• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 4
    Apr.  2019
    Turn off MathJax
    Article Contents
    Zheng Jianping, Zhao Yi, Xiong Qing, 2019. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4): 1067-1082. doi: 10.3799/dqkx.2018.375
    Citation: Zheng Jianping, Zhao Yi, Xiong Qing, 2019. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4): 1067-1082. doi: 10.3799/dqkx.2018.375

    Genesis and Geological Significance of Zircons in Orogenic Peridotite

    doi: 10.3799/dqkx.2018.375
    • Received Date: 2018-09-19
    • Publish Date: 2019-04-15
    • Orogenic peridotites record the complex geological processes of continental subduction, collision and exhumation, and they can be divided into two types: crustal origin and mantle origin. Zircons are rarely found in orogenic peridotites. The in-situ zircons and zircon inclusions with mantle-rock mineral assemblages indicate that the zircons can grow within the peridotites. During the complex processes of plate aggregation (such as UHP metamorphism), the orogenic peridotites experienced the melt/fluid interaction in different periods, which have an important impact on the mineral and elemental compositions of peridotites. Zircon is one of the typical metasomatic minerals of orogenic peridotites. The zircon formation is controlled by the composition of the melt/fluid, source properties, and the formation of a physical and chemical environment. The mantle-derived zircons from orogenic peridotites have three origins:(1) Zircon has strong crystallization ability, and Zr prefers to combine with Si from silicate minerals in mantle rocks to form zircons. (2) Metamorphic destruction of Zr-bearing mineral phases and precipitation from intergranular melts generated can nucleate zircons under sub-solidus conditions. (3) The melt/fluid from the recycled crust can metasomatize the mantle wedge and form zircons. Thus, zircons can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.

       

    • loading
    • Amelin, Y., Lee, D.C., Halliday, A.N., 2000.Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains.Geochimica et Cosmochimica Acta, 64(24):4205-4225.https://doi.org/10.1016/s0016-7037(00)00493-2 doi: 10.1016/S0016-7037(00)00493-2
      Ayers, J.C., De LaCruz, K., Miller, C., et al., 2003.Experimental Study of Zircon Coarsening in Quartzite ±H2O at 1.0 GPa and 1 000 ℃, with Implications for Geochronological Studies of High-Grade Metamorphism.American Mineralogist, 88(2-3):365-376. https://doi.org/10.2138/am-2003-2-313
      Bea, F., Fershtater, G.B., Montero, P., et al., 2001.Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia.Terra Nova, 13(6):407-412. https://doi.org/10.1046/j.1365-3121.2001.00364.x
      Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
      Bingen, B., Austrheim, H., Whitehouse, M.J., 2001.Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology.Journal of Petrology, 42(2):355-375. https://doi.org/10.1093/petrology/42.2.355
      Bodet, F., Schärer, U., 2000.Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers.Geochimica et Cosmochimica Acta, 64(12):2067-2091.https://doi.org/10.1016/s0016-7037(00)00352-5 doi: 10.1016/S0016-7037(00)00352-5
      Brueckner, H.K., Medaris, L.G., 2000.A General Model for the Intrusion and Evolution of 'Mantle' Garnet Peridotites in High-Pressure and Ultra-High-Pressure Metamorphic Terranes.Journal of Metamorphic Geology, 18(2):123-133. https://doi.org/10.1046/j.1525-1314.2000.00250.x
      Brueckner, H.K., Medaris, L.G., 1998.A Tale of Two Orogens—The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides.Schweizerische Mineralogische und Petrographische Mutteilungen, 78:293-307. https://www.ldeo.columbia.edu/node/12817
      Brueckner, H.K., van Roermund, H.L.M., 2004.Dunk Tectonics:A Multiple Subduction/Eduction Model for the Evolution of the Scandinavian Caledonides.Tectonics, 23(2):TC2004.https://doi.org/10.1029/2003tc001502 http://cn.bing.com/academic/profile?id=1143385578030600a64f54560f17c332&encoded=0&v=paper_preview&mkt=zh-cn
      Cao, Y., Song, S.G., Su, L., et al., 2016.Highly Refractory Peridotites in Songshugou, Qinling Orogen:Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle.Lithos, 252-253:234-254. https://doi.org/10.1016/j.lithos.2016.03.002
      Carswell, D.A., Harvey, M.A., Al-Samman, A., 1983.The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway.Bulletin de Minéralogie, 106(6):727-750. https://doi.org/10.3406/bulmi.1983.7696
      Chazot, G., Lowry, D., Menzies, M., et al., 1997.Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites.Geochimica et Cosmochimica Acta, 61(1):161-169.https://doi.org/10.1016/s0016-7037(96)00314-6 doi: 10.1016/S0016-7037(96)00314-6
      Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017a.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011
      Chen, Y., Su, B., Chu, Z.Y., 2017b.Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China.Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025
      Chen, R.X., Zheng, Y.F., Xie, L.W., 2010.Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen.Lithos, 114(1-2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      Degeling, H., Eggins, S., Ellis, D.J., 2001.Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown.Mineralogical Magazine, 65(6):749-758. doi: 10.1180/0026461016560006
      Ernst, W.G., 2001.Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices:Implications for Arcs and Continental Growth.Physics of the Earth and Planetary Interiors, 127(1-4):253-275.https://doi.org/10.1016/s0031-9201(01)00231-x doi: 10.1016/S0031-9201(01)00231-X
      Ernst, W.G., Liou, J.G., 1995.Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts.Geology, 23(4):353.https://doi.org/10.1130/0091-7613(1995)0230353:cptsot>2.3.co; 2 doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
      Evans, B.W., 1977.Metamorphism of Alpine Peridotite and Serpentinite.Annual Review of Earth and Planetary Sciences, 5(1):397-447. https://doi.org/10.1146/annurev.ea.05.050177.002145
      Fan, Q.C., Liu, R.X., Ma, B.L., et al., 1996a.Petrology and High-Pressure Mineral Assemblage of Mafic-Ultramafic Rocks of Ultrahigh-Pressure Metamorphic Zone in the Dabie Mountains.Science in China (Ser B), 26(3):265-270 (in Chinese).
      Fan, Q.C., Liu, R.X., Xu, P., et al., 1996b.Petrogenesic Significance of Ti-Clinohumite (±Ti-Chondrorite)-Magnesite Assemblage in Ultrahigh Pressure Metamorphic Mafic-Ultramafic Rocks in Dabie Area.Bulletin of Mineralogy, Petrology and Geochemistry, 15(1):5-9(in Chinese with English abstract).
      Fraser, G., Ellis, D., Eggins, S., 1997.Zirconium Abundance in Granulite-Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks.Geology, 25(7):607-610.https://doi.org/10.1130/0091-7613(1997)0250607:zaigfm>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0607:ZAIGFM>2.3.CO;2
      Gebauer, D., 1996.A P-T-t Path for an (Ultra? -) High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains.Example: Alpe Arami (Central Swiss Alps).In: Basu, A., Hart, S.eds., Special AGU-Monograph Dedicated to Profs.Tilton and Tatsumoto: Earth Processes: Reading the Isotopic Code.American Geophysical Union, Washington, D.C., 95, 307-329.
      Grieco, G., Ferrario, A., Quadt, A.V., et al., 2001.The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab.Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89
      Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
      Harrison, T.M., Watson, E.B., 1983.Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content.Contributions to Mineralogy and Petrology, 84(1):66-72.https://doi.org/10.1007/bf01132331 doi: 10.1007/BF01132331
      Harrison, T.M., Watson, E.B., Aikman, A.B., 2007.Temperature Spectra of Zircon Crystallization in Plutonic Rocks.Geology, 35(7):635-638. doi: 10.1130/G23505A.1
      Helmers, H., Maaskant, P., Hartel, T.H.D., 1990.Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia.Lithos, 25(1-3):171-188.https://doi.org/10.1016/0024-4937(90)90013-q doi: 10.1016/0024-4937(90)90013-Q
      Hermann, J., Rubatto, D., Korsakov, A., et al., 2001.Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan).Contributions to Mineralogy and Petrology, 141(1):66-82. https://doi.org/10.1007/s004100000218
      Hermann, J., Rubatto, D., Trommsdorff, V., 2006.Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps).Mineralogy and Petrology, 88(1-2):181-206. https://doi.org/10.1007/s00710-006-0155-3
      Kadarusman, P., 2000.Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia.Journal of Metamorphic Geology, 18(2):193-209. https://doi.org/10.1046/j.1525-1314.2000.00238.x
      Katayama, I., Muko, A., Iizuka, T., et al., 2003.Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite:Implication for Timing of Mantle Metasomatism.Geology, 31(8):713-716. doi: 10.1130/G19525.1
      Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016.The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 121(2):687-712.https://doi.org/10.1002/2015jb012231 doi: 10.1002/jgrb.v121.2
      Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018.Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 123(3):2174-2198.https://doi.org/10.1002/2017jb014015 doi: 10.1002/jgrb.v123.3
      Li, W.C., Chen, R.X., Zheng, Y.F., et al., 2013.Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust:Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen.Lithos, 162-163:157-174. https://doi.org/10.1016/j.lithos.2013.01.004
      Li, X.P., Yang, J.S., Robinson, P., et al., 2011.Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China:Fluid/Melt-Rock Interaction.Journal of Asian Earth Sciences, 42(4):661-683. https://doi.org/10.1016/j.jseaes.2011.01.010
      Liati, A., Franz, L., Gebauer, D., et al., 2004.The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province.Journal of African Earth Sciences, 39(3-5):147-157. https://doi.org/10.1016/j.jafrearsci.2004.07.054
      Liati, A., Gebauer, D., 2009.Crustal Origin of Zircon in a Garnet Peridotite:A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geochemistry (Erzgebirge, Bohemian Massif).European Journal of Mineralogy, 21(4):737-750. https://doi.org/10.1127/0935-1221/2009/0021-1939
      Liou, J.G., Ernst, W.G., Zhang, R.Y., et al., 2009.Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China.Journal of Asian Earth Sciences, 35(3-4):199-231. https://doi.org/10.1016/j.jseaes.2008.10.012
      Liou, J.G., Tsujimori, T., Zhang, R.Y., et al., 2004.Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model.International Geology Review, 46(1):1-27. https://doi.org/10.2747/0020-6814.46.1.1
      Liou, J.G., Zhang, R.Y., Ernst, W.G., 2007.Very High-Pressure Orogenic Garnet Peridotites.Proceedings of the National Academy of Sciences, 104(22):9116-9121. https://doi.org/10.1073/pnas.0607300104
      Liu, F.L., Liou, J.G., 2011.Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks.Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
      Lu, F.X., Wang, Y., Chen, M.H., et al., 1998.Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China.International Geology Review, 40(11):998-1006. https://doi.org/10.1080/00206819809465251
      Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347
      Mattey, D., Lowry, D., MacPherson, C., 1994.Oxygen Isotope Composition of Mantle Peridotite.Earth and Planetary Science Letters, 128(3-4):231-241.https://doi.org/10.1016/0012-821x(94)90147-3 doi: 10.1016/0012-821X(94)90147-3
      Medaris, L.G., 1999.Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes:A Diversity of Origins and Thermal Histories.International Geology Review, 41(9):799-815. https://doi.org/10.1080/00206819909465170
      Medaris, L.G., Carswell, D.A., 1990.Petrogenesis of Mg-Cr Garnet Peridotites in European Metamorphic Belt.In: Carswell, D.A., ed., Eclogite Facies Rocks.Springer Netherlands, Dordrecht, 260-290.
      Nakajima, Y., 1998.Ti-Clinohumite-Bearing Garnet Peridotite from Kumdy-Kol Area in the Kokchetav UHP Complex, Northern Kazakhstan.EOS Transactions of the American Geophysical Union, 79.
      Nowell, G.M., Kempton, P.D., Pearson, D.G., 1998a.Hf-Nd Systematics of Kimberlites: Relevance to Terrestrial Hf-Nd Systematics.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 628-630.
      Nowell, G.M., Pearson, D.G., Kempton, P.D., et al., 1998b.The Source Regions/Components of Kimberlites: Constraints from Hf-Nd Isotope Systematics.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 640-642.
      Nowell, G.M., Pearson, D.G., 1998.Hf Isotope Constraints on the Genesis of Kimberlitic Megacrysts: Evidence for a Deep Mantle Component in Kimberlites.7th Int.Kimberlite Conf.Cape Town, South Africa.Ext.Abst., 634-636.
      O'Hara, M.J., Richardson, S.W., Wilson, G., 1971.Garnet-Peridotite Stability and Occurrence in Crust and Mantle.Contributions to Mineralogy and Petrology, 32(1):48-68.https://doi.org/10.1007/bf00372233 doi: 10.1007/BF00372233
      Ota, T., Gladkochub, D.P., Sklyarov, E.V., et al., 2004.P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton:Evidence for Paleoproterozoic High-Pressure Metamorphism.Precambrian Research, 132(4):327-348. https://doi.org/10.1016/j.precamres.2004.03.009
      Palme, H., O'Neill, H.St.O., 2007.Cosmochemical Estimates of Mantle Composition.Treatise on Geochemistry, 2:1-38.
      Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138.https://doi.org/10.1016/s0009-2541(01)00355-2 doi: 10.1016/S0009-2541(01)00355-2
      Rubatto, D., Gebauer, D., Compagnoni, R., 1999.Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps).Earth and Planetary Science Letters, 167(3-4):141-158.https://doi.org/10.1016/s0012-821x(99)00031-x doi: 10.1016/S0012-821X(99)00031-X
      Rubatto, D., Hermann, J., 2003.Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones.Geochimica et Cosmochimica Acta, 67(12):2173-2187.https://doi.org/10.1016/s0016-7037(02)01321-2 doi: 10.1016/S0016-7037(02)01321-2
      Rumble, D., Giorgis, D., Ireland, T., et al., 2002.Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China.Geochimica et Cosmochimica Acta, 66(12):2299-2306.https://doi.org/10.1016/s0016-7037(02)00844-x doi: 10.1016/S0016-7037(02)00844-X
      Scambelluri, M., Hermann, J., Morten, L., et al., 2006.Melt-Versus Fluid-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps):Clues from Trace Element and Li Abundances.Contributions to Mineralogy and Petrology, 151(4):372-394. https://doi.org/10.1007/s00410-006-0064-9
      Scambelluri, M., Pettke, T., Rampone, E., et al., 2014.Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland).Journal of Petrology, 55(3):459-498. https://doi.org/10.1093/petrology/egt068
      Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge.Earth and Planetary Science Letters, 503, 118-130. https://doi.org/10.1016/j.epsl.2018.09.011
      Smith, D., Griffin, W.L., 2005.Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States.Journal of Petrology, 46(9):1901-1924. https://doi.org/10.1093/petrology/egi042
      Song, S., Zhang, L., Niu, Y., et al., 2005.Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision.Earth and Planetary Science Letters, 234(1-2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036
      Song, S.G., Su, L., 2010.Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics.Acta Geologica Sinica (English Edition), 72(2):131-141.https://doi.org/10.1111/j.1755-6724.1998.tb00389.x doi: 10.1111/acgs.1998.72.issue-2
      Song, S.G., Su, L., Niu, Y.L., et al., 2007.Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, Northwestern China.Lithos, 96(1-2):243-265. https://doi.org/10.1016/j.lithos.2006.09.017
      Song, S.G., Zhang, L.F., Niu, Y.L., 2004.Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China.American Mineralogist, 89(8-9):1330-1336. https://doi.org/10.2138/am-2004-8-922
      Spengler, D., Brueckner, H.K., van Roermund, H.L.M., et al., 2009.Long-Lived, Cold Burial of Baltica to 200 km Depth.Earth and Planetary Science Letters, 281(1-2):27-35. https://doi.org/10.1016/j.epsl.2009.02.001
      Su, B., Chen, Y., Guo, S., et al., 2016.Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China.Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007
      Su, L., Song, S.G., Wang, Z.H., 1999.CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China.Chinese Science Bulletin, 44(21):1992-1995.https://doi.org/10.1007/bf02887126 doi: 10.1007/BF02887126
      Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492
      Vrijmoed, J.C., Austrheim, H., John, T., et al., 2013.Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway):Implications for the Transport of Crust-Derived Fluids within the Mantle.Journal of Petrology, 54(9):1815-1848. https://doi.org/10.1093/petrology/egt032
      Watson, E.B., 1996.Dissolution, Growth and Survival of Zircons during Crustal Fusion:Kinetic Principals, Geological Models and Implications for Isotopic Inheritance.Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2):43-56. doi: 10.1017/S0263593300006465
      Whitehouse, M.J., Platt, J.P., 2003.Dating High-Grade Metamorphism:Constraints from Rare-Earth Elements in Zircon and Garnet.Contributions to Mineralogy and Petrology, 145(1):61-74. https://doi.org/10.1007/s00410-002-0432-z
      Wu, Y.B., Zheng, Y.F., Zhao, Z.F., et al., 2006.U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen.Geochimica et Cosmochimica Acta, 70(14):3743-3761. https://doi.org/10.1016/j.gca.2006.05.011
      Xia, Q.K., Liu, J., Liu, S.C., et al., 2013.High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere.Earth and Planetary Science Letters, 361:85-97. https://doi.org/10.1016/j.epsl.2012.11.024
      Xiong, F.H., Yang, J.S., Xu, X.Z., et al., 2018.Inclusions in Olivine and Implications—Based on Mineral Research of Dunite of Bulqiza Ophiolite, Albania.Earth Science, 43(5):1464-1473(in Chinese with English abstract). https://www.researchgate.net/publication/326346047_Inclusions_in_Olivine_and_Implications-Based_on_Mineral_Research_of_Dunite_of_Bulqiza_Ophiolite_Albania
      Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2011.Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes.Precambrian Research, 187(1-2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003
      Xiong, Q., Griffin, W.L., Zheng, J.P., et al., 2016.Southward Trench Migration at ~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites.Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014
      Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2014.Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge.Journal of Petrology, 55(12):2347-2376. https://doi.org/10.1093/petrology/egu059
      Xu, X.Z., Yang, J.S., Xiong, F.H., et al., 2018.Characteristics of Titanium-Bearing Inclusions Found in Corundum of Luobusa Podiform Chromitite, Tibet.Earth Science, 43(4):1025-1037(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804007
      Yang, J.J., Godard, G., Kienast, J.R., et al., 1993.Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China.The Journal of Geology, 101(5):541-554. https://doi.org/10.1086/648248
      Yang, J.J., Huang, M.X., Naemura, K., et al., 2013.Towards a Law for the Metamorphic Evolution of Mantle-Derived Orogenic Peridotites.Acta Petrologica Sinica, 29(5):1479-1485(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305002
      Yang, J.J., Powell, R., 2008.Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks.Journal of Metamorphic Geology, 26(6):695-716.https://doi.org/10.1111/j.1525-1314.2008.00780.x doi: 10.1111/jmg.2008.26.issue-6
      Yang, J.S., Li, T.F., Chen, S.Z., et al., 2009a.Genesis of Garnet Peridotites in the Sulu UHP Belt:Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes.Tectonophysics, 475(2):359-382. https://doi.org/10.1016/j.tecto.2009.02.032
      Yang, Y.H., Wu, F.Y., Wilde, S.A., et al., 2009b.In Situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton.Chemical Geology, 264(1-4):24-42. https://doi.org/10.1016/j.chemgeo.2009.02.011
      Ye, K., Song, Y.R., Chen, Y., et al., 2009.Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E.China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction.Lithos, 109(3-4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005
      Yu, H., Zhang, H.F., Santosh, M., 2017.Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle.Gondwana Research, 52:1-17. https://doi.org/10.1016/j.gr.2017.08.007
      Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005.U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism.Earth and Planetary Science Letters, 237(3-4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003
      Zhang, Z.M., Dong, X., Liou, J.G., et al., 2011.Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt:Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere.Journal of Metamorphic Geology, 29(9):917-937.https://doi.org/10.1111/j.1525-1314.2011.00947.x doi: 10.1111/jmg.2011.29.issue-9
      Zhang, H.F., Sun, M., Zhou, X.H., et al., 2002.Mesozoic Lithosphere Destruction beneath the North China Craton:Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts.Contributions to Mineralogy and Petrology, 144(2):241-254. https://doi.org/10.1007/s00410-002-0395-0
      Zhang, R.Y., Liou, J.G., Yang, J.S., et al., 2000.Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China.Journal of Metamorphic Geology, 18(2):149-166. https://doi.org/10.1046/j.1525-1314.2000.00248.x
      Zhang, R.Y., Pan, Y.M., Yang, Y.H., et al., 2008.Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China:Investigation of Major, Trace Elements and Hf Isotopes of Minerals.Chemical Geology, 255(1-2):250-264. https://doi.org/10.1016/j.chemgeo.2008.06.049
      Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2008.Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China.Chemical Geology, 253(3-4):222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011
      Zhao, R.X., Liou, J.G., Zhang, R.Y., et al., 2006.SHRIMP U-Pb Zircon Dating of the Rongcheng Eclogite and Associated Peridotite: New Constraints for Ultrahigh-Pressure Metamorphism of Mantle-Derived Mafic-Ultramafic Bodies from the Sulu Terrane.In: Hacker, B.R., McClelland, W.C., Liou, J.G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction, Special Paper 403.Geological Society of America, Boulder, 115-125.
      Zheng, J.P., 2005.The U-Pb Dating Ages and Hf Isotopic Compositions of Zircon from Various Granulitic Xenoliths:The Formation and Reworking of the Lower Crust beneath the North China.Bulletin of Mineralogy, Petrology and Geochemistry, 24(1):7-16(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=3ebc8cefa17d37d7d6a9d3d46e90dd44&encoded=0&v=paper_preview&mkt=zh-cn
      Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite.Geology, 34(9):705-708.https://doi.org/10.1130/g22569.1 doi: 10.1130/G22569.1
      Zheng, J.P., Sun, M., Griffin, W.L., et al., 2008.Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China:Petrogenetic and Geodynamic Implications.Chemical Geology, 247(1-2):282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023
      Zheng, J.P., Tang, H.Y., Xiong, Q., et al., 2014.Linking Continental Deep Subduction with Destruction of a Cratonic Margin:Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt.Contributions to Mineralogy and Petrology, 168(1):1028. https://doi.org/10.1007/s00410-014-1028-0
      Zheng, J.P., Zhang, R.Y., Griffin, W.L., et al., 2005.Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China.Chemical Geology, 221(3-4):243-259. https://doi.org/10.1016/j.chemgeo.2005.05.002
      Zheng, Y.F., 2008.A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt.Chinese Science Bulletin, 53(18):2129-2152 (in Chinese). doi: 10.1007-s11434-008-0388-0/
      Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782.https://doi.org/10.1144/0016-76492008-016r doi: 10.1144/0016-76492008-016R
      Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4
      Zheng, Y.F., Zhao, Z.F., Li, S.G., et al., 2003.Oxygen Isotope Equilibrium between Ultrahigh-Pressure Metamorphic Minerals and Its Constraints on Sm-Nd and Rb-Sr Chronometers.Geological Society, London, Special Publications, 220(1):93-117.https://doi.org/10.1144/gsl.sp.2003.220.01.06 doi: 10.1144/GSL.SP.2003.220.01.06
      樊祺诚, 刘若新, 马宝林, 等, 1996a.大别山超高压变质带镁铁-超镁铁岩的岩石学与高压矿物组合.中国科学(B辑), 26(3):265-270. http://www.cnki.com.cn/Article/CJFDTotal-JDXK199603010.htm
      樊祺诚, 刘若新, 徐平, 等, 1996b.大别山超高压变质镁铁-超镁铁岩中钛斜硅镁石(±钛粒硅镁石)—菱镁矿组合成因.矿物岩石地球化学通报, 15(1):5-9.
      熊发挥, 杨经绥, 徐向珍, 等, 2018.阿尔巴尼亚布尔其泽纯橄岩壳中橄榄石的包裹体研究.地球科学, 43(5):1464-1473. http://earth-science.net/WebPage/Article.aspx?id=3806
      徐向珍, 杨经绥, 熊发挥, 等, 2018.罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征.地球科学, 43(4):1025-1037. http://earth-science.net/WebPage/Article.aspx?id=3794
      杨建军, 黄梦曦, 苗村康輔, 2013.关于造山带幔源橄榄岩变质演化的一个普遍规律?岩石学报, 29(5):1479-1485. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305002
      郑建平, 2005.捕虏体麻粒岩锆石U-Pb年龄和铪同位素:华北地块下地壳的形成与再造.矿物岩石地球化学通报, 24(1):7-16. doi: 10.3969/j.issn.1007-2802.2005.01.002
      郑永飞, 2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报, 53(18):2129-2152. doi: 10.3321/j.issn:0023-074X.2008.18.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (5084) PDF downloads(129) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return