• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 8
    Aug.  2018
    Turn off MathJax
    Article Contents
    Fu Jiangang, Li Guangming, Wang Genhou, Zhang Linkui, Liang Wei, Zhang Zhi, Dong Suiliang, Huang Yong, 2018. Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8): 2638-2650. doi: 10.3799/dqkx.2018.530
    Citation: Fu Jiangang, Li Guangming, Wang Genhou, Zhang Linkui, Liang Wei, Zhang Zhi, Dong Suiliang, Huang Yong, 2018. Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8): 2638-2650. doi: 10.3799/dqkx.2018.530

    Timing of E-W Extension Deformation in North Himalaya: Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet

    doi: 10.3799/dqkx.2018.530
    • Received Date: 2018-02-28
    • Publish Date: 2018-08-15
    • The Tethys Himalaya is characterized by the S-N trending and E-W trending structures, and the North Himalaya gneiss domes (NHGD).The Cuonadong dome, located at the eastern part of the North Himalaya, is a recently newly identified dome.The Cuonadong dome is divided into three units from outer to inner:the upper unit (the cover rocks), middle unit (the detachment layer) and lower unit (the core).The middle unit mainly consists of a series of strong deformation schist, pegmatite, granite, marble, and skarn.The main schist types include garnet mica schist, garnet staurolite schist, kyanite garnet staurolite schist, sillimanite kyanite garnet schist, and mica quartz schist.This unit is characterized by a ductile shear zone including the sheath fold, augen structure, rotating porphyroclast, S-C structure, and pressure shadow structure.The Cuonadong dome preserves evidences for four major deformational events:N-S thrust (D1), early approximately S-N extensional deformation (D2), approximately E-W extensional deformation (D3), and collapse structural deformation (D4).Ar-Ar dating of muscovite from the mylonitic schist in the Cuonadong dome yielded Ar-Ar plateau age of 14.0±0.2 Ma and inverse isochron age of 13.7±0.5 Ma, meanwhile the presence of subgrain rotation recrystallization (SGR) in quartz shows that the schist was deformed under high deformation temperature (450~550℃), which is clearly higher than the closure temperature of muscovite.Therefore, we suggest that the Ar-Ar plateau age of 14.0±0.2 Ma represents the age of the E-W extensional deformation in the Cuonadong dome, also the age of the S-N trending Sangri-Cuona rift.Combined with the structural deformation and thermochronology, we suggest that the formation of the Cuonadong dome resulted from both the earlier S-N and later E-W extensional deformations, especially the S-N extensional deformation, i.e.the STDS.

       

    • loading
    • Aoya, M., Wallis, S.R., Terada, K., et al., 2005.North-South Extension in the Tibetan Crust Triggered by Granite Emplacement.Geology, 33(11):853.https://doi.org/10.1130/g21806.1 doi: 10.1130/G21806.1
      Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.NormalFaulting in Central Tibet since at least 13.5 Myr Ago.Nature, 412(6847):628-632. https://doi.org/10.1038/35088045
      Burg, J.P., Chen, G.M., 1984.Tectonics and Structural Zonation of Southern Tibet, China.Nature, 311(5983):219-223. https://doi.org/10.1038/311219a0
      Copley, A., Avouac, J.P., Wernicke, B.P., 2011.Evidence for Mechanical Coupling and Strong Indian Lower Crust beneath Southern Tibet.Nature, 472(7341):79-81. https://doi.org/10.1038/nature09926
      Ding, L., Yue, Y.H., Cai, F.L., et al., 2006.40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet:Implications in the Onset Time and Depth of NS-Striking Rift System.Acta Geologica Sinica, 80(9):1252-1261 (in Chinese with English abstract). http://www.researchgate.net/publication/279620542_40Ar39Ar_geochronology_geochemical_and_Sr-Nd-O_isotopic_characteristics_of_the_high-Mg_ultrapotassic_rocks_in_Lhasa_Block_of_Tibet_Implications_in_the_onset_time_and_depth_of_NS-striking_rift_system
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2017.First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome.International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018.Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Observations and Thermochronologic Results.International Journal of Earth Sciences, 274(1-2):1-19.https://doi.org/10.1007/s00531-018-1585-y doi: 10.1007/s00531-018-1585-y
      Gao, L.E., Zeng, L.S., Wang, L., et al., 2013.Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite within the Northern Himalayan Gneiss Domes, Southern Tibet.Acta Petrologica Sinica, 29(6):1995-2012 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010
      Harrison, T.M., Célérier, J., Aikman, A.B., et al., 2009.Diffusion of 40Ar in Muscovite.Geochimica et Cosmochimica Acta, 73(4):1039-1051. https://doi.org/10.1016/j.gca.2008.09.038
      Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1995.Activation of the Nyainqentanghla Shear Zone:Implications for Uplift of the Southern Tibetan Plateau.Tectonics, 14(3):658-676.https://doi.org/10.1029/95tc00608 doi: 10.1029/95TC00608
      Hintersberger, E., Thiede, R.C., Strecker, M.R., et al., 2010.East-West Extension in the NW Indian Himalaya.Geological Society of America Bulletin, 122(9-10):1499-1515.https://doi.org/10.1130/b26589.1 doi: 10.1130/B26589.1
      Jessup, M.J., Langille, J.M., Cottle, J.M., et al., 2016.Crustal Thickening, Barrovian Metamorphism, and Exhumation of Midcrustal Rocks during Doming and Extrusion:Insights from the Himalaya, NW India.Tectonics, 35(1):160-186.https://doi.org/10.13039/100000001 doi: 10.1002/tect.v35.1
      Jiménez-Munt, I., Platt, J.P., 2006.Influence of Mantle Dynamics on the Topographic Evolution of the Tibetan Plateau:Results from Numerical Modeling.Tectonics, 25(6):1-19.https://doi.org/10.1029/2006tc001963 doi: 10.1029/2006TC001963/full
      Kali, E., Leloup, P.H., Arnaud, N., et al., 2010.Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models.Tectonics, 29(2):TC2014.https://doi.org/10.1029/2009tc002551 doi: 10.1029/2009TC002551/pdf
      la Roche, R.S., Godin, L., Cottle, J.M., et al., 2016.Direct Shear Fabric Dating Constrains Early Oligocene Onset of the South Tibetan Detachment in the Western Nepal Himalaya.Geology, 44(6):403-406.https://doi.org/10.1130/g37754.1 doi: 10.1130/G37754.1
      Langille, J., Lee, J., Hacker, B., et al., 2010.Middle Crustal Ductile Deformation Patterns in Southern Tibet:Insights from Vorticity Studies in Mabja Dome.Journal of Structural Geology, 32(1):70-85. https://doi.org/10.1016/j.jsg.2009.08.009
      Larson, K.P., Godin, L., Davis, W.J., et al., 2010.Out-of-Sequence Deformation and Expansion of the Himalayan Orogenic Wedge:Insight from the Changgo Culmination, South Central Tibet.Tectonics, 29(4):TC4013.https://doi.org/10.1029/2008tc002393 doi: 10.1029/2008TC002393/pdf
      Law, R.D., 2014.Deformation Thermometry Based on Quartz C-Axis Fabrics and Recrystallization Microstructures:A Review.Journal of Structural Geology, 66:129-161.https://doi.org/10.13039/100000001 doi: 10.1016/j.jsg.2014.05.023
      Lee, J., Hacker, B., Wang, Y., 2004.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet.Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
      Lee, J., Hager, C., Wallis, S.R., et al., 2011.Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet.Tectonics, 30(2):TC2007.https://doi.org/10.1029/2010tc002745 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0223963081
      Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      Liang, W., Yang, Z.S., Zheng, Y.C., 2015.The Zhaxikang Pb-ZnP Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance.Acta Geologica Sinica, 89(3):560-568 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201503010.htm
      Liu, Z.C., Wu, F.Y., Qiu, Z.L., et al., 2017.Leucogranite Geochronological Constraints on the Termination of the South Tibetan Detachment in Eastern Himalaya.Tectonophysics, 721:106-122.https://doi.org/10.13039/501100001809 doi: 10.1016/j.tecto.2017.08.019
      Ludwig, K.R., 2003.User's Manual for Isoplot/EX Version 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 4:1-70. http://www.researchgate.net/publication/248255142_User''s_manual_for_IsoplotEx_version_2
      Meng, Y.K., Xu, Z.Q., Ma, S.W., er al., 2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098 (in Chinese with English abstract).https://doi.org/dqkx.2016.090 http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607001.htm
      Mitsuishi, M., Wallis, S.R., Aoya, M., et al., 2012.E-W Extension at 19 Ma in the Kung Co Area, S.Tibet:Evidence for Contemporaneous E-W and N-S Extension in the Himalayan Orogen.Earth and Planetary Science Letters, 325-326:10-20.https://doi.org/10.1016/j.epsl.2011.11.013 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0226107636
      Nelson, K.D., Zhao, W., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684
      Schill, E., Crouzet, C., Gautam, P., et al., 2002.Where did Rotational Shortening Occur in the Himalayas? -Inferences from Palaeomagnetic Remagnetisations.Earth and Planetary Science Letters, 203(1):45-57.https://doi.org/10.1016/s0012-821x(02)00842-7 doi: 10.1016/S0012-821X(02)00842-7
      Schultz, M.H., Hodges, K.V., Ehlers, T.A., et al., 2017.Thermochronologic Constraints on the Slip History of the South Tibetan Detachment System in the Everest Region, Southern Tibet.Earth and Planetary Science Letters, 459:105-117.https://doi.org/10.13039/100000001 doi: 10.1016/j.epsl.2016.11.022
      Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002.The Eastern Tonale Fault Zone:A 'natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃.Journal of Structural Geology, 24(12):1861-1884.https://doi.org/10.1016/s0191-8141(02)00035-4 doi: 10.1016/S0191-8141(02)00035-4
      Styron, R.H., Taylor, M.H., Murphy, M.A., 2011.Oblique Convergence, Arc-Parallel Extension, and the Role of Strike-Slip Faulting in the High Himalaya.Geosphere, 7(2):582-596.https://doi.org/10.1130/ges00606.1 doi: 10.1130/GES00606.1
      Sun, X., Zheng, Y.Y., Wang, C.M., et al., 2016.Identifying Geochemical Anomalies Associated with Sb-Au-Pb-Zn-Ag Mineralization in North Himalaya, Southern Tibet.Ore Geology Reviews, 73:1-12. https://doi.org/10.1016/j.oregeorev.2015.10.020
      Valli, F., Arnaud, N., Leloup, P.H., et al., 2007.Twenty Million Years of Continuous Deformation along the Karakorum Fault, Western Tibet:A Thermochronological Analysis.Tectonics, 26(4):TC4004.https://doi.org/10.1029/2005tc001913 doi: 10.1029/2005TC001913/full
      Wagner, T., Lee, J., Hacker, B.R., et al., 2010.Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya.Tectonics, 29(6):TC6011.https://doi.org/10.1029/2010tc002746 doi: 10.1029/2010TC002746/full
      Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract).https://doi.org/dqkx.2016.082 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006
      Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China(Series D), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      Yin, A., 2010.Cenozoic Tectonic Evolution of Asia:A Preliminary Synthesis.Tectonophysics, 488(1-4):293-325. https://doi.org/10.1016/j.tecto.2009.06.002
      Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
      Zhang, J.J., 2007.A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet.Geological Bulletin of China, 26(6):639-649 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200706003
      Zhang, J.J., Guo, L., Zhang, B., 2007.Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China.Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      Zhang, J.J., Santosh, M., Wang, X.X., et al., 2012.Tectonics of the Northern Himalaya since the India-Asia Collision.Gondwana Research, 21(4):939-960.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2011.11.004
      Zhang, J.J., Yang, X.Y., Qi, G.W., et al., 2011.Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD).Acta Petrologica Sinica, 27(12):3535-3544 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003
      丁林, 岳雅慧, 蔡福龙, 等, 2006.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约.地质学报, 80(9):1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003
      高利娥, 曾令森, 王莉, 等, 2013.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制.岩石学报, 29(6):1995-2012. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306010
      李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      梁维, 杨竹森, 郑远川, 2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义.地质学报, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009
      孟元库, 许志琴, 马士委, 等.2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098.https://doi.org/dqkx.2016.090 http://earth-science.net/WebPage/Article.aspx?id=3320
      王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998.https://doi.org/dqkx.2016.082 http://earth-science.net/WebPage/Article.aspx?id=3311
      吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017071200021563
      张进江, 2007.北喜马拉雅及藏南伸展构造综述.地质通报, 26(6):639-649. doi: 10.3969/j.issn.1671-2552.2007.06.003
      张进江, 郭磊, 张波, 2007.北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      张进江, 杨雄英, 戚国伟, 等, 2011.马拉山穹窿的活动时限及其在藏南拆离系——北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, (12):3535-3544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (6246) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return