Citation: | Fu Yuhong, Qin Zonghua, Yu Wenbin, Nie Xin, Wang Ji, Ju Yiwen, Wan Quan, 2018. Nanomineral-Aqueous Solution Interfacial Processes. Earth Science, 43(5): 1408-1424. doi: 10.3799/dqkx.2018.401 |
Alivisatos, A.P., 1996.Semiconductor Clusters, Nanocrystals, and Quantum Dots.Science, 271(5251):933-937. https://doi.org/10.1126/science.271.5251.933
|
Amde, M., Liu, J.F., Tan, Z.Q., et al., 2017.Transformation and Bioavailability of Metal Oxide Nanoparticles in Aquatic and Terrestrial Environments:A Review.Environmental Pollution, 230:250-267. https://doi.org/10.1016/j.envpol.2017.06.064
|
Arvidsson, R., Molander, S., Sanden, B.A., et al., 2011.Challenges in Exposure Modeling of Nanoparticles in Aquatic Environments.Human and Ecological Risk Assessment, 17(1):245-262. https://doi.org/10.1080/10807039.2011.538639
|
Banfield, J.F., Zhang, H., 2001.Nanoparticles in the Environment.Reviews in Mineralogy and Geochemistry, 44(1):1-58. doi: 10.2138/rmg.2001.44.01
|
Basu, S., Ghosh, S.K., Kundu, S., et al., 2007.Biomolecule Induced Nanoparticle Aggregation:Effect of Particle Size on Interparticle Coupling.Journal of Colloid and Interface Science, 313(2):724-734. https://doi.org/10.1016/j.jcis.2007.04.069
|
Batley, G.E., Kirby, J.K., McLaughlin, M.J., 2013.Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments.Accounts of Chemical Research, 46(3):854-862. https://doi.org/10.1021/ar2003368
|
Baumann, J., Koeser, J., Arndt, D., et al., 2014.The Coating Makes the Difference:Acute Effects of Iron Oxide Nanoparticles on Daphnia Magna.Science of the Total Environment, 484:176-184. https://doi.org/10.1016/j.scitotenv.2014.03.023
|
Bian, S.W., Mudunkotuwa, I.A., Rupasinghe, T., et al., 2011.Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments:Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid.Langmuir, 27(10):6059-6068. https://doi.org/10.1021/la200570n
|
Bondarenko, O., Ivask, A., Kakinen, A., et al., 2013.Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles.PLoS One, 8(5):e64060. https://doi.org/10.1371/journal.pone.0064060
|
Borm, P.J.A., Robbins, D., Haubold, S., et al., 2006.The Potential Risks of Nanomaterials:A Review Carried out for ECETOC.Particle and Fibre Toxicology, 3:11. https://doi.org/10.1186/1743-8977-3-11
|
Brant, J.A., Labille, J., Robichaud, C.O., et al., 2007.Fullerol Cluster Formation in Aqueous Solutions:Implications for Environmental Release.Journal of Colloid and Interface Science, 314(1):281-288. https://doi.org/10.1016/j.jcis.2007.05.020
|
Brantley, S.L., Kubicki, J.D., White, A.F., 2008.Kinetics of Water-Rock Interaction.Springer, New York, 73-101.
|
Brown, G.E.Jr., Calas, G., 2012.Mineral-Aqueous Solution Interfaces and Their Impact on the Environment.Geochemical Perspectives, 1(4-5):483-742. https://doi.org/10.7185/geochempersp.1.4
|
Brunet, L., Lyon, D.Y., Hotze, E.M., et al., 2009.Comparative Photoactivity and Antibacterial Properties of C-60 Fullerenes and Titanium Dioxide Nanoparticles.Environmental Science & Technology, 43(12):4355-4360. https://doi.org/10.1021/es803093t
|
Buffle, J., Leppard, G.G., 1995.Characterization of Aquatic Colloids and Macromolecules.1.Structure and Behavior of Colloidal Material.Environmental Science & Technology, 29(9):2169-2175. https://doi.org/10.1021/es00009a004
|
Buffle, J., Wilkinson, K.J., Stoll, S., et al., 1998.A Generalized Description of Aquatic Colloidal Interactions:The Three-Colloidal Component Approach.Environmental Science & Technology, 32(19):2887-2899. https://doi.org/10.1021/es980217h
|
Burrows, N.D., Hale, C.R.H., Penn, R.L., 2012.Effect of Ionic Strength on the Kinetics of Crystal Growth by Oriented Aggregation.Crystal Growth & Design, 12(10):4787-4797. https://doi.org/10.1021/cg3004849
|
Cerbelaud, M., Videcoq, A., Abelard, P., et al., 2008.Heteroaggregation between Al2O3 Submicrometer Particles and SiO2 Nanoparticles:Experiment and Simulation.Langmuir, 24(7):3001-3008. https://doi.org/10.1021/la702104u
|
Charlet, L., Morin, G., Rose, J., et al., 2011.Reactivity at (Nano) particle-Water Interfaces, Redox Processes, and Arsenic Transport in the Environment.Comptes Rendus Geoscience, 343(2-3):123-139. https://doi.org/10.1016/j.crte.2010.11.005
|
Chen, K.L., Elimelech, M., 2007.Influence of Humic Acid on the Aggregation Kinetics of Fullerene (C-60) Nanoparticles in Monovalent and Divalent Electrolyte Solutions.Journal of Colloid and Interface Science, 309(1):126-134. https://doi.org/10.1016/j.jcis.2007.01.074
|
Chen, T.H., Chen, J., Ji, J.F., et al., 2005.Nanometer-Scale Investigation on the Loess of Luochuan:Nano-rod Calcite.Geological Review, 51(6):713-718, 741-742 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/morphological-characters-and-multi-element-isotopic-signatures-of-ZWRFrPAU0s
|
Cheng, D., Liao, P., Yuan, S.H., 2016.Effect of FeS Colloids on Desorption of As (Ⅴ) Adsorbed on Ferric Iron.Earth Science, 41(2):325-330 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201602012.htm
|
Cho, M., Chung, H., Choi, W., et al., 2004.Linear Correlation between Inactivation of E-Coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection.Water Research, 38(4):1069-1077. https://doi.org/10.1016/j.watres.2003.10.029
|
Conway, J.R., Hanna, S.K., Lenihan, H.S., et al., 2014.Effects and Implications of Trophic Transfer and Accumulation of CeO2 Nanoparticles in a Marine Mussel.Environmental Science & Technology, 48(3):1517-1524. https://doi.org/10.1021/es404549u
|
Dai, Z.R., Bradley, J.P., Joswiak, D.J., et al., 2002.Possible In Situ Formation of Meteoritic Nanodiamonds in the Early Solar System.Nature, 418(6894):157-159. https://doi.org/10.1038/nature00897
|
Daou, T.J., Begin-Colin, S., Greneche, J.M., et al., 2007.Phosphate Adsorption Properties of Magnetite-Based Nanoparticles.Chemistry of Materials, 19(18):4494-4505. https://doi.org/10.1021/cm071046v
|
Derjaguin, B.V., Landau, L., 1941.Theory of the Stability of Strongly Charged Lyophobic Sols and the Adhesion of Strongly Charged Particles in Solutions of Electrolytes.Acta Physicochim.URSS, 14(1):633-662. http://www.doc88.com/p-3187637119402.html
|
Diegoli, S., Manciulea, A.L., Begum, S., et al., 2008.Interaction between Manufactured Gold Nanoparticles and Naturally Occurring Organic Macromolecules.Science of the Total Environment, 402(1):51-61. https://doi.org/10.1016/j.scitotenv.2008.04.023
|
Diegoli, S., Mendes, P.M., Baguley, E.R., et al., 2006.pH-dependent Gold Nanoparticle Self-Organization on Functionalized Si/SiO2 Surfaces.Journal of Experimental Nanoscience, 1(3):333-353. https://doi.org/10.1080/17458080600778644
|
Dušak, P., Mertelj, A., Kralj, S., et al., 2015.Controlled Heteroaggregation of Two Types of Nanoparticles in an Aqueous Suspension.Journal of Colloid and Interface Science, 438:235-243. https://doi.org/10.1016/j.jcis.2014.09.086
|
Ellis, L.J.A., Valsami-Jones, E., Lead, J.R., et al., 2016.Impact of Surface Coating and Environmental Conditions on the Fate and Transport of Silver Nanoparticles in the Aquatic Environment.Science of the Total Environment, 568:95-106. https://doi.org/10.1016/j.scitotenv.2016.05.199
|
Feng, L., Cao, M., Ma, X., et al., 2012.Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal.Journal of Hazardous Materials, 217:439-446. https://doi.org/10.1016/j.jhazmat.2012.03.073
|
French, R.A., Jacobson, A.R., Kim, B., et al., 2008.Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of TiO2 Nanoparticles.Geochimica et Cosmochimica Acta, 72(2):A283-A283.
|
Fu, Y., Nie, X., Qin, Z., et al., 2017.Effect of Particle Size and Pyrite Oxidation on the Sorption of Gold Nanoparticles on the Surface of Pyrite.Journal of Nanoscience and Nanotechnology, 17(9):6367-6376. doi: 10.1166/jnn.2017.14417
|
Garcia-Perez, P., Pagnoux, C., Rossignol, F., et al., 2006.Heterocoagulation between SiO2 Nanoparticles and Al2O3 Submicronparticles; Influence of the Background Electrolyte.Colloids and Surfaces A-Physicochemical and Engineering Aspects, 281(1-3):58-66. https://doi.org/10.1016/j.colsurfa.2006.02.018
|
Garner, K.L., Keller, A.A., 2014.Emerging Patterns for Engineered Nanomaterials in the Environment:A Review of Fate and Toxicity Studies.Journal of Nanoparticle Research, 16(8). https://doi.org/10.1007/s11051-014-2503-2
|
Gilbert, B., Huang, F., Zhang, H.Z., et al., 2004.Nanoparticles:Strained and Stiff.Science, 305(5684):651-654. https://doi.org/10.1126/science.1098454
|
Gogos, A., Thalmann, B., Voegelin, A., et al., 2017.Sulfidation Kinetics of Copper Oxide Nanoparticles.Environmental Science-Nano, 4(8):1733-1741. https://doi.org/10.1039/c7en00309a
|
He, H.P., Guo, J.G., Xie, X.D., et al., 1999.Experimental Studies on the Selective Adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ Ions on Montmorillonite, Illite and Kaolinite and the Influence of Medium Conditions.Acta Mineralogica Sinica, 19 (2):231-235 (in Chinese with English abstract).
|
He, H.P., Guo, J.G., Zhu, J.X., et al., 2001.An Experimental Study of Adsorption Capacity of Montmorillonite, Kaolinite and Illite for Heavy Metals.Acta Petrologica et Mineralogica, 20(4):573-578 (in Chinese with English abstract).
|
He, Y.T., Wan, J., Tokunaga, T., 2008.Kinetic Stability of Hematite Nanoparticles:The Effect of Particle Sizes.Journal of Nanoparticle Research, 10(2):321-332. https://doi.org/10.1007/s11051-007-9255-1
|
Herrington, R.J., Wilkinson, J.J., 1993.Colloidal Gold and Silica in Mesothermal Vein Systems.Geology, 21(6):539-542.https://doi.org/10.1130/0091-7613(1993)021 <0539:cgasim>2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0539:cgasim>2.3.co;2
|
Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. doi: 10.1016/S0012-821X(02)00818-X
|
Hochella, M. F., Aruguete, D., Kim, B., et al., 2012. Nature's Nanostructures. Pan Stanford Publishing Pte. Ltd., Singpore.
|
Hochella, M.F., Kasama, T., Putnis, A., et al., 2005.Environmentally Important, Poorly Crystalline Fe/Mn Hydrous Oxides:Ferrihydrite and a Possibly New Vernadite-Like Mineral from the Clark Fork River Superfund Complex.American Mineralogist, 90(4):718-724. https://doi.org/10.2138/am.2005.1591
|
Hochella, M.F.Jr., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. https://doi.org/10.1126/science.1141134
|
Hoek, E.M.V., Agarwal, G.K., 2006.Extended DLVO Interactions between Spherical Particles and Rough Surfaces.Journal of Colloid and Interface Science, 298(1):50-58. https://doi.org/10.1016/j.jcis.2005.12.031
|
Horev-Azaria, L., Baldi, G., Beno, D., et al., 2013.Predictive Toxicology of Cobalt Ferrite Nanoparticles:Comparative In-Vitro Study of Different Cellular Models Using Methods of Knowledge Discovery from Data.Particle and Fibre Toxicology, 10:32. https://doi.org/10.1186/1743-8977-10-32
|
Hotze, E.M., Phenrat, T., Lowry, G.V., 2010.Nanoparticle Aggregation:Challenges to Understanding Transport and Reactivity in the Environment.Journal of Environmental Quality, 39(6):1909-1924. https://doi.org/10.2134/jeq2009.0462
|
Hou, W.C., Jafvert, C.T., 2009.Photochemical Transformation of Aqueous C-60 Clusters in Sunlight.Environmental Science & Technology, 43(2):362-367. https://doi.org/10.1021/es802465z
|
Huynh, K.A., Chen, K.L., 2011.Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions.Environmental Science & Technology, 45(13):5564-5571. doi: 10.1021/es200157h
|
Huynh, K.A., McCaffery, J.M., Chen, K.L., 2012.Heteroaggregation of Multiwalled Carbon Nanotubes and Hematite Nanoparticles:Rates and Mechanisms.Environmental Science & Technology, 46(11):5912-5920. https://doi.org/10.1021/es2047206
|
Jiang, C.J., Aiken, G.R., Hsu-Kim, H., 2015.Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.Environmental Science & Technology, 49(19):11476-11484. https://doi.org/10.1021/acs.est.5b02406
|
Jiang, J.K., Oberdorster, G., Biswas, P., 2009.Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies.Journal of Nanoparticle Research, 11(1):77-89. https://doi.org/10.1007/s11051-008-9446-4
|
Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20, 22-23 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001
|
Kaegi, R., Voegelin, A., Ort, C., et al., 2013.Fate and Transformation of Silver Nanoparticles in Urban Wastewater Systems.Water Research, 47(12):3866-3877. https://doi.org/10.1016/j.watres.2012.11.060
|
Kaegi, R., Voegelin, A., Sinnet, B., et al., 2011.Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant.Environmental Science & Technology, 45(9):3902-3908. https://doi.org/10.1021/es1041892
|
Keller, A.A., Wang, H.T., Zhou, D.X., et al., 2010.Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices.Environmental Science & Technology, 44(6):1962-1967. https://doi.org/10.1021/es902987d
|
Kim, A.Y., Berg, J.C., 2002.Effect of Polymeric Adlayers on Heteroaggregation Kinetics.Langmuir, 18(9):3418-3422. https://doi.org/10.1021/la015690e
|
Kiser, M.A., Westerhoff, P., Benn, T., et al., 2009.Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants.Environmental Science & Technology, 43(17):6757-6763. https://doi.org/10.1021/es901102n
|
Lebrette, S., Pagnoux, C., Abélard, P., 2004.Stability of Aqueous TiO2 Suspensions:Influence of Ethanol.Journal of Colloid and Interface Science, 280(2):400. doi: 10.1016/j.jcis.2004.07.033
|
Lee, B.T., Ranville, J.F., 2012.The Effect of Hardness on the Stability of Citrate-Stabilized Gold Nanoparticles and Their Uptake by Daphnia Magma.Journal of Hazardous Materials, 213:434-439. https://doi.org/10.1016/j.jhazmat.2012.02.025
|
Levard, C., Reinsch, B.C., Michel, F.M., et al., 2011.Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution:Impact on Dissolution Rate.Environmental Science & Technology, 45(12):5260-5266. https://doi.org/10.1021/es2007758
|
Li, Q.L., Xie, B., Hwang, Y.S., et al., 2009.Kinetics of C-60 Fullerene Dispersion in Water Enhanced by Natural Organic Matter and Sunlight.Environmental Science & Technology, 43(10):3574-3579. https://doi.org/10.1021/es803603x
|
Li, X., Lenhart, J.J., Walker, H.W., 2010.Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles.Langmuir, 26(22):16690-16698. https://doi.org/10.1021/la101768n
|
Li, X., Lenhart, J.J., Walker, H.W., 2012a.Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles.Langmuir, 28(2):1095-1104. https://doi.org/10.1021/la202328n
|
Li, Y., Zhang, W., Li, K., et al., 2012b.Oxidative Dissolution of Polymer-Coated CdSe/ZnS Quantum Dots under UV Irradiation:Mechanisms and Kinetics.Environmental Pollution, 164:259-266. https://doi.org/10.1016/j.envpol.2012.01.047
|
Li, Y., Niu, J.F., Zhang, W., et al., 2014.Influence of Aqueous Media on the ROS-Mediated Toxicity of ZnO Nanoparticles toward Green Fluorescent Protein-Expressing Escherichia Coli under UV-365 Irradiation.Langmuir, 30(10):2852-2862. https://doi.org/10.1021/la5000028
|
Li, Y., Zhang, W., Niu, J.F., et al., 2013.Surface-Coating-Dependent Dissolution, Aggregation, and Reactive Oxygen Species (ROS) Generation of Silver Nanoparticles under Different Irradiation Conditions.Environmental Science & Technology, 47(18):10293-10301. https://doi.org/10.1021/es400945v
|
Lin, H.F., Liao, S.C., Hung, S.W., 2005.The DC Thermal Plasma Synthesis of ZnO Nanoparticles for Visible-Light Photocatalyst.Journal of Photochemistry and Photobiology A-Chemistry, 174(1):82-87. https://doi.org/10.1016/j.jphotochem.2005.02.015
|
Liu, J., Aruguete, D.M., Jinschek, J.R., et al., 2008.The Non-Oxidative Dissolution of Galena Nanocrystals:Insights into Mineral Dissolution Rates as a Function of Grain Size, Shape, and Aggregation State.Geochimica et Cosmochimica Acta, 72(24):5984-5996. doi: 10.1016/j.gca.2008.10.010
|
Liu, J., Aruguete, D.M., Murayama, M., et al., 2009.Influence of Size and Aggregation on the Reactivity of an Environmentally and Industrially Relevant Nanomaterial (PbS).Environmental Science & Technology, 43(21):8178-8183. doi: 10.1021/es902121r%40proofing
|
Liu, J., Pennell, K.G., Hurt, R.H., 2011.Kinetics and Mechanisms of Nanosilver Oxysulfidation.Environmental Science & Technology, 45(17):7345-7353. https://doi.org/10.1021/es201539s
|
Liu, J.F., Legros, S., Ma, G.B., et al., 2012.Influence of Surface Functionalization and Particle Size on the Aggregation Kinetics of Engineered Nanoparticles.Chemosphere, 87(8):918-924. https://doi.org/10.1016/j.chemosphere.2012.01.045
|
Liu, J.F., Legros, S., von der Kammer, F., et al., 2013.Natural Organic Matter Concentration and Hydrochemistry Influence Aggregation Kinetics of Functionalized Engineered Nanoparticles.Environmental Science & Technology, 47(9):4113-4120. https://doi.org/10.1021/es302447g
|
Liu, J.J., Dai, C., Hu, Y.D., 2018.Aqueous Aggregation Behavior of Citric Acid Coated Magnetite Nanoparticles:Effects of pH, Cations, Anions, and Humic Acid.Environmental Research, 161:49-60. https://doi.org/10.1016/j.envres.2017.10.045
|
Lohse, S.E., Abadeer, N.S., Zoloty, M., et al., 2017.Nanomaterial Probes in the Environment:Gold Nanoparticle Soil Retention and Environmental Stability as a Function of Surface Chemistry.ACS Sustainable Chemistry & Engineering, 5(12):11451-11458. https://doi.org/10.1021/acssuschemeng.7b02622
|
Louie, S.M., Gorham, J.M., Tan, J.J., et al., 2017.Ultraviolet Photo-Oxidation of Polyvinylpyrrolidone (PVP) Coatings on Gold Nanoparticles.Environmental Science-Nano, 4(9):1866-1875. https://doi.org/10.1039/c7en00411g
|
Lowry, G.V., Espinasse, B.P., Badireddy, A.R., et al., 2012a.Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland.Environmental Science & Technology, 46(13):7027-7036. https://doi.org/10.1021/es204608d
|
Lowry, G.V., Gregory, K.B., Apte, S.C., et al., 2012b.Transformations of Nanomaterials in the Environment.Environmental Science & Technology, 46(13):6893-6899. https://doi.org/10.1021/es300839e
|
Luo, W.H., Hu, W.Y., Xiao, S.F., 2008.Size Effect on the Thermodynamic Properties of Silver Nanoparticles.Journal of Physical Chemistry C, 112(7):2359-2369. https://doi.org/10.1021/jp0770155
|
Lü, J.T., Zhang, S.Z., Luo, L., et al., 2012.Dissolution and Microstructural Transformation of ZnO Nanoparticles under the Influence of Phosphate.Environmental Science & Technology, 46(13):7215-7221. https://doi.org/10.1021/es301027a
|
Lyon, D.Y., Fortner, J.D., Sayes, C.M., et al., 2005.Bacterial Cell Association and Antimicrobial Activity of a C-60 Water Suspension.Environmental Toxicology and Chemistry, 24(11):2757-2762. https://doi.org/10.1897/04-649r.1
|
Ma, R., Levard, C., Michel, F.M., et al., 2013.Sulfidation Mechanism for Zinc Oxide Nanoparticles and the Effect of Sulfidation on Their Solubility.Environmental Science & Technology, 47(6):2527-2534. https://doi.org/10.1021/es3035347
|
Ma, S., Lin, D.H., 2013.The Biophysicochemical Interactions at the Interfaces between Nanoparticles and Aquatic Organisms:Adsorption and Internalization.Environmental Science-Processes & Impacts, 15(1):145-160. https://doi.org/10.1039/c2em30637a
|
Ma, S., Zhou, K.J., Yang, K., et al., 2015.Heteroagglomeration of Oxide Nanoparticles with Algal Cells:Effects of Particle Type, Ionic Strength and pH.Environmental Science & Technology, 49(2):932-939. https://doi.org/10.1021/es504730k
|
Miao, A.J., Zhang, X.Y., Luo, Z.P., et al., 2010.Zinc Oxide Engineered Nanoparticles:Dissolution and Toxicity to Marine Phytoplankton.Environmental Toxicology and Chemistry, 29(12):2814-2822. https://doi.org/10.1002/etc.340
|
Mikhlin, Y., Romanchenko, A., Likhatski, M., et al., 2011.Understanding the Initial Stages of Precious Metals Precipitation:Nanoscale Metallic and Sulfidic Species of Gold and Silver on Pyrite Surfaces.Ore Geology Reviews, 42(1):47-54. https://doi.org/10.1016/j.oregeorev.2011.03.005
|
Misawa, M., Takahashi, J., 2011.Generation of Reactive Oxygen Species Induced by Gold Nanoparticles under X-Ray and UV Irradiations.Nanomedicine-Nanotechnology Biology and Medicine, 7(5):604-614. https://doi.org/10.1016/j.nano.2011.01.014
|
Misra, S.K., Dybowska, A., Berhanu, D., et al., 2012a.Isotopically Modified Nanoparticles for Enhanced Detection in Bioaccumulation Studies.Environmental Science & Technology, 46(2):1216-1222. https://doi.org/10.1021/es2039757
|
Misra, S.K., Dybowska, A., Berhanu, D., et al., 2012b.The Complexity of Nanoparticle Dissolution and Its Importance in Nanotoxicological Studies.Science of the Total Environment, 438:225-232. https://doi.org/10.1016/j.scitotenv.2012.08.066
|
Misra, S.K., Nuseibeh, S., Dybowska, A., et al., 2014.Comparative Study Using Spheres, Rods and Spindle-Shaped Nanoplatelets on Dispersion Stability, Dissolution and Toxicity of Cuo Nanomaterials.Nanotoxicology, 8(4):422-432. https://doi.org/10.3109/17435390.2013.796017
|
Mulvihill, M.J., Habas, S.E., Jen-La Plante, H., et al., 2010.Influence of Size, Shape, and Surface Coating on the Stability of Aqueous Suspensions of CdSe Nanoparticles.Chemistry of Materials, 22(18):5251-5257. https://doi.org/10.1021/cm101262s
|
Muntean, J.L., Cline, J.S., Simon, A.C., et al., 2011.Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits.Nature Geoscience, 4(2):122-127. doi: 10.1038/ngeo1064
|
Navrotsky, A., Mazeina, L., Majzlan, J., 2008.Size-Driven Structural and Thermodynamic Complexity in Iron Oxides.Science, 319(5870):1635-1638. https://doi.org/10.1126/science.1148614
|
Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., et al., 2006.Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia.Science, 314(5799):638-641. https://doi.org/10.1126/science.1131307
|
Odzak, N., Kistler, D., Behra, R., et al., 2014.Dissolution of Metal and Metal Oxide Nanoparticles in Aqueous Media.Environmental Pollution, 191:132-138. https://doi.org/10.1016/j.envpol.2014.04.010
|
Oo, M.K.K., Yang, Y.M., Hu, Y., et al., 2012.Gold Nanoparticle-Enhanced and Size-Dependent Generation of Reactive Oxygen Species from Protoporphyrin Ⅸ.ACS Nano, 6(3):1939-1947. https://doi.org/10.1021/nn300327c
|
Peng, C., Shen, C.S., Zheng, S.Y., et al., 2017.Transformation of CuO Nanoparticles in the Aquatic Environment:Influence of pH, Electrolytes and Natural Organic Matter.Nanomaterials, 7(10). https://doi.org/10.3390/nano7100326
|
Phenrat, T., Saleh, N., Sirk, K., et al., 2007.Aggregation and Sedimentation of Aqueous Nanoscale Zero Valent Iron Dispersions.Environmental Science & Technology, 41(1):284-290. https://doi.org/10.1021/es061349a
|
Phenrat, T., Saleh, N., Sirk, K., et al., 2008.Stabilization of Aqueous Nanoscale Zero Valent Iron Dispersions by Anionic Polyelectrolytes:Adsorbed Anionic Polyelectrolyte Layer Properties and Their Effect on Aggregation and Sedimentation.Journal of Nanoparticle Research, 10(5):795-814. https://doi.org/10.1007/s11051-007-9315-6
|
Putnis, C.V., Ruiz-Agudo, E., 2013.The Mineral-Water Interface:Where Minerals React with the Environment.Elements, 9(3):177-182. https://doi.org/10.2113/gselements.9.3.177
|
Quik, J.T.K., Stuart, M.C., Wouterse, M., et al., 2012.Natural Colloids are the Dominant Factor in the Sedimentation of Nanoparticles.Environmental Toxicology and Chemistry, 31(5):1019-1022. https://doi.org/10.1002/etc.1783
|
Quik, J.T.K., Vonk, J.A., Hansen, S.F., et al., 2011.How to Assess Exposure of Aquatic Organisms to Manufactured Nanoparticles? Environment International, 37(6):1068-1077. https://doi.org/10.1016/j.envint.2011.01.015
|
Rathnayake, S., Unrine, J.M., Judy, J., et al., 2014.Multitechnique Investigation of the pH Dependence of Phosphate Induced Transformations of ZnO Nanoparticles.Environmental Science & Technology, 48(9):4757-4764. https://doi.org/10.1021/es404544w
|
Rebodos, R.L., Vikesland, P.J., 2010.Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite.Langmuir, 26(22):16745-16753. https://doi.org/10.1021/la102461z
|
Reich, M., Hough, R.M., Deditius, A., et al., 2011.Nanogeoscience in Ore Systems Research:Principles, Methods, and Applications Introduction and Preface to the Special Issue Preface.Ore Geology Reviews, 42(1):1-5. https://doi.org/10.1016/j.oregeorev.2011.06.007
|
Reich, M., Kesler, S.E., Utsunomiya, S., et al., 2005.Solubility of Gold in Arsenian Pyrite.Geochimica et Cosmochimica Acta, 69(11):2781-2796. doi: 10.1016/j.gca.2005.01.011
|
Reinsch, B.C., Levard, C., Li, Z., et al., 2012.Sulfidation of Silver Nanoparticles Decreases Escherichia Coli Growth Inhibition.Environmental Science & Technology, 46(13):6992-7000. https://doi.org/10.1021/es203732x
|
Rhiem, S., Riding, M.J., Baumgartner, W., et al., 2015.Interactions of Multiwalled Carbon Nanotubes with Algal Cells:Quantification of Association, Visualization of Uptake, and Measurement of Alterations in the Composition of Cells.Environmental Pollution, 196:431-439. https://doi.org/10.1016/j.envpol.2014.11.011
|
Romanchenko, A., Mikhlin, Y.L., Makhova, L., 2007.Investigation of Gold Nanoparticles Immobilized on the Surface of Pyrite by Scanning Probe Microscopy, Scanning Tunneling Spectroscopy, and X-Ray Photoelectron Spectroscopy.Glass Physics and Chemistry, 33(4):417-421. doi: 10.1134/S1087659607040177
|
Saunders, J.A., 1990.Colloidal Transport of Gold and Silica in Epithermal Precious-Metal Systems-Evidence from the Sleeper Deposit, Nevada.Geology, 18(8):757-760.https://doi.org/10.1130/0091-7613(1990)018 <0757:ctogas>2.3.co; 2 doi: 10.1130/0091-7613(1990)018<0757:ctogas>2.3.co;2
|
Saunders, J.A., Burke, M., 2017.Formation and Aggregation of Gold (Electrum) Nanoparticles in Epithermal Ores.Minerals, 7(9):163. https://doi.org/10.3390/min7090163
|
Siy, J.T., Bartl, M.H., 2010.Insights into Reversible Dissolution of Colloidal CdSe Nanocrystal Quantum Dots.Chemistry of Materials, 22(21):5973-5982. https://doi.org/10.1021/cm102156v
|
Stankus, D.P., Lohse, S.E., Hutchison, J.E., et al., 2011.Interactions between Natural Organic Matter and Gold Nanoparticles Stabilized with Different Organic Capping Agents.Environmental Science & Technology, 45(8):3238-3244. https://doi.org/10.1021/es102603p
|
Stipp, S.L.S., Hansen, M., Kristensen, R., et al., 2002.Behaviour of Fe-Oxides Relevant to Contaminant Uptake in the Environment.Chemical Geology, 190(1-4):321-337. https://doi.org/10.1016/s0009-2541(02)00123-7
|
Stumm, W., 1992. Chemistry of The Solid-Water Interface. Wiley-Interscience, New York.
|
Stumm, W., 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York.
|
Stumm, W., Morgan, J. J., 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley & Sons, New York.
|
Verma, A., Stellacci, F., 2010.Effect of Surface Properties on Nanoparticle-Cell Interactions.Small, 6(1):12-21. https://doi.org/10.1002/smll.200901158
|
Verwey, E. J. W., Owerbeek, J. T. G., 1948. The Theory of the Stability of Liophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer. Elsevier, Amsterdam.
|
Wagner, S., Gondikas, A., Neubauer, E., et al., 2014.Spot the Difference:Engineered and Natural Nanoparticles in the Environment-Release, Behavior, and Fate.Angewandte Chemie-International Edition, 53(46):12398-12419. https://doi.org/10.1002/anie.201405050
|
Wan, Q., Qin, Z.H., Ju, Y.W., et al., 2016.Nanogeochemistry:Origin, Recent Advances and Future Directions.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):21-27 (in Chinese with English abstract).
|
Wang, H.T., Adeleye, A.S., Huang, Y.X., et al., 2015a.Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids.Advances in Colloid and Interface Science, 226:24-36. https://doi.org/10.1016/j.cis.2015.07.002
|
Wang, P., Du, M., Zhu, H., et al., 2015b.Structure Regulation of Silica Nanotubes and Their Adsorption Behaviors for Heavy Metal Ions:pH Effect, Kinetics, Isotherms and Mechanism.Journal of Hazardous Materials, 286:533-544. https://doi.org/10.1016/j.jhazmat.2014.12.034
|
Wang, Y.F., 2014.Nanogeochemistry:Nanostructures, Emergent Properties and Their Control on Geochemical Reactions and Mass Transfers.Chemical Geology, 378:1-23. https://doi.org/10.1016/j.chemgeo.2014.04.007
|
Wang, Z.Y., Li, J., Zhao, J., et al., 2011.Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga Microcystis Aeruginosa as Affected by Dissolved Organic Matter.Environmental Science & Technology, 45(14):6032-6040. https://doi.org/10.1021/es2010573
|
Wieder, M.E., Hone, D.C., Cook, M.J., et al., 2006.Intracellular Photodynamic Therapy with Photosensitizer-Nanoparticle Conjugates:Cancer Therapy Using a 'Trojan Horse'.Photochemical & Photobiological Sciences, 5(8):727-734. https://doi.org/10.1039/b602830f
|
Yang, K., Lin, D., Xing, B., 2009.Interactions of Humic Acid with Nanosized Inorganic Oxides.Langmuir, 25(6):3571-3576. https://doi.org/10.1021/la803701b
|
Zhang, B.R., Fu, J.M., 2005.Advances in Geochemistry.Chemical Industry Press, Beijing, 322-325 (in Chinese).
|
Zhang, H., Chen, B., Ren, Y., et al., 2010a.Response of Nanoparticle Structure to Different Types of Surface Environments:Wide-Angle X-Ray Scattering and Molecular Dynamics Simulations.Physical Review B, 81(12). https://doi.org/10.1103/PhysRevB.81.125444
|
Zhang, H.Z., Chen, B., Banfield, J.F., 2010b.Particle Size and pH Effects on Nanoparticle Dissolution.Journal of Physical Chemistry C, 114(35):14876-14884. https://doi.org/10.1021/jp1060842
|
Zhang, W.C., Xiao, B.D., Fang, T., 2018.Chemical Transformation of Silver Nanoparticles in Aquatic Environments:Mechanism, Morphology and Toxicity.Chemosphere, 191:324-334. https://doi.org/10.1016/j.chemosphere.2017.10.016
|
Zhou, D.X., Abdel-Fattah, A.I., Keller, A.A., 2012.Clay Particles Destabilize Engineered Nanoparticles in Aqueous Environments.Environmental Science & Technology, 46(14):7520-7526. https://doi.org/10.1021/es3004427
|
陈天虎, 陈骏, 季峻峰, 等, 2005.洛川黄土纳米尺度观察:纳米棒状方解石.地质论评, 51(6):713-718, 741-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200506014
|
成东, 廖鹏, 袁松虎, 2016.FeS胶体对三价铁吸附态As(Ⅴ)的解吸作用.地球科学, 41(2):325-330. http://www.earth-science.net/WebPage/Article.aspx?id=3249
|
何宏平, 郭龙皋, 谢先德, 等, 1999.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报, 19(2):231-235. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199902015.htm
|
何宏平, 郭九皋, 朱建喜, 等, 2001.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究.岩石矿物学杂志, 20(4):573-578. https://www.wenkuxiazai.com/doc/a9d63cfd52ea551811a687be.html
|
琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20, 22-23. http://www.cqvip.com/QK/84215X/201601/668146269.html
|
万泉, 覃宗华, 琚宜文, 等, 2016.纳米地球化学刍析:起源、研究进展和发展方向.矿物岩石地球化学通报, 35(1):21-27. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601002
|
张本仁, 傅家谟, 2005.地球化学进展.北京:化学工业出版社, 322-325.
|