• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Zhong Jun, Fan Honghai, Chen Jinyong, Meng Yanning, Zhao Jingyang, Shi Changhao, Wang Shengyun, 2020. Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance. Earth Science, 45(1): 131-144. doi: 10.3799/dqkx.2018.298
    Citation: Zhong Jun, Fan Honghai, Chen Jinyong, Meng Yanning, Zhao Jingyang, Shi Changhao, Wang Shengyun, 2020. Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance. Earth Science, 45(1): 131-144. doi: 10.3799/dqkx.2018.298

    Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance

    doi: 10.3799/dqkx.2018.298
    • Received Date: 2018-08-03
    • Publish Date: 2020-01-15
    • Biotite is not only a robust 40Ar-39Ar geochronometer, but also commonly used to constrain the physico-chemical conditions, magma source and evolution process, mineralization potential and tectonic settings of the parental magma. In this study, we have obtained the 40Ar-39Ar age and major element compositions of biotite from the most widely outcropped aegirine-nepheline syenite of the Saima alkaline complex. We further discuss the physicochemical property, the evolution process and tectonic settings of the rock by the combination of equilibrium calculation using pMELTS software on previously reported data. The biotite crystals from the aegirine-nepheline syenite have high Fe and Ti contents and belong to annite in both the APSE classification diagram and Mg-(Fe3++Al+Ti)-(Fe2++Mn) diagram for biotite. On the basis of the major element compositions of the biotite, the crystallization temperatures and oxygen fugacity (lgfO2) are estimated to range from 770 to 800℃ and -16 to -14, respectively, while the equilibrium calculation by pMELTS indicates that the magmatic system crystallized at >1 300℃ and the oxygen fugacity have decreased since the crystallization begun. The high temperature and decreasing oxygen fugacity prevent the early exsolution of a fluid phase, and the alkalis and volatiles are therefore retained in the melt and finally enriched in the hydrothermal fluids related to the late sodic lujavrite. Some of the biotite plates show oscillatory zoning, high TiO2, Na2O but low SiO2 contents and low Fe3+/(Fe3++Fe2+) ratio from the core to the rim, further indicating that the residual magmas after biotite crystallization would have lower temperature, lower oxygen fugacity but higher alkalis contents. The Saima alkaline complex is part of the E-W-trending alkaline rock belt at the northern margin of the NCC, and it is formed at~222 Ma as indicated by biotite 40Ar-39Ar age in post-collisional extension tectonic settings after the closure of the palaeo-Asian Ocean.

       

    • loading
    • Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
      Andersen, T., Erambert, M., Larsen, A. O., et al., 2010. Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway:Zirconium Silicate Mineral Assemblages as Indicators of Alkalinity and Volatile Fugacity in Mildly Agpaitic Magma. Journal of Petrology, 51(11):2303-2325. https://doi.org/10.1093/petrology/egq058
      Borodina, N. S., Fershtater, G. B., Votyakov, S. L., 1999. The Oxidation Ratio of Iron in Coexisting Biotite and Hornblende from Granitic and Metamorphic Rocks:The Role of P, T and fO2. The Canadian Mineralogist, 37(6):1423-1429.
      Chakhmouradian, A. R., Mitchell, R. H., 2002. The Mineralogy of Ba- and Zr-Rich Alkaline Pegmatites from Gordon Butte, Crazy Mountains (Montana, USA):Comparisons between Potassic and Sodic Agpaitic Pegmatites. Contributions to Mineralogy and Petrology, 143(1):93-114. https://doi.org/10.1007/s00410-001-0333-6
      Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007
      Chen, B., Niu, X. L., Wang, Z. Q., et al., 2013. Geochronology, Petrology, and Geochemistry of the Yaojiazhuang Ultramafic-Syenitic Complex from the North China Craton. Science in China (Series D), 43:1073-1087 (in Chinese).
      Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001
      Chen, Y. J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5):1223-1268 (in Chinese with English abstract).
      Chen, Y. J., Zhang, C., Wang, P., et al., 2016. The Mo Deposits of Northeast China:A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81:602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017
      Chen, Z. B., Fan, J., Guo, Z. T., 1996. Saima Alkaline Rocks and Relevant Metallogenesis. Atomic Energy Press, Beijing (in Chinese).
      Deng, X. H., Wang, J. B., Santosh, M., et al., 2016. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China:Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geology Reviews, 100:250-262. https://doi.org/10.1016/j.oregeorev.2016.08.006
      Douce, A. E. P., 1993. Titanium Substitution in Biotite:An Empirical Model with Applications to Thermometry, O2 and H2O Barometries, and Consequences for Biotite Stability. Chemical Geology, 108(1-4):133-162. https://doi.org/10.1016/0009-2541(93)90321-9
      Erić, S., Logar, M., Milovanović, D., et al., 2009. Ti-In-Biotite Geothermometry in Non-Graphitic, Peraluminous Metapelites from Crni Vrh and Resavski Humovi (Central Serbia). Geologica Carpathica, 60(1):3-14. https://doi.org/10.2478/v10096-009-0003-6
      Foster, M.D., 1960. Interpretation of the Composition of Trioctahedral Micas. United States Geological Survey, Washington.
      Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS:A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5):1-35. https://doi.org/10.1029/2001gc000217
      Harrison, T. M., 1983. Some Observations on the Interpretation of 40Ar/39Ar Age Spectra. Chemical Geology, 41:319-338. https://doi.org/10.1016/s0009-2541(83)80027-8
      Henry, D. J., Guidotti, C. V., Thomsom, J. A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2-3):316-328. https://doi.org/10.2138/am.2005.1498
      Jacobs, D. C., Parry, W. T., 1979. Geochemistry of Biotite in the Santa Rita Porphyry Copper Deposit, New Mexico. Economic Geology, 74(4):860-887. https://doi.org/10.2113/gsecongeo.74.4.860
      Jing, L. Z., Guo, Y. J., Ding, C. X., 1995. Geochronology and Origin of Saima Alkaline Rocks in Liaoning Province. Geology in Liaoning, 4:257-271 (in Chinese with English abstract).
      Khomyakov, A. P., 1995. Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford.
      Kogarko, L. N., Williams, C. T., Woolley, A. R., 2002. Chemical Evolution and Petrogenetic Implications of Loparite in the Layered, Agpaitic Lovozero Complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1):1-24. https://doi.org/10.1007/s710-002-8213-2
      Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      Le Maitre, R. W., 2002. Igneous Rocks:A Classification and Glossary of Terms. Cambridge University Press, Cambridge.
      Mann, U., Marks, M., Markl, G., 2006. Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts:The Katzenbuckel Volcano, Southwest Germany. Lithos, 91(1-4):262-285. https://doi.org/10.1016/j.lithos.2005.09.004
      Marks, M. A. W., Schilling, J., Coulson, I. M., et al., 2008. The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco:Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source. Journal of Petrology, 49(6):1097-1131. https://doi.org/10.1093/petrology/egn019
      Nadeau, O., Stevenson, R., Jébrak, M., 2016. Evolution of Montviel Alkaline-Carbonatite Complex by Coupled Fractional Crystallization, Fluid Mixing and Metasomatism-Part I:Petrography and Geochemistry of Metasomatic Aegirine-Augite and Biotite:Implications for REE-Nb Mineralization. Ore Geology Reviews, 72:1143-1162. https://doi.org/10.1016/j.oregeorev.2015.09.022
      Niu, X. L., Chen, B., Liu, A. K., et al., 2012. Petrological and Sr-Nd-Os Isotopic Constraints on the Origin of the Fanshan Ultrapotassic Complex from the North China Craton. Lithos, 149:146-158. https://doi.org/10.1016/j.lithos.2012.05.017
      Niu, X. L., Yang, J. S., Feng, G. Y., et al., 2015. Mineral Chemistry of Biotites from the Fanshan Ultramafic-Syenitic Complex and Its Petrogenetic Significance. Acta Geologica Sinica, 89(6):1108-1119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201506009
      Niu, X. L., Yang, J. S., Liu, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton:Petrological, Mineralogical and Geochemical Evidence. Science in China (Series D), 46(3):374-391 (in Chinese).
      Rieder, M., 1999. Nomenclature of the Micas. Mineralogical Magazine, 63(2):267-279. https://doi.org/10.1180/002646199548385
      Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4):423-442. https://doi.org/10.1016/s1367-9120(99)00016-4
      Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen:A Potential Tectonomagmatic Indicator?. The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381
      Song, W. L., Xu, C., Smith, M. P., et al., 2016. Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Scientific Reports, 6(1):37377. https://doi.org/10.1038/srep37377
      Sørensen, H., 1997. The Agpaitic Rocks-An Overview. Mineralogical Magazine, 61(407):485-498. https://doi.org/10.1180/minmag.1997.061.407.02
      Tan, D. J., Lin, J. Q., Shan, X. L., 1999. On Magma Origin of Saima-Bailinchuan Alkaline Volcanic-Intrusive Complex. Geological Review, 45(S1):474-481 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002169
      Thompson, R. N., Gibson, S. A., 1994. Magmatic Expression of Lithospheric Thinning across Continental Rifts. Tectonophysics, 233(1-2):41-68. https://doi.org/10.1016/0040-1951(94)90219-4
      Wang, J., Sun, F. Y., Jiang, H. F., et al., 2018. Age, Petrogenesis and Tectonic Implications of High-Mg Diorite in Chayong Region, Yushu, Qinghai. Earth Science, 43(3):733-752 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803006
      Wang, Z. Q., Chen, Ma, X. H.B., 2014. Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China:Implications for W-Sn Mineralization. American Journal of Science, 314(1):235-277. https://doi.org/10.2475/01.2014.07
      Wilson, M., Downes, H., Cebriá, J. M., 1995. Contrasting Fractionation Trends in Coexisting Continental Alkaline Magma Series; Cantal, Massif Central, France. Journal of Petrology, 36:1729-1753. https://doi.org/10.1093/oxfordjournals.petrology.a037272
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      Wones, D. R., Eugster, H. P., 1965. Stability of Biotite:Experiment Theory and Application. American Mineralogist, 59(9):1228-1271. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.3805
      Wu, B., Wang, R. C., Yang, J. H., et al., 2015. Wadeite (K2ZrSi3O9), an Alkali-Zirconosilicate from the Saima Agpaitic Rocks in Northeastern China:Its Origin and Response to Multi-Stage Activities of Alkaline Fluids. Lithos, 224-225:126-142. https://doi.org/10.1016/j.lithos.2015.02.008
      Wu, B., Wang, R. C., Yang, J. H., et al., 2016. Zr and REE Mineralization in Sodic Lujavrite from the Saima Alkaline Complex, Northeastern China:A Mineralogical Study and Comparison with Potassic Rocks. Lithos, 262:232-246. https://doi.org/10.1016/j.lithos.2016.07.013
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503003
      Wu, F. Y., Yang, Y. H., Marks, M. A. W., et al., 2010. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1-2):8-34. https://doi.org/10.1016/j.chemgeo.2010.02.007
      Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1069-1076. https://doi.org/10.1029/2002tc001484
      Xu, C., Campbell, I. H., Allen, C. M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2):118-128. https://doi.org/10.1016/j.lithos.2008.03.002
      Xu, C., Zhang, H., Huang, Z. L., et al., 2004. Genesis of the Carbonatite-Syenite Complex and REE Deposit at Maoniuping, Sichuan Province, China:Evidence from Pb Isotope Geochemistry. Geochemical Journal, 38(1):67-76. https://doi.org/10.2343/geochemj.38.67
      Yan, G. H., Mou, B. L., Xu, B. L., et al., 2000. Geochronology, Sr, Nd, Pb Isotopes and Their Significance of the Triassic Alkaline Intrusive Rocks in the Yan'liao-Yinshan Region. Science in China (Series D), 30(4):383-387 (in Chinese).
      Yang, J. H., Sun, J. F., Zhang, M., et al., 2012. Petrogenesis of Silica-Saturated and Silica-Undersaturated Syenites in the Northern North China Craton Related to Post-Collisional and Intraplate Extension. Chemical Geology, 328:149-167. https://doi.org/10.1016/j.chemgeo.2011.09.011
      Zhang, C., Li, N., 2014. Geology, Geochemistry and Tectonic Setting of the Indosinian Mo Deposits in Southern Great Hinggan Range, NE China. Geological Journal, 49(6):537-558. https://doi.org/10.1002/gj.2568
      Zhang, S. H., Zhao, Y., Song, B., et al., 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton:Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 120(1-2):181-200. https://doi.org/10.1130/b26157.1
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton:Implications for Cratonic Lithospheric Destruction. Lithos, 155(2):1-18. https://doi.org/10.1016/j.lithos.2012.08.009
      Zheng, Q. R., 1983. Calculation of the Fe3+ and Fe2+ Contents in Silicate and Ti-Fe Oxide Minerals from EPMA Data. Acta Mineralogica Sinica, 1:55-62 (in Chinese with English abstract).
      Zheng, Y., Chen, Y. J., Cawood, P. A., et al., 2017. Late Permian-Triassic Metallogeny in the Chinese Altay Orogen:Constraints from Mica 40Ar/39Ar Dating on Ore Deposits. Gondwana Research, 43:4-16. https://doi.org/10.1016/j.gr.2015.08.018
      Zhong, J., Chen, Y. J., Pirajno, F., 2017. Geology, Geochemistry and Tectonic Settings of the Molybdenum Deposits in South China:A Review. Ore Geology Reviews, 81:829-855. https://doi.org/10.1016/j.oregeorev.2016.04.012
      Zhong, J., Chen, Y. J., Pirajno, F., et al., 2014. Geology, Geochronology, Fluid Inclusion and H-O Isotope Geochemistry of the Luoboling Porphyry Cu-Mo Deposit, Orefield Zijinshan, Province Fujian, China. Ore Geology Reviews, 57:61-77. https://doi.org/10.1016/j.oregeorev.2013.09.004
      Gong, L., Chen, H.Y., Wang, Y.F., et al., 2018. Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit:Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China. Earth Science, 43(9):2929-2942 (in Chinese with English abstract).
      Zhou, Z. X., 1988. Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning. Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract).
      Zhu, Y. S., Yang, J. H., Sun, J. F., et al., 2016. Petrogenesis of Coeval Silica-Saturated and Silica-Undersaturated Alkaline Rocks:Mineralogical and Geochemical Evidence from the Saima Alkaline Complex, NE China. Journal of Asian Earth Sciences, 117:184-207. https://doi.org/10.1016/j.jseaes.2015.12.014
      陈斌, 牛晓露, 王志强, 等, 2013.华北克拉通北缘姚家庄镁铁岩-正长岩杂岩体的锆石U-Pb年代学、岩石学和地球化学特征.中国科学(D辑), 43:1073-1087. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201307001
      陈衍景, 张成, 李诺, 等, 2012.中国东北钼矿床地质.吉林大学学报(地球科学版), 42(5):1223-1269.
      陈肇博, 范军, 郭智添, 1996.赛马碱性岩与成矿作用.北京:原子能出版社.
      景立珍, 郭裕嘉, 丁彩霞, 1995.辽宁赛马碱性岩的年代学及碱性岩浆的形成.辽宁地质, 4:257-271. http://d.old.wanfangdata.com.cn/Thesis/Y158131
      牛晓露, 杨经绥, 冯光英, 等, 2015.河北矾山超镁铁岩-正长岩杂岩体中黑云母的特征及其成岩指示意义.地质学报, 89(6):1108-1119. doi: 10.3969/j.issn.0001-5717.2015.06.009
      牛晓露, 杨经绥, 刘飞, 等, 2016.华北克拉通北缘包头东正长岩的成因:来自岩石矿物学和地球化学的证据.中国科学(D辑), 46(3):374-391.
      谭东娟, 林景仟, 单玄龙, 1999.赛马-柏林川碱性火山-侵入杂岩体岩浆成因.地质论评, 45 (S1):474-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=250087
      王键, 孙丰月, 姜和芳, 等, 2018.青海玉树查涌地区高镁闪长岩年龄、岩石成因及构造背景.地球科学, 43(3):733-752. doi: 10.3799/dqkx.2018.904
      吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003
      阎国翰, 牟保垒, 许保良, 等, 2000.燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义.中国科学(D辑), 30(4):383-387. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200004006
      郑巧荣, 1983.由电子探针分析值计算Fe3+和Fe2+.矿物学报, 1:55-62. doi: 10.3321/j.issn:1000-4734.1983.01.009
      龚林, 陈华勇, 王云峰, 等, 2018.新疆玉海-三岔口铜矿黑云母矿物化学特征及成岩成矿意义.地球科学, 43(9):2929-2942. doi: 10.3799/dqkx.2018.145
      周作侠, 1988.侵入岩的铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. doi: 10.3321/j.issn:1000-0569.1988.03.007
    • dqkx-45-1-131-Table1-2.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (4427) PDF downloads(116) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return