• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 5
    May  2018
    Turn off MathJax
    Article Contents
    Duan Jianshu, Li Yan, Xu Xiaoming, Ding Hongrui, Liu Feifei, Lu Anhuai, 2018. Raman Spectroscopy of Ion Exchange in Interlayer of Triclinic Birnessite. Earth Science, 43(5): 1623-1634. doi: 10.3799/dqkx.2018.416
    Citation: Duan Jianshu, Li Yan, Xu Xiaoming, Ding Hongrui, Liu Feifei, Lu Anhuai, 2018. Raman Spectroscopy of Ion Exchange in Interlayer of Triclinic Birnessite. Earth Science, 43(5): 1623-1634. doi: 10.3799/dqkx.2018.416

    Raman Spectroscopy of Ion Exchange in Interlayer of Triclinic Birnessite

    doi: 10.3799/dqkx.2018.416
    • Received Date: 2017-09-07
    • Publish Date: 2018-05-15
    • Birnessite is a group of manganese oxide minerals widely found in nature. However, its ion exchange behavior and structural transformation have not been fully understood, and the characterization techniques are limited. To study the ion exchange behavior of birnessite and the reflection of structural transformation in Raman spectroscopy, triclinic Na-birnessite was synthesized using MnSO4 and NaOH, and ion exchange experiments on NH4+, K+, Mg2+, Ca2+, Ba2+, Co2+, and Zn2+ were carried out. Ion exchange birnessite samples were characterized using ICP-OES, XRD, and Raman spectroscopy. Raman study shows the relative strength of two stretching vibration modes in[MnO6] octahedra around 570-585 cm-1 and 640-655 cm-1 and the band location of the mode around 570-585 cm-1 are indicators of the symmetry of birnessite. High strength and frequency of the mode around 570-585 cm-1 are signs of triclinic symmetry. Raman bands around 280 cm-1 and 500 cm-1 are indicators of interlayer cations. If alkalis and alkaline-earth metals (i.e., Na+, K+, Mg2+, Ca2+, Ba2+, etc.) are in the interlayer of birnessite, a band around 280 cm-1 and two separate bands around 500 cm-1 will appear; whereas other interlayer cations only give rise to one single band at 500 cm-1, indicating disorder in the interlayer.

       

    • loading
    • Al-Attar, L., Dyer, A., 2007.Ion Exchange in Birnessite.Land Contamination & Reclamation, 15(4):427-436. https://doi.org/10.2462/09670513.878
      Bargar, J.R., Fuller, C.C., Marcus, M.A., et al., 2009.Structural Characterization of Terrestrial Microbial Mn Oxides from Pinal Creek, AZ.Geochimica et Cosmochimica Acta, 73(4):889-910. https://doi.org/10.1016/j.gca.2008.10.036
      Burns, R. G., Burns, V. M., 1979. Manganese Oxides. In: Burns, R. G., ed., Marine Minerals. Mineral Society of America, Cambridge, 1-46.
      Deibert, B.J., Zhang, J., Smith, P.F., et al., 2015.Surface and Structural Investigation of a MnOx Birnessite-Type Water Oxidation Catalyst Formed under Photocatalytic Conditions.Chemistry, 21(40):14218-14228. https://doi.org/10.1002/chem.201501930
      Drits, V.A., Silvester, E., Gorshkov, A., et al., 1997.Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite:I.Results from X-Ray Diffraction and Selected-Area Electron Diffraction.American Mineralogist, 82 (9-10):962-978. https://doi.org/10.2138/am-1997-9-1012
      Fan, C., Wang, L., Fan, X., et al., 2015.The Mineralogical Characterization of Argentian Cryptomelane from Xiangguang Mn-Ag Deposit, North China.Journal of Mineralogical and Petrological Sciences, 110(5):214-223. https://doi.org/10.2465/jmps.150119
      Feng, Q., Kanoh, H., Ooi, K., 1999.Manganese Oxide Porous Crystals.Journal of Materials Chemistry, 9(2):319-333. https://doi.org/10.1039/A805369C
      Feng, X.H., Tan, W.F., Liu, F., et al., 2003.Synthesis of Birnessite in Alkali Media and Its Transformation to Todorokite.Bulletin of Mineralogy, Petrology and Geochemistry, 22(2):184-187 (in Chinese with English abstract).
      Gaillot, A.C., Drits, V.A., Manceau, A., et al., 2006.Structure of the Synthetic K-Rich Phyllomanganate Birnessite Obtained by High-Temperature Decomposition of KMnO4.Substructures of K-Rich Birnessite from 1 000℃ Experiment.Microporous and Mesoporous Materials, 98(1-3):267-282. https://doi.org/10.1016/j.micromeso.2006.09.010
      Gaillot, A.C., Flot, D., Drits, V.A., et al., 2003.Structure of Synthetic K-Rich Birnessite Obtained by High-Temperature Decomposition of KMnO4.I.Two-Layer Polytype from 800℃ Experiment.Chemistry of Materials, 15(25):4666-4678. https://doi.org/10.1021/cm021733g
      Gao, T., Fjellvåg, H., Norby, P., 2009.A Comparison Study on Raman Scattering Properties of α-and β-MnO2.Analytica Chimica Acta, 648(2):235-239. https://doi.org/10.1016/j.aca.2009.06.059
      Gao, T., Glerup, M., Krumeich, F., et al., 2008.Microstructures and Spectroscopic Properties of Cryptomelane-Type Manganese Dioxide Nanofibers.Journal of Physical Chemistry C, 112(34):13134-13140. https://doi.org/10.1021/jp804924f
      Giovanoli, R., Stähli, E., Feitknecht, W., 1970.Vber Oxidhydroxide des Vierwertigen Mangans Mit Schichtengitter.1.Mitteilung.Natriummangan(Ⅱ, Ⅲ) Manganat(Ⅳ).Helvetica Chimica Acta, 53(2):209-220. https://doi.org/10.1002/hlca.19700530203
      Golden, D.C., 1986.Ion Exchange, Thermal Transformations, and Oxidizing Properties of Birnessite.Clays and Clay Minerals, 34(5):511-520. https://doi.org/10.1346/CCMN.1986.0340503
      Hsu, Y.K., Chen, Y.C., Lin, Y.G., et al., 2011.Reversible Phase Transformation of MnO2 Nanosheets in an Electrochemical Capacitor Investigated by In-Situ Raman Spectroscopy.Chemical Communications, 47(4):1252-1254. https://doi.org/10.1039/C0CC03902K
      Johnson, E.A., Post, J.E., 2006.Water in the Interlayer Region of Birnessite:Importance in Cation Exchange and Structural Stability.American Mineralogist, 91(4):609-618. https://doi.org/10.2138/am.2006.2090
      Jones, L.H.P., Milne, A.A., 1956.Birnessite, a New Manganese Oxide Mineral from Aberdeenshire, Scotland.Mineralogical Magazine, 31(235):283-288. http://minersoc.org/pages/Archive-MM/Volume_31/31-235-283.htm
      Julien, C., 2000. Local Environment in 4-Volt Cathode Materials for Li-Ion Batteries. In: Julien, C., Stoynov, Z., eds., Materials for Lithium-Ion Batteries. Springer Netherlands, Dordrecht, 309-326. https://doi.org/10.1007/978-94-011-4333-2_13
      Julien, C., Massot, M., Baddour-Hadjean, R., et al., 2003.Raman Spectra of Birnessite Manganese Dioxides.Solid State Ionics, 159(3-4):345-356. https://doi.org/10.1016/S0167-2738(03)00035-3
      Julien, C., Massot, M., Rangan, S., et al., 2002.Study of Structural Defects in γ-MnO2 by Raman Spectroscopy.Journal of Raman Spectroscopy, 33(4):223-228. https://doi.org/10.1002/jrs.838
      Julien, C.M., Massot, M., 2003.Lattice Vibrations of Materials for Lithium Rechargeable Batteries Ⅲ.Lithium Manganese Oxides.Materials Science and Engineering:B, 100(1):69-78. https://doi.org/10.1016/S0921-5107(03)00077-1
      Julien, C.M., Massot, M., Poinsignon, C., 2004.Lattice Vibrations of Manganese Oxides:Part Ⅰ.Periodic Structures.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 60(3):689-700. https://doi.org/10.1016/S1386-1425(03)00279-8
      Kang, L., Zhang, M., Liu, Z.H., et al., 2007.IR Spectra of Manganese Oxides with Either Layered or Tunnel Structures.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 67(3-4):864-869. https://doi.org/10.1016/j.saa.2006.09.001
      Kim, H.S., Stair, P.C., 2004.Bacterially Produced Manganese Oxide and Todorokite:UV Raman Spectroscopic Comparison.Journal of Physical Chemistry B, 108(44):17019-17026. https://doi.org/10.1021/jp048810a
      Kuma, K., 1994.Crystal Structures of Synthetic 7 Å and 10 Å Manganates Substituted by Mono-and Divalent Cations.Mineralogical Magazine, 58(392):425-447. https://doi.org/10.1180/minmag.1994.058.392.08
      Kwon, K.D., Refson, K., Sposito, G., 2009.Zinc Surface Complexes on Birnessite:A Density Functional Theory Study.Geochimica et Cosmochimica Acta, 73(5):1273-1284. https://doi.org/10.1016/j.gca.2008.11.033
      Kwon, K.D., Refson, K., Sposito, G., 2013.Understanding the Trends in Transition Metal Sorption by Vacancy Sites in Birnessite.Geochimica et Cosmochimica Acta, 101:222-232. https://doi.org/10.1016/j.gca.2012.08.038
      Lanson, B., Drits, V.A., Feng, Q., et al., 2002.Structure of Synthetic Na-Birnessite:Evidence for a Triclinic One-Layer Unit Cell.American Mineralogist, 87 (11-12):1662-1671. https://doi.org/10.2138/am-2002-11-1215
      Lanson, B., Drits, V.A., Silvester, E., et al., 2000.Structure of H-Exchanged Hexagonal Birnessite and Its Mechanism of Formation from Na-Rich Monoclinic Buserite at Low pH.American Mineralogist, 85(5-6):826-838. https://doi.org/10.2138/am-2000-5-625
      Le Goff, P., Baffier, N., Bach, S., 1996.Synthesis, Ion Exchange and Electrochemical Properties of Lamellar Phyllomanganates of the Birnessite Group.Materials Research Bulletin, 31(1):63-75. https://doi.org/10.1016/0025-5408(95)00170-0
      Le Goff, P., Baffier, N., Bach, S., et al., 1993.Structural and Electrochemical Characteristics of a Lamellar Sodium Manganese Oxide Synthesized via a Sol-Gel Process.Solid State Ionics, 61(4):309-315. https://doi.org/10.1016/0167-2738(93)90397-L
      Ling, F.T., Heaney, P.J., Post, J.E., et al., 2015.Transformations from Triclinic to Hexagonal Birnessite at Circumneutral pH Induced through pH Control by Common Biological Buffers.Chemical Geology, 416:1-10. https://doi.org/10.1016/j.chemgeo.2015.10.007
      Ling, F.T., Post, J.E., Heaney, P.J., et al., 2017.Fourier-Transform Infrared Spectroscopy (FTIR) Analysis of Triclinic and Hexagonal Birnessites.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 178:32-46. https://doi.org/10.1016/j.saa.2017.01.032
      Lopano, C.L., Heaney, P.J., Bandstra, J.Z., et al., 2011.Kinetic Analysis of Cation Exchange in Birnessite Using Time-Resolved Synchrotron X-Ray Diffraction.Geochimica et Cosmochimica Acta, 75(14):3973-3981. https://doi.org/10.1016/j.gca.2011.04.021
      Lopano, C.L., Heaney, P.O., Post, J.E., 2007.Time-Resolved Structural Analysis of K-and Ba-Exchange Reactions with Synthetic Na-Birnessite Using Synchrotron X-Ray Diffraction.American Minerologist, 92(2-3):380-387. https://doi.org/10.2138/am.2007.2242
      Lopano, C.L., Heaney, P.J., Post, J.E., 2009.Cs-Exchange in Birnessite:Reaction Mechanisms Inferred from Time-Resolved X-Ray Diffraction and Transmission Electron Microscopy.American Mineralogist, 94(5-6):816-826. https://doi.org/10.2138/am.2009.3068
      Manceau, A., Drits, V.A., Silvester, E., et al., 1997.Structural Mechanism of Co2+ Oxidation by the Phyllomanganate Buserite.American Mineralogist, 82(11-12):1150-1175. https://doi.org/10.2138/am-1997-11-1213
      Manceau, A., Lanson, B., Drits, V.A., et al., 2002.Structure of Heavy Metal Sorbed Birnessite.Part Ⅲ:Results from Powder and Polarized Extended X-Ray Absorption Fine Structure Spectroscopy.Geochimica et Cosmochimica Acta, 66(15):2639-2663. https://doi.org/10.1016/S0016-7037(02)00869-4
      Matsui, H., Ju, J., Odaira, T., et al., 2009.Two-Dimensionally Confined Water in between MnO2 Layers of Na-Birnessite.Journal of the Physical Society of Japan, 78(7):1-6. https://doi.org/10.1143/JPSJ.78.074801
      McKenzie, R.M., 1971.The Synthesis of Birnessite, Cryptomelane, and Some Other Oxides and Hydroxides of Manganese.Mineralogical Magazine, 38(296):493-502. https://doi.org/10.1180/minmag.1971.038.296.12
      McKeown, D.A., Post, J.E., 2001.Characterization of Manganese Oxide Mineralogy in Rock Varnish and Dendrites Using X-Ray Absorption Spectroscopy.American Mineralogist, 86(5-6):701-713. https://doi.org/10.2138/am-2001-5-611
      Peña, J., Bargar, J.R., Sposito, G., 2015.Copper Sorption by the Edge Surfaces of Synthetic Birnessite Nanoparticles.Chemical Geology, 396:196-207. https://doi.org/10.1016/j.chemgeo.2014.12.021
      Pitarch, À., Ruiz, J.F., de Vallejuelo, S.F.O., et al., 2014.In Situ Characterization by Raman and X-Ray Fluorescence Spectroscopy of Post-Paleolithic Blackish Pictographs Exposed to the Open Air in Los Chaparros Shelter (Albalate del Arzobispo, Teruel, Spain).Analytical Methods, 6(17):6641-6650. https://doi.org/10.1039/C4AY00539B
      Post, J.E., Appleman, D.E., 1988.Chalcophanite, ZnMn3O7·3H2O:New Crystal-Structure Determinations.American Mineralogist, 73(11-12):1401-1404. http://www.researchgate.net/publication/279891943_Chalcophanite_ZnMn3O73H2O_new_crystal-structure_determinations
      Post, J.E., Heaney, P.J., Hanson, J., 2002.Rietveld Refinement of a Triclinic Structure for Synthetic Na-Birnessite Using Synchrotron Powder Diffraction Data.Powder Diffraction, 17(3):218-221. https://doi.org/10.1154/1.1498279
      Post, J.E., Veblen, D.R., 1990.Crystal Structure Determinations of Synthetic Sodium, Magnesium, and Potassium Birnessite Using TEM and the Rietveld Method.American Mineralogist, 75(5-6):477-489. https://www.researchgate.net/publication/279891700_Crystal_structure_determinations_of_synthetic_sodium_magnesium_and_potassium_birnessite_using_TEM_and_the_Rietveld_method
      Potter, R.M., Rossman, G.R., 1979.The Tetravalent Manganese Oxides:Identification, Hydration, and Structural Relationships by Infrared Spectroscopy.American Mineralogist, 64 (11-12):1199-1218. https://core.ac.uk/display/12816742
      Rosseinsky, D.R., 1965.Electrode Potentials and Hydration Energies.Theories and Correlations, Chemical Reviews, 65(4):467-490. https://doi.org/10.1021/cr60236a004
      Rousseau, D.L., Bauman, R.P., Porto, S.P.S., 1981.Normal Mode Determination in Crystals.Journal of Raman Spectroscopy, 10(1):253-290. https://doi.org/10.1002/jrs.1250100152
      Shannon, R.D., 1976.Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides.Acta Crystallographica Section A, 32(5):751-767. https://doi.org/10.1107/S0567739476001551
      Silvester, E., Manceau, A., Drits, V.A., 1997.Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite:Ⅱ.Results from Chemical Studies and EXAFS Spectroscopy.American Mineralogist, 82(9-10):962-978. https://doi.org/10.2138/am-1997-9-1013
      Webb, S.M., Dick, G.J., Bargar, J.R., et al., 2005a.Evidence for the Presence of Mn(Ⅲ) Intermediates in the Bacterial Oxidation of Mn(Ⅱ).Proceedings of the National Academy of Sciences, 102(15):5558-5563. https://doi.org/10.1073/pnas.0409119102
      Webb, S.M., Tebo, B.M., Bargar, J.R., 2005b.Structural Characterization of Biogenic Mn Oxides Produced in Seawater by the Marine Bacillus sp. Strain SG-1.American Mineralogist, 90(8-9):1342-1357. https://doi.org/10.2138/am.2005.1669
      Yang, D.S., Wang, M.K., 2001.Syntheses and Characterization of Well-Crystallized Birnessite.Chemistry of Materials, 13(8):2589-2594. https://doi.org/10.1021/cm010010e
      Yang, L., Cheng, S., Ji, X., et al., 2015a.Investigations into the Origin of Pseudocapacitive Behavior of Mn3O4 Electrodes Using in Operando Raman Spectroscopy.Journal of Materials Chemistry A, 3(14):7338-7344. https://doi.org/10.1039/C5TA00223K
      Yang, T.Y., Wen, W., Yin, G.Z., et al., 2015b.Introduction of the X-Ray Diffraction Beamline of SSRF.Nuclear Science and Techniques, 25(2):020101-020105. https://doi.org/10.13538/j.1001-8042/nst.26.020101
      冯雄汉, 谭文峰, 刘凡, 等, 2003.碱性介质中水钠锰矿的合成与转化.矿物岩石地球化学通报, 22(2):184-187. http://www.cqvip.com/QK/84215X/200302/7822193.html
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (5436) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return