• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 6
    Jun.  2019
    Turn off MathJax
    Article Contents
    Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Lü Menghong, Yan Guoqiang, Huang Yong, Lan Shuangshuang, Xie Hui, 2019. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise. Earth Science, 44(6): 1935-1956. doi: 10.3799/dqkx.2018.370
    Citation: Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Lü Menghong, Yan Guoqiang, Huang Yong, Lan Shuangshuang, Xie Hui, 2019. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise. Earth Science, 44(6): 1935-1956. doi: 10.3799/dqkx.2018.370

    Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise

    doi: 10.3799/dqkx.2018.370
    • Received Date: 2018-08-27
    • Publish Date: 2019-06-15
    • The current studies of the deposits in the Gangdese metallogenic belt is predominate in the eastern section, but the new discovered Luerma porphyry copper (gold) Deposit belongs to the western segment of Gangdise polymetallic metallogenic belt. The Luerma copper (gold) deposit developed typical porphyry deposits'hydrothermal alteration zones, which are divided as potassium-silicification zone, sericitization zone, clayization zone, and propylitization-propylitization zone from proximal to distal, respectively. Hornfels and malachite are also generally distributed in the mining area. Moreover, three main types of hydrothermal veins have been identified based on its mineral assemblages, cutting relationship and alteration features, which consist of the potassium-silicification vein (A vein), the medium-term quartz-polymetallic sulfides vein (B vein), and the epidote-carbonatation (D vein), respectively. Petrographic, microthermometric, laser Raman microprobe and H -O -C results of fluid inclusions in different hydrothermal veins. Fluid inclusions of A vein's homogenization temperatures, and salinities vary from 390~460℃, 4.5%~21.6% NaCleqv, 43.6%~59.6% NaCleqv, respectively; fluid inclusions of B vein's homogenization temperatures, and salinities, vary from 310~380℃, 3.6%~19.8% NaCleqv, 6.0%~16.0% NaCleqv, respectively; fluid inclusions of D vein's homogenization temperatures, and salinities, vary from 200~320℃, 0.4%~14.7% NaCleqv, 0.70~1.00 g/cm3, respectively. And the carbon, hydrogen, oxygen isotope test results reveals that the δDH2O, V-SMOW values of fluid inclusions in quartz veins range from -128‰ to -100‰, and δ18OH2O, V-SMOW values of fluid inclusions in quartz veins range from -9.09 ‰ to -1.45‰, the δ13CCal, V-PDB values of calcite veins range from -20.8‰ to -19.9‰, and δ18OCal, V-SMOW values of calcite veins range 9.4‰ to 10.5‰, indicating a feature of magmatic hydrothermal, but may mixtured geothermal water in late stage. In brief, the ore-forming fluid of the Luerma copper (gold) deposit is a Ca+-Na+-Cl-H2O fluid system, with high contents of CO2, N2, and CH4, high homogenization temperature, high salinity and, low-moderate density, rich in metallic elements as Cu, Fe, and Mo et al., which characteristics similar to typical porphyry copper deposits. These studies suggest that, the luerma copper ore ore-forming fluid moved from the deep closed system to the shallow open system and broke through the critical state of decompressing boiling rapidly, which occurred phase separation resulting in the precipitation of metal sulfide, forming A vein and B vein type mineralization. Afterwards, as the heavy precipitation of minerals in ore bearing hydrothermal fluid, and the mixing of atmospheric precipitation, et al., the temperature and salinity of the fluid decreased rapidly, resulting in D vein mineralization.

       

    • loading
    • Bischoff, J.L., 1991.Densities of Liquids and Vapors in Boiling NaCl-H2O Solutions:A P-V-T-x Summary from 300℃ to 500° C. American Journal of Science, 291(4):309-338. https://doi.org/10.2475/ajs.291.4.309
      Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-x Properties of Inclusion Fluids. Economic Geology, 78(3):535-542. https://doi.org/10.2113/gsecon-geo.78.3.535
      Bodnar, R.J., Burnham, C.W., Sterner, S.M., 1985.Synthetic Fluid Inclusions in Natural Quartz. Ⅲ. Determination of Phase Equilibrium Properties in the System H2O-NaCl to 1 000℃ and 1 500 bars.Geochimica et Cosmochimica Acta, 49(9):1861-1873. https://doi.org/10.1016/0016-7037(85)90081-x
      Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid In-clusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23 (9):2085-2108(in Chinese with English abstract).
      Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972.Oxygen Iso-tope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17):3057-3067. https://doi.org/10.1029/jb077i017p03057
      Cline, J.S., Bodnar, R.J., 1991.Can Economic Porphyry Cop-per Mineralization be Generated by a Typical Calc-Alka-line Melt? Journal of Geophysical Research, 96(B5):8113-8126. doi: 10.1029/91JB00053
      Diamond, L. W., Marshall, D. D., Jackman, J. A., et al., 1990.Elemental Analysis of Individual Fluid Inclusions in Min-erals by Secondary Ion Mass Spectrometry (SIMS):Ap-plication to Cation Ratios of Fluid Inclusions in an Ar-chaean Mesothermal Gold-Quartz Vein. Geochimica et Cosmochimica Acta, 54(3):545-552. https://doi.org/10.1016/0016-7037(90)90351-k
      Gou, Z. B., Liu, H., Li, J., et al., 2018. The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane.Earth Science, 43(8):2780-2794(in Chi-nese with English abstract). https://doi.org/10.3799/dqkx.2018.153
      Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., 1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1-5):7-27.https://doi.org/10.1016/s0169-1368(97) 00012-7 doi: 10.1016/s0169-1368(97)00012-7
      Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geol-ogy, 83(1):197-202. https://doi.org/10.2113/gsecon-geo.83.1.197
      Hou, Z.Q., 2010.Metallogenesis of Continental Collision.Acta Geologica Sinica, 84(1):30-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304026
      Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015.A Genetic Link-age between Subduction-and Collision-Related Porphy-ry Cu Deposits in Continental Collision Zones.Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1
      Hu, Q.C., Yan, H., Wu, C.M., 2014.Constrains of Properties and Evolution Patterns of H2O-Cl-S Fluid on Forming of Porphyry-Epithermal Cu-Au Deposit. Geological Re-view, 60(3):601-610(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403012
      Huang, Y., Li, G.M., Ding, J., et al., 2017.Origin of the New-ly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geo-logica Sinica (English Edition), 91(1):109-134. https://doi.org/10.1111/1755-6724.13066
      Li, F. Q., Liu, W., Zhang, S. Z., et al., 2012. Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area, Southern Gangdese. Acta Geologica Sinica, 86(10):1592-1603(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201210004
      Li, G.M., Pan, G.T., Wang, G.M., et al., 2004.Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edi-tion), 31(1):22-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200401004
      Li, M., Sun, X., Zheng, Y. Y., et al., 2015. Characteristic of Fluid Inclusions of the Zhunuo Porphyry Copper Deposit in the Gangdese Belt, Tibet.Acta Petrologica Sinica, 31(5):1335-1347(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011
      Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700(in Chinese with English ab-stract).
      Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla' angzong I-Type Granite in Cen-tral Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes.Acta Geologica Sinica (English Edi-tion), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634
      Liu, H., Lü, X.B., Liu, G., et al., 2012.Origin and Evolution of Ore-Forming Fluids in Jincheng Gold Ore Deposit, Luoshan, Henan.Journal of Mineralogy and Petrology, 32(3):51-61(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201203008
      Liu, J.M., Liu, J.J., 1997.Basin Fluid Genetic Model of Sedi-ment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yun-nan. Acta Mineralogica Sinica, 17(4):448-456(in Chi-nese with English abstract).
      Loucks, R.R., Mavrogenes, J.A., 1999.Gold Solubility in Su-percritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions.Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159
      Lu, H.Z., Bi, X.W., Wang, D., et al., 2016.Ore-Forming Flu-ids of Porphyry Copper (Molybdenum-Gold) Deposits. Mineral Deposits, 35(5):933-952(in Chinese with Eng-lish abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201605004.htm
      Lü, X.B., Yao, S.Z., He, M.C., 2001.The Determining of the Salinity of the Ore-Forming Fluid Inclusions Using ML-RM. Earth Science Frontiers, 8(4):429-433(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200104037.htm
      Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chem-geo.2008.02.003
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolu-tion of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China.Geology in China, 36(1):1-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003
      She, H.Q., Li, J.W., Feng, C.Y., et al., 2006.The High-Tem-perature and Hypersaline Fluid Inclusions and Its Impli-cations to the Metallogenesis in Duobuza Porphyry Cop-per Deposit, Tibet.Acta Geologica Sinica, 80(9):1434-1447(in Chinese with English abstract).
      Song, Y., Tang, J. X., Qu, X. M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metal-logenic Belt and Some New Recognition. Advances in Earth Science, 29(7):795-809(in Chinese with English abstract).
      Tafti, R., Mortensen, J.K., Lang, J.R., et al., 2009.Jurassic U-Pb and Re-Os Ages for the Newly Discovered Xi-etongmen Cu-Au Porphyry District, Tibet, PRC:Impli-cations for Metallogenic Epochs in the Southern Gangdese Belt.Economic Geology, 104(1):127. https://doi.org/10.2113/gsecongeo.104.1.127
      Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineraliza-tion, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Ti-bet.Acta Geoscientica Sinica, 38(5):571-613(in Chinese with English abstract). https://www.researchgate.net/publication/274327612_Porphyry_and_Epithermal_Deposits_and_40Ar39Ar_Geochronology_of_the_Baguio_District_Philippines
      Tang, J.X., Zhang, L., Li, Z.J., et al., 2006.Porphyry Copper Deposit Controlled by Structural Nose Trap:Yulong Por-phyry Copper Deposit in Eastern Tibet. Mineral Depos-its, 25(6):652-662(in Chinese with English abstract).
      Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883. https://doi.org/10.2113/gsecongeo.69.6.843
      Wang, R., Tafti, R., Hou, Z.Q., et al., 2017.Across-Arc Geo-chemical Variation in the Jurassic Magmatic Zone, Southern Tibet:Implication for Continental Arc-Related Porphyry Cu-Au Mineralization.Chemical Geology, 451:116-134. doi: 10.1016/j.chemgeo.2017.01.010
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earsci-rev.2018.02.019
      Xu, Z.Q., Dilek, Y., Cao, H., et al., 2015.Paleo-Tethyan Evo-lution of Tibet as Recorded in the East Cimmerides and West Cathaysides.Journal of Asian Earth Sciences, 105:320-337. doi: 10.1016/j.jseaes.2015.01.021
      Yang, Z. M., Hou, Z. Q., Chang, Z. S., et al., 2016. Cospatial Eocene and Miocene Granitoids from the Jiru Cu Depos-it in Tibet:Petrogenesis and Implications for the Forma-tion of Collisional and Postcollisional Porphyry Cu Sys-tems in Continental Collision Zones. Lithos, 245:243-257. https://doi.org/10.1016/j.lithos.2015.04.002
      Yang, Z.M., Hou, Z.Q., Li, Z.Q., et al., 2008.Direct Record of Primary Fluid Exsolved from Magma:Evidence from Unidirectional Solidification Texture (UST) in Quartz Found in Qulong Porphyry Copper Deposit, Tibet.Min-eral Deposits, 27(2):188-199(in Chinese with English abstract).
      Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scicentiarum Naturalium Universitatis Pekinesis, 18(1):99-106(in Chinese with English abstract).
      Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2015.Metallogenesis and the Minerogenetic Series in the Gangdese Polymetal-lic Copper Belt. Journal of Asian Earth Sciences, 103:23-39. https://doi.org/10.1016/j.jseaes.2014.11.036
      Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zir-con Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Forma-tion, Southern Gangdese, South Tibet.International Ge-ology Review, 50(5):442-471. https://doi.org/10.2747/0020-6814.50.5.442
      陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9):2085-2108. doi: 10.3969/j.issn.1000-0569.2007.09.009
      苟正彬, 刘函, 李俊, 等, 2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学, 43(8):2780-2794. https://doi.org/10.3799/dqkx.2018.153
      侯增谦, 2010.大陆碰撞成矿论.地质学报, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002
      胡庆成, 闫浩, 吴春明, 2014.斑岩-浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约.地质论评, 60(3):601-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403012
      李奋其, 刘伟, 张士贞, 等, 2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征.地质学报, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004
      李光明, 潘桂棠, 王高明, 等, 2004.西藏冈底斯成矿带矿产资源远景评价与展望.成都理工大学学报(自然科学版), 31(1):22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004
      李淼, 孙祥, 郑有业, 等, 2015.西藏冈底斯朱诺斑岩型铜矿床流体包裹体特征.岩石学报, 31(5):1335-1347. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505011
      李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. https://doi.org/10.3799/dqkx.2018.170
      刘洪, 吕新彪, 刘阁, 等, 2012.河南罗山金城金矿成矿流体性质及演化.矿物岩石, 32(3):51-61. doi: 10.3969/j.issn.1001-6872.2012.03.008
      刘建明, 刘家军, 1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报, 17(4):448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012
      卢焕章, 毕献武, 王蝶, 等, 2016.斑岩铜(钼-金)矿床的成矿流体.矿床地质, 35(5):933-952. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200709016
      吕新彪, 姚书振, 何谋春.2001.成矿流体包裹体盐度的拉曼光谱测定.地学前缘, 8(4):429-433. doi: 10.3321/j.issn:1005-2321.2001.04.025
      潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001
      佘宏全, 李进文, 丰成友, 等.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义.地质学报, 80(9):1434-1447, 1491. doi: 10.3321/j.issn:0001-5717.2006.09.017
      宋扬, 唐菊兴, 曲晓明, 等, 2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展, 29(7):795-809.
      唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002
      唐菊兴, 张丽, 李志军, 等, 2006.西藏玉龙铜矿床:鼻状构造圈闭控制的特大型矿床.矿床地质, 25(6):652-662. doi: 10.3969/j.issn.0258-7106.2006.06.002
      杨志明, 侯增谦, 李振清, 等, 2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质, 27(2):188-199. doi: 10.3969/j.issn.0258-7106.2008.02.004
      郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报(自然科学版), 18(1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(5)

      Article views (4425) PDF downloads(82) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return