• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Du Shuheng, Pang Shan, Chai Guangsheng, Wang He, Shi Yongmin, 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by 'Umbrella Deconstruction' Method. Earth Science, 45(1): 276-284. doi: 10.3799/dqkx.2018.567
    Citation: Du Shuheng, Pang Shan, Chai Guangsheng, Wang He, Shi Yongmin, 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method. Earth Science, 45(1): 276-284. doi: 10.3799/dqkx.2018.567

    Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method

    doi: 10.3799/dqkx.2018.567
    • Received Date: 2018-10-26
    • Publish Date: 2020-01-15
    • As an important type of unconventional reservoirs, tight oil and gas reservoirs are characterized by small pore scale and obvious micro-heterogeneity. The exploration potential is vast despite the major theoretical challenges in greatly improving the recovery rate of resources. In this study, the micro anisotropic characteristics of pores and minerals in continental tight sandstone reservoirs in Ordos basin, China, are quantitatively analyzed by means of "umbrella deconstruction". The case study shows that there is a significant micro anisotropy in the micro pore-throat development in eight directions, and the development characteristics of the anisotropic filler are obviously different. With the change of sampling angle, the micro pores show continuously unsteady distribution. The fractal dimension could characterize the porosity, permeability and pore-throat development probability. The study can provide important theoretical support and practical basis for revealing the mechanism of tight reservoir permeability, "sweet spot" distribution and guiding the effective development of tight oil and gas.

       

    • loading
    • Alyafei, N., Mckay, T. J., Solling, T. I., 2016. Characterization of Petrophysical Properties Using Pore-Network and Lattice-Boltzmann Modelling:Choice of Method and Image Sub-Volume Size. Journal of Petroleum Science and Engineering, 145:256-265. https://doi.org/10.1016/j.petrol.2016.05.021
      Arand, F., Hesser, J., 2017. Accurate and Efficient Maximal Ball Algorithm for Pore Network Extraction. Computers & Geosciences, 101:28-37. https://doi.org/10.1016/j.cageo.2017.01.004
      Berrezueta, E., Kovacs, T., 2017. Application of Optical Image Analysis to the Assessment of Pore Space Evolution after CO2 Injection in Sandstones. A Case Study. Journal of Petroleum Science and Engineering, 159:679-690. https://doi.org/10.1016/j.petrol.2017.08.039
      Dong, H., 2007. Micro-CT Imaging and Pore Network Extraction. Imperial College, London.
      Du, S. H., 2019a. Prediction of Permeability and Its Anisotropy of Tight Oil Reservoir via Precise Pore-Throat Tortuosity Characterization and "Umbrella Deconstruction" Method. Journal of Petroleum Science and Engineering, 178:1018-1028. https://doi.org/10.1016/j.petrol.2019.03.009
      Du, S. H., Shi, G. X., Yue, X. J., et al., 2019b. Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin, China. Acta Geologica Sinica (English Edition), 93(2):373-385. https://doi.org/10.1111/1755-6724.13768
      Du, S. H., Shi, Y. M., Zheng, X. J., et al., 2019c. Using "Umbrella Deconstruction & Energy Dispersive Spectrometer (UD-EDS)" Technique to Quantify the Anisotropic Elements Distribution of "Chang 7" Shale and Its Significance. Energy, in Press. https://doi.org/10.1016/j.energy.2019.116443
      Du, S. H., Xu, F., Taskyn, A., et al., 2019d. Anisotropy Characteristics of Element Composition in Upper Triassic "Chang 8" Shale in Jiyuan District of Ordos Basin, China:Microscopic Evidence for the Existence of Predominant Fracture Zone. Fuel, 253:685-690. https://doi.org/10.1016/j.fuel.2019.05.031
      Du, S. H., Pang, S., Shi, Y. M., 2018a. A New and More Precise Experiment Method for Characterizing the Mineralogical Heterogeneity of Unconventional Hydrocarbon Reservoirs. Fuel, 232:666-671. https://doi.org/10.1016/j.fuel.2018.06.012
      Du, S. H., Pang, S., Shi, Y. M., 2018b. Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering both the Resolution and Representativeness. Journal of Petroleum Science and Engineering, 169:388-392. https://doi.org/10.1016/j.petrol.2018.05.058
      Gundogar, A. S., Ross, C. M., Akin, S., et al., 2016. Multiscale Pore Structure Characterization of Middle East Carbonates. Journal of Petroleum Science and Engineering, 146:570-583. https://doi.org/10.1016/j.petrol.2016.07.018
      Hajnos, M., Lipiec, J., Świeboda, R., et al., 2006. Complete Characterization of Pore Size Distribution of Tilled and Orchard Soil Using Water Retention Curve, Mercury Porosimetry, Nitrogen Adsorption, and Water Desorption Methods. Geoderma, 135:307-314. https://doi.org/10.1016/j.geoderma.2006.01.010
      Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution:A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8:1-13. https://doi.org/10.1016/j.juogr.2014.06.002
      Huang, W. B., Lu, S. F., Hersi, O. S., et al., 2017. Reservoir Spaces in Tight Sandstones:Classification, Fractal Characters, and Heterogeneity. Journal of Natural Gas Science and Engineering, 46:80-92. https://doi.org/10.1016/j.jngse.2017.07.006
      Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geology Theory. Petroleum Exploration and Development, 44(1):1-10. https://doi.org/10.1016/s1876-3804(17)30002-2
      Kate, J. M., Gokhale, C. S., 2006. A Simple Method to Estimate Complete Pore Size Distribution of Rocks. Engineering Geology, 84(1-2):48-69. https://doi.org/10.1016/j.enggeo.2005.11.009
      Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158:78-89. https://doi.org/10.1016/j.coal.2016.03.003
      Krakowska, P., Puskarczyk, E., Jędrychowski, M., et al., 2018. Innovative Characterization of Tight Sandstones from Paleozoic Basins in Poland Using X-Ray Computed Tomography Supported by Nuclear Magnetic Resonance and Mercury Porosimetry. Journal of Petroleum Science and Engineering, 166:389-405. https://doi.org/10.1016/j.petrol.2018.03.052
      Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177:436-457. https://doi.org/10.1016/j.earscirev.2017.12.003
      Markussen, Ø., Dypvik, H., Hammer, E., et al., 2019. 3D Characterization of Porosity and Authigenic Cementation in Triassic Conglomerates/Arenites in the Edvard Grieg Field Using 3D Micro-CT Imaging. Marine and Petroleum Geology, 99:265-281. https://doi.org/10.1016/j.marpetgeo.2018.10.015
      Munawar, M. J., Lin, C. Y., Cnudde, V., et al., 2018. Petrographic Characterization to Build an Accurate Rock Model Using Micro-CT:Case Study on Low-Permeable to Tight Turbidite Sandstone from Eocene Shahejie Formation. Micron, 109:22-33. https://doi.org/10.1016/j.micron.2018.02.010
      Rabbani, A., Jamshidi, S., Salehi, S., 2014. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images. Journal of Petroleum Science and Engineering, 123:164-171. https://doi.org/10.1016/j.petrol.2014.08.020
      Silin, D. B., Jin, G., Patzek, T. W., 2003. Robust Determination of Pore Space Morphology in Sedimentary Rocks. Proceedings of SPE Annual Technical Conference and Exhibition, Denver.
      Wang, P. F., Jiang, Z. X., Ji, W. M., et al., 2016. Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries. Marine and Petroleum Geology, 72:122-138. https://doi.org/10.1016/j.marpetgeo.2016.01.020
      Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103:12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003
      Xiao, D. S., Lu, S. F., Lu, Z. Y., et al., 2016. Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones. Petroleum Exploration and Development, 43(6):1049-1059. https://doi.org/10.1016/s1876-3804(16)30122-7
      Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2018. Characterizations of Full-Scale Pore Size Distribution, Porosity and Permeability of Coals:A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. International Journal of Coal Geology, 196:148-158. https://doi.org/10.1016/j.coal.2018.07.008
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (4336) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return