• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 5
    May  2018
    Turn off MathJax
    Article Contents
    Li Han, Yao Qizhi, Zhou Gentao, 2018. Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals. Earth Science, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402
    Citation: Li Han, Yao Qizhi, Zhou Gentao, 2018. Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals. Earth Science, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402

    Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals

    doi: 10.3799/dqkx.2018.402
    • Received Date: 2017-09-02
    • Publish Date: 2018-05-15
    • The rise and development of nanogeology lead to exploration of the solid earth materials at the nanoscale, exerting extensive and profound impact on various fields of earth science. As an important branch of nanogeology, nanomineralogy also explores the structure and properties of the minerals including biominerals at the nanoscale, eliminating the limitations of traditional mineralogy which only regards the mineral as ideal crystal lattice, of which mesocrystal is one breakthrough. Mesocrystals represent a class of crystalline nanostructured materials drawing increasing attention from physicists and chemists especially material chemists in recent years. Mesocrystals are the products of non-classical crystallization process with nanoparticles as the basic subunits, sharing the properties of nanoparticles with order on the macroscopic length scale. It has been found that a number of biominerals including vertebrate bones and teeth, nacre, egg shells, sea urchin spines, foraminifera, and corals have the mesocrystals structure. Therefore, re-understanding the biomineralization at the nanoscale and the perspective of mesocrystals will undoubtedly help to reveal the formation mechanisms of hierarchical nanostructures in biominerals and expand the scientific connotation of nanomineralogy. Firstly, the basic concepts of biomineralization and biominerals are introduced. Then, the concept and structural feature of mesocrystals are expounded. Finally, the mesocrystal structure in biominerals and the mechanisms of mesocrystal formation are clarified in detail, referring to several physical and chemical processes such as alignment by the organic matrix, alignment by physical forces, connection by mineral bridges or organic bridges, alignment by spatial constraints, alignment by oriented attachment and alignment by face selective molecules. It is expected that this study may promote the further development of nanomineralogy.

       

    • loading
    • Addadi, L., Joester, D., Nudelman, F., et al., 2006.Mollusk Shell Formation:A Source of New Concepts for Understanding Biomineralization Processes.Chemistry-A European Journal, 12(4):981-987. https://doi.org/10.1002/chem.200500980
      Addadi, L., Weiner, S., 1992.Control and Design Principles in Biological Mineralization.Angewandte Chemie-International Edition in English, 31(2):153-169. https://doi.org/10.1002/anie.199201531
      Aizenberg, J., Lambert, G., Weiner, S.et al., 2002.Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate:A Study of an Ascidian Skeleton.Journal of the American Chemical Society, 124(1):32-39. https://doi.org/10.1021/ja016990l
      Albeck, S., Aizenberg, J., Addadi, L., et al., 1993.Interactions of Various Skeletal Intracrystalline Components with Calcite Crystals.Journal of the American Chemical Society, 115:11691-11697. https://doi.org/10.1021/ja00078a005
      Albeck, S., Weiner, S., Addadi, L., 1996.Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth in Vitro.Chemistry-A European Journal, 2(3):278-284. https://doi.org/10.1002/chem.19960020308
      Amor, M., Busigny, V., Louvat, P., et al., 2016.Mass-Dependent and -Independent Signature of Fe Isotopes in Magnetotactic Bacteria.Science, 352(6286):705-708. https://doi.org/10.1126/science.aad7632
      Arakaki, A., Webb, J., Matsunaga, T., 2003.A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum Magneticum Strain AMB-1.Journal of Biological Chemistry, 278(10):8745-8750. https://doi.org/10.1074/jbc.M211729200
      Banfield, J. F., Navrotsky, A., 2001. Nanoparticles and the Environment. Mineralogical Society of America, Washington, D. C. .
      Bäuerlein, E., 2003.Biomineralization of Unicellular Organisms:An Unusual Membrane Biochemistry for the Production of Inorganic Nano-and Microstructures.Angewandte Chemie-International Edition in English, 42(6):614-641. https://doi.org/10.1002/anie.200390176
      Bazylinski, D.A., Frankel, R.B., 2003.Biologically Controlled Mineralization in Prokaryotes.Reviews in Mineralogy and Geochemistry, 54 (1):217-247. https://doi.org/10.2113/0540217
      Bazylinski, D.A., Frankel, R.B., 2004.Magnetosome Formation in Prokaryotes.Nature Reviews Microbiology, 2(3):217-230. https://doi.org/10.1038/nrmicro842
      Bergström, L., Sturm, E.V., Salazar-Alvarez, G., et al., 2015.Mesocrystals in Biominerals and Colloidal Arrays.Accounts of Chemical Research, 48(5):1391-1402. https://doi.org/10.1021/ar500440b
      Berridge, M.J., Bootman, M.D., Lipp, P., 1998.Calcium-A Life and Death Signal.Nature, 395(6703):645-648. https://doi.org/10.1038/27094
      Bu, F.X., Du.C.J., Jiang, J.S., 2014.Synthesis, Properties and Applications of Mesocrystals.Progress in Chemistry, 26(1):75-86 (in Chinese with English abstract). https://doi.org/10.7536/PC130647
      Cai, L., Xiao, H.R., Huang, S.M., et al., 2013.Solubilization of Magnesium-Bearing Silicate Minerals and the Subsequent Formation of Glushinskite by Aspergillus Niger.Geomicrobiology Journal, 30:302-312. https://doi.org/10.1080/01490451.2012.688924
      Chauhan, C.K., Joshi, M.J., 2013.In Vitro Crystallization, Characterization and Growth-Inhibition Study of Urinary Type Struvite Crystals.Journal of Crystal Growth, 362:330-337. https://doi.org/10.1016/j.jcrysgro.2011.11.008
      Chen, A.P., Berounsky, V.M., Chan, M.K., et al., 2014.Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle.Nature Communications, 5:4797. https://doi.org/10.1038/ncomms5797
      Chen, T.H., Xie, Q.Q., 2005.From Optical Microscopy to Electron Microscopy:Nanogeoscience.Journal of Hefei University of Technology, 28(9):1126-1129 (in Chinese with English abstract). http://www.eolss.net/Sample-Chapters/C05/E6-08-03-01.pdf
      Cheng, Z.Y., Fernández-Remolar, D.C., Izawa, M.R.M., et al., 2016.Oxalate Formation under the Hyperarid Conditions of the Atacama Desert as a Mineral Marker to Provide Clues to the Source of Organic Carbon on Mars.Journal of Geophysical Research:Biogeosciences, 121(6):1593-1604. https://doi.org/10.1002/2016JG003439
      Coe, F.L., Evan, A., Worcester, E., 2005.Kidney Stone Disease.Journal of Clinical Investigation, 115(10):2598-2608. https://doi.org/10.1172/JCI26662
      Cui, F.Z., 2012.Biomineralization (2nd Edition).Tsinghua University Press, Beijing (in Chinese).
      Dai, Y.D., 1994.Biogenic Mineralogy.Petroleum Industry Press, Beijing (in Chinese).
      de Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., et al., 2015.Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments.Science, 349(6247):6760. https://doi.org/10.1126/science.aaa6760
      DiMasi, E., Sarikaya, M., 2004.Synchrotron X-Ray Microbeam Diffraction from Abalone Shell.Journal of Materials Research, 19(5):1471-1476. https://doi.org/10.1557/JMR.2004.0196
      Duan, Y., Yao, Y.C., Qiu, X., et al., 2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science, 42(3):389-396 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.029
      Dupraz, C., Reid, R.P., Braissant, O., et al., 2009.Processes of Carbonate Precipitation in Modern Microbial Mats.Earth-Science Reviews, 96(3):141-162. https://doi.org/10.1016/j.earscirev.2008.10.005
      Frankel, R.B., Zhang, J.P., Bazylinski, D.A., 1998.Single Magnetic Domains in Magnetotactic Bacteria.Journal of Geophysical Research-Solid Earth, 103(B12):30601-30604. https://doi.org/10.1029/97JB03512
      George, A., Veis, A., 2008.Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition.Chemical Reviews, 108(11):4670-4693. https://doi.org/10.1021/cr0782729
      Gilbert, P.U.P.A., Abrecht, M., Frazer, B.H., 2005.The Organic-Mineral Interface in Biominerals.Reviews in Mineralogy & Geochemistry, 59:157-185. https://doi.org/10.2138/rmg.2005.59.7
      Gómez-Morales, J., Delgado-Lopez, J.M., Iafisco, M., et al., 2011.Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets.Crystal Growth & Design, 11(11):4802-4809. https://doi.org/10.1021/cg2004547
      Gower, L.B., 2008.Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization.Chemical Reviews, 108(11):4551-4627. https://doi.org/10.1021/cr800443h
      Griffith, D.P., 1978.Struvite Stones.Kidney International, 13(5):372-382. https://doi.org/10.1038/ki.1978.55
      Hochella, M.F., 2002a.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X
      Hochella, M.F., 2002b.There's Plenty of Room at the Bottom:Nanoscience in Geochemistry.Geochimica et Cosmochimica Acta, 66(5):735-743. https://doi.org/10.1016/S0016-7037(01)00868-7
      Hochella, M.F., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. https://doi.org/10.1126/science.1141134
      Jiang, S.D., Yao, Q.Z., Ma, Y.F., et al., 2015.Phosphate-Dependent Morphological Evolution of Hydroxyapatite and Implication for Biomineralisation.Gondwana Research, 28(2):858-868. https://doi.org/10.1016/j.gr.2014.04.005
      Ju, Y.W., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience and Nanotechnology, 17:5930-5965. https://doi.org/10.1166/jnn.2017.14436
      Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.01.001
      Kim, Y.Y., Schenk, A.S., Ihli, J., et al., 2014.A Critical Analysis of Calcium Carbonate Mesocrystals.Nature Communications, 5:4341. https://doi.org/10.1038/ncomms5341
      Komeili, A., Li, Z., Newman, D.K., et al., 2006.Magnetosomes are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK.Science, 311(5758):242-245. https://doi.org/10.1126/science.1123231
      Laird, D.F., Mucalo, M.R., Yokogawa, Y., 2006.Growth of Calcium Hydroxyapatite (Ca-HAp) on Cholesterol and Cholestanol Crystals from a Simulated Body Fluid:A Possible Insight into the Pathological Calcifications Associated with Atherosclerosis.Journal of Colloid and Interface Science, 295(2):348-363. https://doi.org/10.1016/j.jcis.2005.09.013
      Larsson, P.A., Howell, D.S., Pita, J.C., et al., 1988.Aspiration and Characterization of Predentin Fluid in Developing Rat Teeth by Means of a Micropuncture and Microanalytical Technique.Journal of Dental Research, 67(5):870-875. https://doi.org/10.1177/00220345880670051501
      Lefèvre, C.T., Posfai, M., Abreu, F., et al., 2011.Morphological Features of Elongated-Anisotropic Magnetosome Crystals in Magnetotactic Bacteria of the Nitrospirae Phylum and the Delta Proteobacteria Class.Earth and Planetary Science Letters, 312(1-2):194-200. https://doi.org/10.1016/j.epsl.2011.10.003
      Li, H., Yao, Q. Z., Wang, Y. Y., et al., 2015. Biomimetic Synthesis of Struvite with Biogenic Morphology and Implication for Pathological Biomineralization. Scientific Reports, 5: 7718. https://doi.org/10.1038/srep07718
      Li, H., Yao, Q.Z., Yu, S.H., et al., 2017.Bacterially Mediated Morphogenesis of Struvite and Its Implication for Phosphorus Recovery.American Mineralogist, 102(2):381-390. https://doi.org/10.2138/am-2017-5687
      Lian, B., Hu, Q.N., Chen, J., et al., 2006.Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium.Geochimica et Cosmochimica Acta, 70(22):5522-5535. https://doi.org/10.1016/j.gca.2006.08.044
      Lin, W., Pan, Y.X., 2012.Diversity of Magnetotactic Bacteria and Its Implications for Environment.Quaternary Sciences, 32(4):567-575 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1001-7410.2012.04.01
      Lin, W., Tian, L.X., Pan, Y.X., 2006.Formation of Magnetosomes in Magnetotactic Bacteria.Microbiology China, 33(3):133-137 (in Chinese with English abstract). https://doi.org/10.13344/j.microbiol.china.2006.03.028
      Lowenstam, H.A., Weiner, S., 1989.On Biomineralization.Oxford University Press, New York.
      Lundgren, T., Linde, A., 1987.Regulation of Free Ca2+ by Subcellular-Fractions of Rat Incisor Odontoblasts.Archives of Oral Biology, 32(7):463-468. https://doi.org/10.1016/S0003-9969(87)80005-5
      Mahamid, J., Sharir, A., Addadi, L., et al., 2008.Amorphous Calcium Phosphate is a Major Component of the Forming Fin Bones of Zebrafish:Indications for an Amorphous Precursor Phase.Proceedings of the National Academy of Sciences of the United States of America, 105(35):12748-12753. https://doi.org/10.1073/pnas.0803354105
      Mann, S., 2001.Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry.Oxford University Press, New York.
      Oaki, K., Imai, H., 2005.The Hierarchical Architecture of Nacre and Its Mimetic Material.Angewandte Chemie-International Edition in English, 44(40):6571-6575. https://doi.org/10.1002/anie.200500338
      Oaki, Y., Kotachi, A., Miura, T., et al., 2006.Bridged Nanocrystals in Biominerals and Their Biomimetics:Classical yet Modern Crystal Growth on the Nanoscale.Advanced Functional Materials, 16(12):1633-1639. https://doi.org/10.1002/adfm.200600262
      Ogoshi, T., Itoh, H., Kim, K.M., et al., 2002.Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex.Macromolecules, 35(2):334-338. https://doi.org/10.1021/ma010819c
      Portincasa, P., Moschetta, A., Palasciano, G., 2006.Cholesterol Gallstone Disease.Lancet, 368(9531):230-239. https://doi.org/10.1016/S0140-6736(06)69044-2
      Pósfai, M., Dunin-Borkowski, R.E., 2009.Magnetic Nanocrystals in Organisms.Elements, 5(4):235-240. https://doi.org/10.2113/gselements.5.4.235
      Prywer, J., Torzewska, A., 2009.Bacterially Induced Struvite Growth from Synthetic Urine:Experimental and Theoretical Characterization of Crystal Morphology.Crystal Growth & Design, 9(8):3538-3543. https://doi.org/10.1021/cg900281g
      Prywer, J., Torzewska, A., 2010.Biomineralization of Struvite Crystals by Proteus Mirabilis from Artificial Urine and Their Mesoscopic Structure.Crystal Research and Technology, 45(12):1283-1289. https://doi.org/10.1002/crat.201000344
      Prywer, J., Torzewska, A., Plocinski, T., 2012.Unique Surface and Internal Structure of Struvite Crystals Formed by Proteus Mirabilis.Urological Research, 40(6):699-707. https://doi.org/10.1007/s00240-012-0501-3
      Qu, X.F., Yao, Q.Z., Zhou, G.T., 2011.Biomimetic Formation of Nanomagnetite Chain:Implication for Magnetosome Mineralization.Geological Journal of China Universities, 17(1):66-75 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.014
      Rohanizadeh, R., Legeros, R.Z., 2007.Mineral Phase in Linguloid Brachiopod Shell:Lingula Adamsi.Lethaia, 40(1):61-68. https://doi.org/10.1111/j.1502-3931.2006.00006.x
      Romanowski, Z., Kempisty, P., Prywer, J., et al., 2010.Density Functional Theory Determination of Structural and Electronic Properties of Struvite.Journal of Physical Chemistry A, 114(29):7800-7808. https://doi.org/10.1021/jp102887a
      Ronholm, J., Schumann, D., Sapers, H.M., et al., 2014.A Mineralogical Characterization of Biogenic Calcium Carbonates Precipitated by Heterotrophic Bacteria Isolated from Cryophilic Polar Regions.Geobiology, 12(6):542-556. https://doi.org/10.1111/gbi.12102
      Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004.Bone Tissue Engineering:State of the Art and Future Trends.Macromolecular Bioscience, 4(8):743-765. https://doi.org/10.1002/mabi.200400026
      Sánchez-Román, M., Rivadeneyra, M.A., Vasconcelos, C., et al., 2007.Biomineralization of Carbonate and Phosphate by Moderately Halophilic Bacteria.FEMS Microbiology Ecology, 61(2):273-284. https://doi.org/10.1111/j.1574-6941.2007.00336.x
      Schäffer, T.E., Ionescu Zanetti, C., Proksch, R., et al., 1997.Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges? Chemistry of Materials, 9(8):1731-1740. https://doi.org/10.1021/cm960429i
      Scheffel, A., Gruska, M., Faivre, D., et al., 2006.An Acidic Protein Aligns Magnetosomes along a Filamentous Structure in Magnetotactic Bacteria.Nature, 440(7080):110-114. https://doi.org/10.1038/nature04382
      Schindler, M., Hochella, M.F., 2016.Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils:The Case of Low-Solubility-Index Elements.Geology, 44(7):515-518. https://doi.org/10.1130/G37774.1
      Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2012.Controlled Morphogenesis of Amorphous Silica and Its Relevance to Biosilicification.American Mineralogist, 97:1381-1392. https://doi.org/10.2138/am.2012.4081
      Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2013.Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification.PLoS One, 8(4):e61164. https://doi.org/10.1371/journal.pone.0061164
      Shi, J.Y., Yao, Q.Z., Zhou, G.T., 2011.Organic Matrix-Mineral Interaction during Cell Wall Silicification in Diatoms.Geological Journal of China Universities, 17(1):76-85 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.009
      Sinha, A., Singh, A., Kumar, S., et al., 2014.Microbial Mineralization of Struvite:A Promising Process to Overcome Phosphate Sequestering Crisis.Water Research, 54:33-43. https://doi.org/10.1016/j.watres.2014.01.039
      Skinner, H.C.W., 2005.Biominerals.Mineralogical Magazine, 69(5):621-641. https://doi.org/10.1180/0026461056950275
      Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.077
      Song, R.Q., Cölfen, H., 2010.Mesocrystals-Ordered Nanoparticle Superstructures.Advanced Materials, 22(12):1301-1330. https://doi.org/10.1002/adma.200901365
      Sturm, E.V., Cölfen, H., 2016.Mesocrystals:Structural and Morphogenetic Aspects.Chemical Society Reviews, 45(21):5821-5833. https://doi.org/10.1039/c6cs00208k
      Takahashi, K., Yamamoto, H., Onoda, A., et al., 2004.Highly Oriented Aragonite Nanocrystal-Biopolymer Composites in an Aragonite Brick of the Nacreous Layer of Pinctada Fucata.Chemical Communications, 8:996-997. https://doi.org/10.1039/b315478e
      Tao, J.H., Zhou, D.M., Zhang, Z.S., et al., 2009.Magnesium-Aspartate-Based Crystallization Switch Inspired from Shell Molt of Crustacean.Proceedings of the National Academy of Sciences of the United States of America, 106(52):22096-22101. https://doi.org/10.1073/pnas.0909040106
      Uebe, R., Schuler, D., 2016.Magnetosome Biogenesis in Magnetotactic Bacteria.Nature Reviews Microbiology, 14(10):621-637. https://doi.org/10.1038/nrmicro.2016.99
      Wan, Q., 2012.Some Thoughts on Nanogeoscience.Acta Mineralogica Sinica, (Suppl.):50-51 (in Chinese). https://doi.org/10.16461/j.cnki.1000-4734.2012.s1.041
      Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nanogeology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). http://www.learner.org/workshops/socialstudies/pdf/session8/8.WhatIsSocialStudies.pdf
      Wang, Y.Y., Yao, Q.Z., Li, H., et al., 2015.Formation of Vaterite Mesocrystals in Biomineral-Like Structures and Implication for Biomineralization.Crystal Growth & Design, 15(4):1714-1725. https://doi.org/10.1021/cg501707f
      Wang, Y.Y., Yao, Q.Z., Zhou, G.T., et al., 2013.Formation of Elongated Calcite Mesocrystals and Implicationfor Biomineralization.Chemical Geology, 360-361:126-133. https://doi.org/10.1016/j.chemgeo.2013.10.013
      Weiner, S., 2008.Biomineralization:A Structural Perspective.Journal of Structural Biology, 163(3):229-234. https://doi.org/10.1016/j.jsb.2008.02.001
      Weiner, S., Addadi, L., 1997.Design Strategies in Mineralized Biological Materials.Journal of Materials Chemistry, 7(5):689-702. https://doi.org/10.1039/a604512j
      Weiner, S., Dove, P.M., 2003.An Overview of Biomineralization Processes and the Problem of the Vital Effect.Reviews in Mineralogy and Geochemistry, 54(1):1-29. https://doi.org/org/10.2113/0540001
      Weiner, S., Wagner, H.D., 1998.The Material Bone:Structure Mechanical Function Relations.Annual Review of Materials Science, 28:271-298. https://doi.org/10.1146/annurev.matsci.28.1.271
      Wit, J.C., de Nooijer, L.J., Haig, J., et al., 2017.Towards Reconstructing Ancient Seawater Mg/Ca by Combining Porcelaneous and Hyaline Foraminiferal Mg/Ca-Temperature Calibrations.Geochimica et Cosmochimica Acta, 211:341-354. https://doi.org/10.1016/j.gca.2017.05.036
      Yao, Q.Z., Guan, Y.B., Zhou, G.T., et al., 2012.Witherite Nanorods Form Mesocrystals:A Direct Experimental Examination of a Dipole-Driven Self-Assembly Model.European Journal of Mineralogy, 24(3):519-526. https://doi.org/10.1127/0935-1221/2012/0024-2186
      Zaremba, C.M., Belcher, A.M., Fritz, M., et al., 1996.Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls.Chemistry of Materials, 8(3):679-690. https://doi.org/10.1021/cm9503285
      Zhou, G.T., Guan, Y.B., Yao, Q.Z., et al., 2010.Biomimetic Mineralization of Prismatic Calcite Mesocrystals:Relevance to Biomineralization.Chemical Geology, 279(3-4):63-72. https://doi.org/10.1016/j.chemgeo.2010.08.020
      Zhou, G.T., Yao, Q.Z., Ni, J., et al., 2009.Formation of Aragonite Mesocrystals and Implication for Biomineralization.American Mineralogist, 94(2-3):293-302. https://doi.org/10.2138/am.2009.2957
      Zhou, L., O'Brien, P., 2008.Mesocrystals:A New Class of Solid Materials.Small, 4(10):1566-1574. https://doi.org/10.1002/smll.200800520
      卜凡兴, 都晨杰, 姜继森, 2014.介晶的制备、性能与应用研究.化学进展, 26(1):75-86. http://cdmd.cnki.com.cn/Article/CDMD-10338-1015564335.htm
      陈天虎, 谢巧勤, 2005.电子显微镜时代与纳米地球科学.合肥工业大学学报(自然科学版), 28(9):1126-1129. http://www.cqvip.com/QK/90962X/200509/20242993.html
      崔福斋, 2012.生物矿化(第2版).北京:清华大学出版社.
      戴永定, 1994.生物成因矿物学.北京:石油工业出版社.
      段勇, 药彦辰, 邱轩, 等, 2017.三株嗜盐古菌诱导形成白云石.地球科学, 42(3):389-396. http://www.earth-science.net/WebPage/Article.aspx?id=3542
      琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      林巍, 田兰香, 潘永信, 2006.趋磁细菌磁小体研究进展.微生物学通报, 33(3):133-137. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001017.htm
      曲晓飞, 姚奇志, 周根陶, 2011.纳米磁铁矿链的仿生合成及其生物矿化意义.高校地质学报, 17(1):66-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201101009
      史家远, 姚奇志, 周根陶, 2011.硅藻细胞壁硅化过程中有机质-矿物的相互作用.高校地质学报, 17(1):76-85. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxdzxb201101010
      宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. http://www.earth-science.net/WebPage/Article.aspx?id=3307
      万泉, 2012.关于纳米地球科学的一些思考.矿物学报, (增刊):50-51. http://www.cqvip.com/QK/96984X/200406/11309951.html
      王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (7706) PDF downloads(110) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return