, 等, 2018.低-中煤级构造煤纳米孔分形模型适用性及分形特征.地球科学, 43(5): 1611-1622. doi: 10.3799/dqkx.2017.566
      田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3): 419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
      闫高原, 韦重韬, 宋昱, 等, 2018.基于Ar-SEM及PCAS页岩孔隙结构定量表征.地球科学, 43(5): 1602-1610. doi: 10.3799/dqkx.2017.525
      杨秀清, 吴瑞薇, 韩作颖, 等, 2017.基于mcrA基因的沁水盆地煤层气田产甲烷菌群与途径分析.微生物学通报, 44(4): 795-806. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201704005
      姚艳斌, 刘大锰, 黄文辉, 等, 2006.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报, 31(2):163-168. doi: 10.3321/j.issn:0253-9993.2006.02.007
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (4577) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return