Citation: | Zhong Jun, Fan Honghai, Chen Jinyong, Meng Yanning, Zhao Jingyang, Shi Changhao, Wang Shengyun, 2020. Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance. Earth Science, 45(1): 131-144. doi: 10.3799/dqkx.2018.298 |
Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
|
Andersen, T., Erambert, M., Larsen, A. O., et al., 2010. Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway:Zirconium Silicate Mineral Assemblages as Indicators of Alkalinity and Volatile Fugacity in Mildly Agpaitic Magma. Journal of Petrology, 51(11):2303-2325. https://doi.org/10.1093/petrology/egq058
|
Borodina, N. S., Fershtater, G. B., Votyakov, S. L., 1999. The Oxidation Ratio of Iron in Coexisting Biotite and Hornblende from Granitic and Metamorphic Rocks:The Role of P, T and fO2. The Canadian Mineralogist, 37(6):1423-1429.
|
Chakhmouradian, A. R., Mitchell, R. H., 2002. The Mineralogy of Ba- and Zr-Rich Alkaline Pegmatites from Gordon Butte, Crazy Mountains (Montana, USA):Comparisons between Potassic and Sodic Agpaitic Pegmatites. Contributions to Mineralogy and Petrology, 143(1):93-114. https://doi.org/10.1007/s00410-001-0333-6
|
Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007
|
Chen, B., Niu, X. L., Wang, Z. Q., et al., 2013. Geochronology, Petrology, and Geochemistry of the Yaojiazhuang Ultramafic-Syenitic Complex from the North China Craton. Science in China (Series D), 43:1073-1087 (in Chinese).
|
Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001
|
Chen, Y. J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5):1223-1268 (in Chinese with English abstract).
|
Chen, Y. J., Zhang, C., Wang, P., et al., 2016. The Mo Deposits of Northeast China:A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81:602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017
|
Chen, Z. B., Fan, J., Guo, Z. T., 1996. Saima Alkaline Rocks and Relevant Metallogenesis. Atomic Energy Press, Beijing (in Chinese).
|
Deng, X. H., Wang, J. B., Santosh, M., et al., 2016. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China:Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geology Reviews, 100:250-262. https://doi.org/10.1016/j.oregeorev.2016.08.006
|
Douce, A. E. P., 1993. Titanium Substitution in Biotite:An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability. Chemical Geology, 108(1-4):133-162. https://doi.org/10.1016/0009-2541(93)90321-9
|
Erić, S., Logar, M., Milovanović, D., et al., 2009. Ti-In-Biotite Geothermometry in Non-Graphitic, Peraluminous Metapelites from Crni Vrh and Resavski Humovi (Central Serbia). Geologica Carpathica, 60(1):3-14. https://doi.org/10.2478/v10096-009-0003-6
|
Foster, M.D., 1960. Interpretation of the Composition of Trioctahedral Micas. United States Geological Survey, Washington.
|
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS:A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5):1-35. https://doi.org/10.1029/2001gc000217
|
Harrison, T. M., 1983. Some Observations on the Interpretation of 40Ar/39Ar Age Spectra. Chemical Geology, 41:319-338. https://doi.org/10.1016/s0009-2541(83)80027-8
|
Henry, D. J., Guidotti, C. V., Thomsom, J. A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498
|
Jacobs, D. C., Parry, W. T., 1979. Geochemistry of Biotite in the Santa Rita Porphyry Copper Deposit, New Mexico. Economic Geology, 74(4):860-887. https://doi.org/10.2113/gsecongeo.74.4.860
|
Jing, L. Z., Guo, Y. J., Ding, C. X., 1995. Geochronology and Origin of Saima Alkaline Rocks in Liaoning Province. Geology in Liaoning, 4:257-271 (in Chinese with English abstract).
|
Khomyakov, A. P., 1995. Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford.
|
Kogarko, L. N., Williams, C. T., Woolley, A. R., 2002. Chemical Evolution and Petrogenetic Implications of Loparite in the Layered, Agpaitic Lovozero Complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1):1-24. https://doi.org/10.1007/s710-002-8213-2
|
Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
|
Le Maitre, R. W., 2002. Igneous Rocks:A Classification and Glossary of Terms. Cambridge University Press, Cambridge.
|
Mann, U., Marks, M., Markl, G., 2006. Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts:The Katzenbuckel Volcano, Southwest Germany. Lithos, 91(1-4):262-285. https://doi.org/10.1016/j.lithos.2005.09.004
|
Marks, M. A. W., Schilling, J., Coulson, I. M., et al., 2008. The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco:Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source. Journal of Petrology, 49(6):1097-1131. https://doi.org/10.1093/petrology/egn019
|
Nadeau, O., Stevenson, R., Jébrak, M., 2016. Evolution of Montviel Alkaline-Carbonatite Complex by Coupled Fractional Crystallization, Fluid Mixing and Metasomatism-Part I:Petrography and Geochemistry of Metasomatic Aegirine-Augite and Biotite:Implications for REE-Nb Mineralization. Ore Geology Reviews, 72:1143-1162. https://doi.org/10.1016/j.oregeorev.2015.09.022
|
Niu, X. L., Chen, B., Liu, A. K., et al., 2012. Petrological and Sr-Nd-Os Isotopic Constraints on the Origin of the Fanshan Ultrapotassic Complex from the North China Craton. Lithos, 149:146-158. https://doi.org/10.1016/j.lithos.2012.05.017
|
Niu, X. L., Yang, J. S., Feng, G. Y., et al., 2015. Mineral Chemistry of Biotites from the Fanshan Ultramafic-Syenitic Complex and Its Petrogenetic Significance. Acta Geologica Sinica, 89(6):1108-1119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201506009
|
Niu, X. L., Yang, J. S., Liu, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton:Petrological, Mineralogical and Geochemical Evidence. Science in China (Series D), 46(3):374-391 (in Chinese).
|
Rieder, M., 1999. Nomenclature of the Micas. Mineralogical Magazine, 63(2):267-279. https://doi.org/10.1180/002646199548385
|
Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4):423-442. https://doi.org/10.1016/s1367-9120(99)00016-4
|
Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator?. The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381
|
Song, W. L., Xu, C., Smith, M. P., et al., 2016. Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Scientific Reports, 6(1):37377. https://doi.org/10.1038/srep37377
|
Sørensen, H., 1997. The Agpaitic Rocks-An Overview. Mineralogical Magazine, 61(407):485-498. https://doi.org/10.1180/minmag.1997.061.407.02
|
Tan, D. J., Lin, J. Q., Shan, X. L., 1999. On Magma Origin of Saima-Bailinchuan Alkaline Volcanic-Intrusive Complex. Geological Review, 45(S1):474-481 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002169
|
Thompson, R. N., Gibson, S. A., 1994. Magmatic Expression of Lithospheric Thinning across Continental Rifts. Tectonophysics, 233(1-2):41-68. https://doi.org/10.1016/0040-1951(94)90219-4
|
Wang, J., Sun, F. Y., Jiang, H. F., et al., 2018. Age, Petrogenesis and Tectonic Implications of High-Mg Diorite in Chayong Region, Yushu, Qinghai. Earth Science, 43(3):733-752 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803006
|
Wang, Z. Q., Chen, Ma, X. H.B., 2014. Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China:Implications for W-Sn Mineralization. American Journal of Science, 314(1):235-277. https://doi.org/10.2475/01.2014.07
|
Wilson, M., Downes, H., Cebriá, J. M., 1995. Contrasting Fractionation Trends in Coexisting Continental Alkaline Magma Series; Cantal, Massif Central, France. Journal of Petrology, 36:1729-1753. https://doi.org/10.1093/oxfordjournals.petrology.a037272
|
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
|
Wones, D. R., Eugster, H. P., 1965. Stability of Biotite:Experiment Theory and Application. American Mineralogist, 59(9):1228-1271. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.3805
|
Wu, B., Wang, R. C., Yang, J. H., et al., 2015. Wadeite (K2ZrSi3O9), an Alkali-Zirconosilicate from the Saima Agpaitic Rocks in Northeastern China:Its Origin and Response to Multi-Stage Activities of Alkaline Fluids. Lithos, 224-225:126-142. https://doi.org/10.1016/j.lithos.2015.02.008
|
Wu, B., Wang, R. C., Yang, J. H., et al., 2016. Zr and REE Mineralization in Sodic Lujavrite from the Saima Alkaline Complex, Northeastern China:A Mineralogical Study and Comparison with Potassic Rocks. Lithos, 262:232-246. https://doi.org/10.1016/j.lithos.2016.07.013
|
Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
|
Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003
|
Wu, F. Y., Yang, Y. H., Marks, M. A. W., et al., 2010. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1-2):8-34. https://doi.org/10.1016/j.chemgeo.2010.02.007
|
Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1069-1076. https://doi.org/10.1029/2002tc001484
|
Xu, C., Campbell, I. H., Allen, C. M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2):118-128. https://doi.org/10.1016/j.lithos.2008.03.002
|
Xu, C., Zhang, H., Huang, Z. L., et al., 2004. Genesis of the Carbonatite-Syenite Complex and REE Deposit at Maoniuping, Sichuan Province, China:Evidence from Pb Isotope Geochemistry. Geochemical Journal, 38(1):67-76. https://doi.org/10.2343/geochemj.38.67
|
Yan, G. H., Mou, B. L., Xu, B. L., et al., 2000. Geochronology, Sr, Nd, Pb Isotopes and Their Significance of the Triassic Alkaline Intrusive Rocks in the Yan'liao-Yinshan Region. Science in China (Series D), 30(4):383-387 (in Chinese).
|
Yang, J. H., Sun, J. F., Zhang, M., et al., 2012. Petrogenesis of Silica-Saturated and Silica-Undersaturated Syenites in the Northern North China Craton Related to Post-Collisional and Intraplate Extension. Chemical Geology, 328:149-167. https://doi.org/10.1016/j.chemgeo.2011.09.011
|
Zhang, C., Li, N., 2014. Geology, Geochemistry and Tectonic Setting of the Indosinian Mo Deposits in Southern Great Hinggan Range, NE China. Geological Journal, 49(6):537-558. https://doi.org/10.1002/gj.2568
|
Zhang, S. H., Zhao, Y., Song, B., et al., 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton:Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 120(1-2):181-200. https://doi.org/10.1130/b26157.1
|
Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton:Implications for Cratonic Lithospheric Destruction. Lithos, 155(2):1-18. https://doi.org/10.1016/j.lithos.2012.08.009
|
Zheng, Q. R., 1983. Calculation of the Fe3+ and Fe2+ Contents in Silicate and Ti-Fe Oxide Minerals from EPMA Data. Acta Mineralogica Sinica, 1:55-62 (in Chinese with English abstract).
|
Zheng, Y., Chen, Y. J., Cawood, P. A., et al., 2017. Late Permian-Triassic Metallogeny in the Chinese Altay Orogen:Constraints from Mica 40Ar/39Ar Dating on Ore Deposits. Gondwana Research, 43:4-16. https://doi.org/10.1016/j.gr.2015.08.018
|
Zhong, J., Chen, Y. J., Pirajno, F., 2017. Geology, Geochemistry and Tectonic Settings of the Molybdenum Deposits in South China:A Review. Ore Geology Reviews, 81:829-855. https://doi.org/10.1016/j.oregeorev.2016.04.012
|
Zhong, J., Chen, Y. J., Pirajno, F., et al., 2014. Geology, Geochronology, Fluid Inclusion and H-O Isotope Geochemistry of the Luoboling Porphyry Cu-Mo Deposit, Orefield Zijinshan, Province Fujian, China. Ore Geology Reviews, 57:61-77. https://doi.org/10.1016/j.oregeorev.2013.09.004
|
Gong, L., Chen, H.Y., Wang, Y.F., et al., 2018. Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit:Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China. Earth Science, 43(9):2929-2942 (in Chinese with English abstract).
|
Zhou, Z. X., 1988. Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning. Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract).
|
Zhu, Y. S., Yang, J. H., Sun, J. F., et al., 2016. Petrogenesis of Coeval Silica-Saturated and Silica-Undersaturated Alkaline Rocks:Mineralogical and Geochemical Evidence from the Saima Alkaline Complex, NE China. Journal of Asian Earth Sciences, 117:184-207. https://doi.org/10.1016/j.jseaes.2015.12.014
|
陈斌, 牛晓露, 王志强, 等, 2013.华北克拉通北缘姚家庄镁铁岩-正长岩杂岩体的锆石U-Pb年代学、岩石学和地球化学特征.中国科学(D辑), 43:1073-1087. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201307001
|
陈衍景, 张成, 李诺, 等, 2012.中国东北钼矿床地质.吉林大学学报(地球科学版), 42(5):1223-1269.
|
陈肇博, 范军, 郭智添, 1996.赛马碱性岩与成矿作用.北京:原子能出版社.
|
景立珍, 郭裕嘉, 丁彩霞, 1995.辽宁赛马碱性岩的年代学及碱性岩浆的形成.辽宁地质, 4:257-271. http://d.old.wanfangdata.com.cn/Thesis/Y158131
|
牛晓露, 杨经绥, 冯光英, 等, 2015.河北矾山超镁铁岩-正长岩杂岩体中黑云母的特征及其成岩指示意义.地质学报, 89(6):1108-1119. doi: 10.3969/j.issn.0001-5717.2015.06.009
|
牛晓露, 杨经绥, 刘飞, 等, 2016.华北克拉通北缘包头东正长岩的成因:来自岩石矿物学和地球化学的证据.中国科学(D辑), 46(3):374-391.
|
谭东娟, 林景仟, 单玄龙, 1999.赛马-柏林川碱性火山-侵入杂岩体岩浆成因.地质论评, 45 (S1):474-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=250087
|
王键, 孙丰月, 姜和芳, 等, 2018.青海玉树查涌地区高镁闪长岩年龄、岩石成因及构造背景.地球科学, 43(3):733-752. doi: 10.3799/dqkx.2018.904
|
吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003
|
阎国翰, 牟保垒, 许保良, 等, 2000.燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义.中国科学(D辑), 30(4):383-387. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200004006
|
郑巧荣, 1983.由电子探针分析值计算Fe3+和Fe2+.矿物学报, 1:55-62. doi: 10.3321/j.issn:1000-4734.1983.01.009
|
龚林, 陈华勇, 王云峰, 等, 2018.新疆玉海-三岔口铜矿黑云母矿物化学特征及成岩成矿意义.地球科学, 43(9):2929-2942. doi: 10.3799/dqkx.2018.145
|
周作侠, 1988.侵入岩的铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007
|
![]() |
![]() |