Citation: | Cui Yanshan, Wang Pengfei, Ju Yiwen, 2018. Progress of Applications of Nanomaterials in Soil Heavy Metal Remediation. Earth Science, 43(5): 1737-1745. doi: 10.3799/dqkx.2018.425 |
Banerjee, S.S., Chen, D.H., 2007.Fast Removal of Copper Ions by Gum Arabic Modified Magnetic Nano-Adsorbent.Journal of Hazardous Materials, 147(3):792-799. https://doi.org/10.1016/j.jhazmat.2007.01.079
|
Bolan, N., Kunhikrishnan, A., Thangarajan, R., et al., 2014.Remediation of Heavy Metal(Loid)s Contaminated Soils-To Mobilize or to Immobilize? Journal of Hazardous Materials, 266:141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
|
Braunschweig, J., Bosch, J., Meckenstock, R.U., 2013.Iron Oxide Nanoparticles in Geomicrobiology:From Biogeochemistry to Bioremediation.New Biotechnology, 30(6):793-802. https://doi.org/10.1016/j.nbt.2013.03.008
|
Chen, Z., Fang, L.S., Tan, Y.Y., et al., 2017.Immobilization of Cu in High Sulfate Mine Soil Using Stabilized Nonoscale Zero-Valent Iron.Acta Scientiae Circumstantiae, 37(11):4336-4343 (in Chinese with English abstract).
|
Cheng, J.M., Liu, Y.Z., Wang, H.W., 2014.Effects of Surface-Modified Nano-Scale Carbon Black on Cu and Zn Fractionations in Contaminated Soil.International Journal of Phytoremediation, 16(1):86-94. https://doi.org/10.1080/15226514.2012.759530
|
Chowdhury, I., Cwiertny, D.M., Walker, S.L., 2012.Combined Factors Influencing the Aggregation and Deposition of Nano-TiO2 in the Presence of Humic Acid and Bacteria.Environmental Science & Technology, 46:6968-6976. https://doi.org/10.1021/es2034747
|
Crane, R.A., Scott, T.B., 2012.Nanoscale Zero-Valent Iron:Future Prospects for an Emerging Water Treatment Technology.Journal of Hazardous Materials, 211:112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
|
Dai, Y., Hu, Y.C., Jiang, B.J., et al., 2016.Carbothermal Synthesis of Ordered Mesoporous Carbon-Supported Nano Zero-Valent Iron with Enhanced Stability and Activity for Hexavalent Chromium Reduction.Journal of Hazardous Materials, 309:249-258. https://doi.org/10.1016/j.jhazmat.2015.04.013
|
Eggleton, J., Thomas, K.V., 2004.A Review of Factors Affecting the Release and Bioavailability of Contaminants during Sediment Disturbance Events.Environment International, 30(7):973-980. https://doi.org/10.1016/j.envint.2004.03.001
|
Fajardo, C., Gil-Díaz, M., Costa, G., et al., 2015.Residual Impact of Aged nZⅥ on Heavy Metal-Polluted Soils.The Science of the Total Environment, 535:79-84. https://doi.org/10.1016/j.scitotenv.2015.03.067
|
Fan, L.R., Song, J.Q., Bai, W.B., et al., 2016.Chelating Capture and Magnetic Removal of Non-Magnetic Heavy Metal Substances from Soil.Scientific Reports, 6:1-9. https://doi.org/10.1038/srep21027
|
Fu, Y., Zhao, N., Fu, J., et al., 2012.Removal of Lead from Soil Leachate Leached with HCl by Nanoscale Zero-Valent Iron Particles.Chinese Journal of Environmental Engineering, 6(4):1393-1397 (in Chinese with English abstract). http://www.oalib.com/paper/1607285
|
Ghrair, A.M., Ingwersen, J., Streck, T., 2010.Immobilization of Heavy Metals in Soils Amended by Nanoparticulate Zeolitic Tuff:Sorption-Desorption of Cadmium.Journal of Plant Nutrition and Soil Science, 173(6):852-860. https://doi.org/10.1002/jpln.200900053
|
Gil-Díaz, M., Alonso, J., Rodriguez-Valdes, E., et al., 2017a.Comparing Different Commercial Zero Valent Iron Nanoparticles to Immobilize as and Hg in Brownfield Soil.The Science of the Total Environment, 584:1324-1332. https://doi.org/10.1016/j.scitotenv.2017.02.011
|
Gil-Díaz, M., Pinilla, P., Alonso, J., 2017b.Viability of a Nanoremediation Process in Single or Multi-Metal (Loid) Contaminated Soils.Journal of Hazardous Materials, 321:812-819. https://doi.org/10.1016/j.jhazmat.2016.09.071
|
Gil-Díaz, M., Diez-Pascual, S., Gonzalez, A., et al., 2016.A Nanoremediation Strategy for the Recovery of an As-Polluted Soil.Chemosphere, 149:137-145. https://doi.org/10.1016/j.chemosphere.2016.01.106
|
Gomes, H.I., Dias-Ferreira, C., Ribeiro, A.B., 2013.Enhanced Transport and Transformation of Zerovalent Nanoiron in Clay Using Direct Electric Current.Water, Air, & Soil Pollution, 224(12):1-12. https://doi.org/10.1007/s11270-013-1710-2
|
Han, S.S., Liu, J., Zhao, Y., et al., 2014.Simulation Study on Sorption and Fixation of Composite Nanomaterial to Heavy Metal Ions in Soil.Chinese Journal of Environmental Engineering, 8(5):2104-2109 (in Chinese with English abstract). http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Podzols&onlyFullText=false
|
Hua, M., Zhang, S.J., Pan, B.C., et al., 2012.Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides:A Review.Journal of Hazardous Materials, 211:317-331. https://doi.org/10.1016/j.jhazmat.2011.10.016
|
Jin, Y., Liu, W., Li, X.L., et al., 2016.Nano-Hydroxyapatite Immobilized Lead and Enhanced Plant Growth of Ryegrass in a Contaminated Soil.Ecological Engineering, 95:25-29. https://doi.org/10.1016/j.ecoleng.2016.06.071
|
Johnson, R.L., Nurmi, J.T., Johnson, G.S.O., et al., 2013.Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron.Environmental Science & Technology, 47(3):1573-1580. https://doi.org/10.1021/es304564q
|
Ju, Y., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience & Nanotechnology, 17:5930-5965. https://doi.org/10.1166/jnn.2017.14436
|
Jung, H.B., Xu, H.F., Konishi, H., et al., 2016. Role of Nano-Goethite in Controlling U(Ⅵ) Sorption-Desorption in Subsurface Soil.Journal of Geochemical Exploration, 169(2016):80-88. https://doi.org/10.1016/j.gexplo.2016.07.014
|
Karn, B., Kuiken, T., Otto, M., et al., 2009.Nanotechnology and In Situ Remediation:A Review of the Benefits and Potential Risks.Environmental Health Perspectives, 117(12):1823-1831. https://doi.org/10.1289/ehp.0900793
|
Kim, R.Y., Yoon, J.K., Kim, T.S., et al., 2015.Bioavailability of Heavy Metals in Soils:Definitions and Practical Implementation-A Critical Review.Environmental Geochemistry and Health, 37(6):1041-1061. https://doi.org/10.1007/s10653-015-9695-y
|
Lessen, D., Luo, C.L., Li, X.D., 2008.The Use of Chelating Agents in the Remediation of Metal-Contaminated Soils:A Review.Environmental Pollution, 153:3-13.doi: 10.1016/j.envpol.2007.11.015
|
Li, Y.C., Jin, Z.H., Li, T.L., et al., 2011.Removal of Hexavalent Chromium in Soil and Groundwater by Supported Nano Zero-Valent Iron on Silica Fume.Water Science and Technology, 63(12):2781-2787. https://doi.org/10.2166/wst.2011.454
|
Li, Y.C., Jin, Z.H., Li, T.L., et al., 2012.One-Step Synthesis and Characterization of Core-Shell Fe@SiO2 Nanocomposite for Cr (Ⅵ) Reduction.The Science of the Total Environment, 421:260-266. https://doi.org/10.1016/j.scitotenv.2012.01.010
|
Liang, S.X., Jin, Y., Liu, W., et al., 2017.Feasibility of Pb Phytoextraction Using Nano-Materials Assisted Ryegrass:Results of a One-Year Field-Scale Experiment.Journal of Environmental Management, 190:170-175. https://doi.org/10.1016/j.jenvman.2016.12.064
|
Lima, A.T., Hofmann, A., Reynolds, D., 2017.Environmental Electrokinetics for a Sustainable Subsurface.Chemosphere, 181:122-133. https://doi.org/10.1016/j.chemosphere.2017.03.143
|
Lin, Y.H., Tseng, H.H., Wey, M.Y., et al., 2010.Characteristics of Two Types of Stabilized Nano Zero-Valent Iron and Transport in Porous Media.Science of the Total Environment, 408(10):2260-2267. https://doi.org/10.1016/j.scitotenv.2010.01.039
|
Liu, S., Li, H., Han, C., et al., 2017.Cd Inhibition and pH Improvement via a Nano-Submicron Mineral-Based Soil Conditioner.Environmental Science and Pollution Research, 24(5):4942-4949. https://doi.org/10.1007/s11356-016-8249-x
|
Luo, C., Tian, Z., Yang, B., et al., 2013.Manganese Dioxide/Iron Oxide/Acid Oxidized Multi-Walled Carbon Nanotube Magnetic Nanocomposite for Enhanced Hexavalent Chromium Removal.Chemical Engineering Journal, 234:256-265. https://doi.org/10.1016/j.cej.2013.08.084
|
Mallampati, S.R., Mitoma, Y., Okuda, T., et al., 2013.Total Immobilization of Soil Heavy Metals with Nano-Fe/Ca/CaO Dispersion Mixtures.Environmental Chemistry Letters, 11(2):119-125. https://doi.org/10.1007/s10311-012-0384-0
|
Mallampati, S.R., Mitoma, Y., Okuda, T., et al., 2014.Simultaneous Decontamination of Cross-Polluted Soils with Heavy Metals and PCBs Using a Nano-Metallic Ca/CaO Dispersion Mixture.Environmental Science and Pollution Research, 21(15):9270-9277. https://doi.org/10.1007/s11356-014-2830-y
|
Michalkova, Z., Komarek, M., Veselska, V., 2016.Selected Fe and Mn (Nano) Oxides as Perspective Amendments for the Stabilization of As in Contaminated Soils.Environmental Science and Pollution Research, 23(11):10841-10854. https://doi.org/10.1007/s11356-016-6200-9
|
Mu, Y., Jia, F.L., Ai, Z.H., et al., 2017.Iron Oxide Shell Mediated Environmental Remediation Properties of Nano Zero-Valent Iron.Environmental Science Nano, 4(1):27-45. https://doi.org/10.1039/c6en00398b
|
Mukherjee, R., Kumar, R., Sinha, A., et al., 2016.A Review on Synthesis, Characterization, and Applications of Nano Zero Valent Iron (nZⅥ) for Environmental Remediation.Critical Reviews in Environmental Science and Technology, 46:443-466. https://doi.org/10.1080/10643389.2015.1103832
|
Qiu, H., Zhang, S.J., Pan, B.C., et al., 2012.Effect of Sulfate on Cu(Ⅱ) Sorption to Polymer-Supported Nano-Iron Oxides:Behavior and XPS Study.Journal of Colloid and Interface Science, 366(1):37-43. https://doi.org/10.1016/j.jcis.2011.09.070
|
Shaheen, S.M., Rinklebe, J., Selim, M.H., et al., 2015.Impact of Various Amendments on Immobilization and Phytoavailability of Nickel and Zinc in a Contaminated Floodplain Soil.International Journal of Environmental Science and Technology, 12:2765-2776. https://doi.org/10.1007/s13762-014-0713-x
|
Shariatmadari, N., Weng, C.H., Daryaee, H., 2009. Enhancement of Hexavalent Chromium[Cr(Ⅵ)] Remediation from Clayey Soils by Electrokinetics Coupled with a Nano-Sized Zero-Valent Iron Barrier.Environmental Engineering Science, 26(6):1071-1079. https://doi.org/10.1089/ees.2008.0257
|
Shipley, H.J., Engates, K.E., Guettner, A.M., 2011.Study of Iron Oxide Nanoparticles in Soil for Remediation of Arsenic.Journal of Nanoparticle Research, 13(6):2387-2397. https://doi.org/10.1007/s11051-010-9999-x
|
Singh, J., Lee, B.K., 2016.Influence of Nano-TiO2 Particles on the Bioaccumulation of Cd in Soybean Plants (Glycine Max):A Possible Mechanism for the Removal of Cd from the Contaminated Soil.Journal of Environmental Management, 170:88-96. https://doi.org/10.1016/j.jenvman.2016.01.015
|
Su, C.M., 2017.Environmental Implications and Applications of Engineered Nanoscale Magnetite and Its Hybrid Nanocomposites:A Review of Recent Literature.Journal of Hazardous Materials, 322:48-84. https://doi.org/10.1016/j.jhazmat.2016.06.060
|
Su, H.J., Fang, Z.Q., Tsang, P.E., et al., 2016a.Remediation of Hexavalent Chromium Contaminated Soil by Biochar-Supported Zero-Valent Iron Nanoparticles.Journal of Hazardous Materials, 318:533-540. https://doi.org/10.1016/j.jhazmat.2016.07.039
|
Su, H.J., Fang, Z.Q., Tsang, P.E., et al., 2016b.Stabilisation of Nanoscale Zero-Valent Iron with Biochar for Enhanced Transport and In-Situ Remediation of Hexavalent Chromium in Soil.Environmental Pollution, 214:94-100. https://doi.org/10.1016/j.envpol.2016.03.072
|
Tesh, S.J., Scott.T.B., 2014.Nano-Composites for Water Remediation:A Review.Advanced Materials, 26:6056-6068. https://doi.org/10.1002/adma.201401376
|
Tomasevic, D.D., Kozma, G., Kerkez, D.V., et al., 2014.Toxic Metal Immobilization in Contaminated Sediment Using Bentonite-and Kaolinite-Supported Nano Zero-Valent Iron.Journal of Nanoparticle Research, 16:2548. https://doi.org/10.1007/s11051-014-2548-2
|
van Koetsem, F., van Havere, L., du Laing, G., 2016.Impact of Carboxymethyl Cellulose Coating on Iron Sulphide Nanoparticles Stability, Transport, and Mobilization Potential of Trace Metals Present in Soils and Sediment.Journal of Environmental Management, 168:210-218. https://doi.org/10.1016/j.jenvman.2015.10.047
|
Vitkova, M., Komarek, M., Tejnecky, V., et al., 2015.Interactions of Nano-Oxides with Low-Molecular-Weight Organic Acids in a Contaminated Soil.Journal of Hazardous Materials, 293:7-14. https://doi.org/10.1016/j.jhazmat.2015.03.033
|
Vitkova, M., Rakosova, S., Michalkova, Z., et al., 2017.Metal(Loid)s Behaviour in Soils Amended with Nano Zero-Valent Iron as a Function of pH and Time.Journal of Environmental Management, 186:268-276. https://doi.org/10.1016/j.jenvman.2016.06.003
|
Wang, D.F., Guo, W., Zhang, G.L., et al., 2017a.Remediation of Cr(Ⅵ)-Contaminated Acid Soil Using a Nanocomposite.ACS Sustainable Chemistry & Engineering, 5(3):2246-2254. https://doi.org/10.1021/acssuschemeng.6b02569
|
Wang, X., Zhang, D., Pan, X., et al., 2017b.Aerobic and Anaerobic Biosynthesis of Nano-Selenium for Remediation of Mercury Contaminated Soil.Chemosphere, 170:266-273. https://doi.org/10.1016/j.chemosphere.2016.12.020
|
Wang, F.Y., Wang, L., Wang, X.G., et al., 2014.Role of Immobilization Amendments in Phytoremediation of Pb-Cd-Contaminated Soil Using Tobacco Plants.Chinese Journal of Environmental Engineering, 8(2):789-794.(in Chinese with English abstract). https://www.hindawi.com/journals/jchem/2013/509520/ref/
|
Wang, G.Y., Zhang, S.R., Xu, X.X., et al., 2014.Efficiency of Nanoscale Zero-Valent Iron on the Enhanced Low Molecular Weight Organic Acid Removal Pb from Contaminated Soil.Chemosphere, 117:617-624. https://doi.org/10.1016/j.chemosphere.2014.09.081
|
Wang, H.W., Wang, Y.J., Chen, J.H., et al., 2009.Application of Modified Nano-Particle Black Carbon for the Remediation of Soil Heavy Metal Pollution.China Environmental Science, 29(4):431-436.(in Chinese with English abstract). https://www.researchgate.net/publication/292118381_Application_of_modified_nano-particle_black_carbon_for_the_remediation_of_soil_heavy_metal_pollution
|
Wei, L., Wang, S.T., Zuo, Q.Q., et al., 2016.Nano-Hydroxyapatite Alleviates the Detrimental Effects of Heavy Metals on Plant Growth and Soil Microbes in E-Waste-Contaminated Soil.Environmental Science Processes & Impacts, 18(6):760-767. https://doi.org/10.1039/c6em00121a
|
White, B.R., Stackhouse, B.T., Holcombe, J.A., 2009.Magnetic Gamma-Fe2O3 Nanoparticles Coated with Poly-L-Cysteine for Chelation of As(Ⅲ), Cu(Ⅱ), Cd(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ).Journal of Hazardous Materials, 161(2-3):848-853. https://doi.org/10.1016/j.jhazmat.2008.04.105
|
Wu, G., Kang, H.B., Zhang, X.Y., et al., 2010.A Critical Review on the Bio-Removal of Hazardous Heavy Metals from Contaminated Soils:Issues, Progress, Eco-Environmental Concerns and Opportunities.Journal of Hazardous Materials, 174:1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113
|
Wu, Y.B., Liu, J.B., He, Y.L., et al., 2016.Effect of Mesoporous Silica Nanoparticles on Cd Accumulation in Rice.Soil and Fertilizer Sciences in China, (2):145-148 (in Chinese with English abstract). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295203/
|
Yang, Z.M., Fang, Z.Q., Tsang, P.E., et al., 2016a.In Situ Remediation and Phytotoxicity Assessment of Lead-Contaminated Soil by Biochar-Supported nHAP.Journal of Environmental Management, 182:247-251. https://doi.org/10.1016/j.jenvman.2016.07.079
|
Yang, Z.M., Fang, Z.Q., Zheng, L.C., et al., 2016b.Remediation of Lead Contaminated Soil by Biochar-Supported Nano-Hydroxyapatite.Ecotoxicology and Environmental Safety, 132:224-230. https://doi.org/10.1016/j.ecoenv.2016.06.008
|
Yu, M., Wang, Y., Kong, S., et al., 2016.Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides.Journal of Earth Science, 27(4):699-706. https://doi.org/10.1007/s12583-016-0714-4
|
Zhang, J.Y., Wang, D.Y., Liang, L., et al., 2016.Effect of Nano-TiO2 on Release and Speciation Changes of Heavy Metals in Soil.Environmental Science, 37(5):1946-1952 (in Chinese with English abstract).
|
Zhang, M.Y., Pan, G., 2009.Immobilization of Arsenic in Soils by Stabilized Nanoscale Zero-Valent Iron, Iron Sulfide (FeS), and Magnetite (Fe3O4) Particles.Chinese Science Bulletin, 54(23):3637-3644 (in Chinese).
|
Zhang, Y.X., Li, H., Gong, L.B., et al., 2017.Nano-Sized Fe2O3/Fe3O4 Facilitate Anaerobic Transformation of Hexavalent Chromium in Soil-Water Systems.Journal of Environmental Sciences, 57:329-337. doi: 10.1016/j.jes.2017.01.007
|
Zhao, X., Liu, W., Cai, Z.Q., et al., 2016.An Overview of Preparation and Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.Water Research, 100:245-266. https://doi.org/10.1016/j.watres.2016.05.019
|
Zhu, F., Li, L.W., Ma, S.Y., et al., 2016.Effect Factors, Kinetics and Thermodynamics of Remediation in the Chromium Contaminated Soils by Nanoscale Zero Valent Fe/Cu Bimetallic Particles.Chemical Engineering Journal, 302:663-669. https://doi.org/10.1016/j.cej.2016.05.072
|
Zou, Y.D., Wang, X.X., Khan, A., et al., 2016.Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions:A Review.Environmental Science & Technology, 50(14):7290-7304. https://doi.org/10.1021/acs.est.6b01897
|
陈喆, 房丽莎, 谭韵盈, 等, 2017.CMC-nZⅥ对高硫矿山土壤中铜的固定效果及机理.环境科学学报, 37(11):4336-4343. http://xueshu.baidu.com/s?wd=paperuri%3A%288c9ccce4fb23a3c693ed20a3c7a83207%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dhjxx201711035%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=18246919338592220956
|
付彧, 赵娜, 付瑾, 等, 2012.纳米零价铁颗粒去除污染土壤HCl浸提液中的Pb.环境工程学报, 6(4):1393-1397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201204063
|
韩莎莎, 柳婧, 赵烨, 等, 2014.复合纳米材料对土壤重金属离子吸持固化的模拟研究.环境工程学报, 8(5):2104-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201405068
|
王发园, 王玲, 王旭刚, 等, 2014.钝化剂在烟草植物修复铅镉污染土壤中的作用.环境工程学报, 8(2):789-794. http://d.wanfangdata.com.cn/Periodical_hjwrzljsysb201402064.aspx
|
王汉卫, 王玉军, 陈杰华, 等, 2009.改性纳米炭黑用于重金属污染土壤改良的研究.中国环境科学, 29(4):431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200904017
|
吴迎奔, 刘剑波, 贺月林, 等, 2016.介孔硅纳米颗粒对水稻镉吸收的影响.中国土壤与肥料, (2):145-148. doi: 10.11838/sfsc.20160226
|
张金洋, 王定勇, 梁丽, 等, 2016.纳米TiO2对土壤重金属释放及形态变化的影响.环境科学, 37(5):1946-1952. http://wuxizazhi.cnki.net/Sub/hjzy/a/HJJZ201505014.html
|
张美一, 潘纲, 2009.稳定化的零价Fe, FeS, Fe3O4纳米颗粒在土壤中的固砷作用机理.科学通报, 54(23):3637-3644. http://www.oalib.com/paper/4676790
|